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Abstract: A phenotype is the composite of an observable expression of a genome for traits in a
given environment. The trajectories of phenotypes computed from an image sequence and timing of
important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the
plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet,
which uses deep neural networks for detecting flowers from multiview image sequences for high-
throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-
based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the
total number of flowers present in the plant at a given time, the highest number of flowers bloomed
in the plant, growth trajectory of a flower, and the blooming trajectory of a plant. To develop a new
algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset
is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno, which comprises
image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a
visible light camera in a high-throughput plant phenotyping platform from multiple view angles. The
experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet.

Keywords: high-throughput plant phenotyping; deep neural network; flower detection; temporal
phenotypes; benchmark dataset; flower status report

1. Introduction

Image-based plant phenotyping refers to the proximal sensing and quantification
of a plant’s traits resulting from complex interactions between the genotype and its en-
vironment based on noninvasive analysis of image sequences that obviate the need for
physical human labor [1]. It is an interdisciplinary research field that lies at the intersec-
tion of computer science, plant science, remote sensing, data science, and genomics, with
the goal to link complex plant phenotypes to genetic expression for global food security
under dwindling natural resources and climate variability [2]. The image-based plant
phenotypes can be broadly classified into three categories, i.e., structural, physiological,
and temporal [3]. The structural phenotypes characterize a plant’s shape and topology,
(e.g., plant height, biomass) whereas physiological phenotypes refer to the physiolog-
ical characteristics of plants, e.g., the plant’s temperature, the carbohydrate content of
the stem, and photosynthetic capability of a leaf. In addition, the genotypic and envi-
ronmental impact on the growth of a plant and its different components (leaves, stems,
flowers, and fruits) over time has given rise to a new category of phenotype, called the
temporal phenotype.
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Image-based temporal phenotypes are subdivided into two categories, namely,
trajectory-based and event-based. Structural and physiological phenotypes are often
computed from a sequence of images captured at regular time intervals to demonstrate
the temporal variation of phenotypes regulated by genotypes and environment, e.g., the
growth rate of a plant, propagation of stress symptoms over time, or the leaf elongation
rate. These are called trajectory-based temporal phenotypes. The fundamental difference
between the growth characteristics of plants and animals is that, while most animals are
born with all their body organs, plants grow throughout their life cycle by continuously
producing new tissues and structures, e.g., leaves, flowers, and fruits. Furthermore, the
different organs have different growth rates, and their shapes change over time both in
topology and geometry. Plants not only develop new organs and bifurcate into different
components during their life cycle, but they also show symptoms of senescence. The
timing of important events in a plant’s life, e.g., germination, the emergence of a new
leaf, flowering (i.e., the appearance of the first flower indicating the transition from the
vegetative to the reproductive stage), fruiting (i.e., the appearance of first fruit), and the
onset of senescence is crucial in the understanding of the overall plant’s vigor, which is
likely to vary with the interaction between genotype and environment. Such phenotypes
are referred to as event-based phenotypes.

Unlike the visual tracking of rigid bodies, e.g., vehicles and pedestrians, whose move-
ments are merely characterized by the change in location, the emergence timing detection
of new organs and tracking their growth over time in plants requires a different problem
formulation with an entirely new set of challenges. The newly emerged organs, e.g., buds,
are often occluded by leaves and assume the color and texture of the leaves, making their
detection challenging. Furthermore, the rate of change (for both growth and senescence) is
typically more gradual than the rigid body motion. Phyllotaxy, the plant’s mechanism to
optimize light interception by re-positioning the leaves, leads to self-occlusions and leaf
crossovers and adds another layer of complexity in tracking the plant’s growth.

Monitoring flower development over time plays a significant role in production man-
agement, yield estimation, and breeding programs [4]. To the best of our knowledge, there
is no previous study on temporal flower phenotyping taxonomy in the literature derived
from image sequences. This paper introduces a novel system called FlowerPhenoNet for
flower phenotyping analysis based on the detection of flowers in a plant image sequence
using deep learning for temporal flower phenotyping. Deep learning has been successfully
employed in a number of real-time object detection tasks, e.g., abandoned luggage detection
in public places [5] and detection and counting of vehicles on highways for visual surveil-
lance [6]. FlowerPhenoNet has the following novelties. It introduces (a) a novel approach
to flower detection from a multiview image sequence using deep learning technique for
application in plant phenotyping; (b) a set of new temporal flower phenotypes with a
discussion on their significance in plant science; (c) a publicly available benchmark dataset
to facilitate research advancement in flower-based plant phenotyping analysis.

2. Related Works

Deep learning has been effectively explored in the state-of-the-art methods for de-
tecting and counting flowers and fruits from images. Zhenglin et al. in [7] proposed a
MangoYOLO algorithm for detecting, tracking, and counting mangoes from a time-lapse
video sequence. The method uses the Hungarian algorithm [8] to correlate fruit between
neighboring frames, and the Kalman filter [9] to predict the position of fruit in the following
frames. The method in [10] uses the MaskRCNN algorithm for detecting tomato fruits
from images captured in the controlled greenhouse environment. A faster R-CNN has been
effectively used in [11,12] to develop a reliable fruit detection system from images, which is
a critical task for automated yield estimation. To improve the detection performance for the
case of small fruits, the method proposed in [11] incorporated a multiple classifier fusion
strategy in the faster R-CNN.
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Some notable research in event-based plant phenotyping includes the detection of
budding and bifurcation events from 4D point clouds using a forward–backward analysis
framework [13] and plant emergence detection and tracking of the coleoptile based on
adaptive hierarchical segmentation and optical flow using spatio-temporal image sequence
analysis [14]. For a large-scale phenotypic experiment, the seeds are usually sown in
smaller pots until germination, and then transplanted to bigger pots based on visual
inspection of the germination date, size, and health of the seedlings. The method described
in [15] developed a deep-learning-based automated germination detection system that
also supports visual inspection and transplantation of seedlings. A benchmark dataset
is released to pose the germination detection problem as a new challenge. The method
described in [16] uses a skeleton-graph transformation approach to detect the emergence
timing of each leaf and track the individual leaves over the image sequence for automated
leaf stage monitoring of maize plants.

Trajectory-based phenotypes have drawn the attention of researchers due to their
efficacy in demonstrating the environmental and genotypic impact on a plant’s health for
an extended time of its life cycle. Das Choudhury et al. [1] introduced a set of new holistic
and component phenotypes computed from 2D side view image sequences of maize plants,
and demonstrated the temporal variations of these phenotypes regulated by genotypes
using line graphs. The method in [17] used a skeleton-graph transformation approach
to compute stem angles from plant image sequences. The trajectories of stem angles are
analyzed using time series cluster analysis and angular histogram analysis to investigate
the genotypic influence on the stem angle trajectories at a given environmental condition.

The state-of-the-art methods have used deep learning techniques for detecting and
counting flowers by analyzing images captured by unmanned aerial vehicles (UAVs) [4,18].
Time-series phenotyping for flowers based on analyzing images captured in high-throughput
plant phenotyping platforms (HTP3) by proximal sensing, is yet to be explored. This
paper introduces a novel system called FlowerPhenoNet, which uses a deep learning
technique to detect flowers from an input image sequence and produces a flower status
report consisting of a set of novel trajectory-based and event-based flower phenotypes.
The paper also publicly releases a benchmark dataset, the first of its kind, consisting of
image sequences of 60 plants belonging to three economically important species, namely,
sunflower, canna, and coleus. This dataset is intended to advance the image-based time
series flower phenotyping analysis.

3. Dataset

Development and public dissemination of datasets are critical for advancing research,
particularly in emerging areas such as image-based plant phenotyping analysis. In order
to foster the development of novel algorithms and their uniform evaluation, a benchmark
dataset is indispensable. Its availability in the public domain provides the broad computer
vision community with a common basis for comparative performance evaluations of
different algorithms. Thus, we introduce a benchmark dataset called FlowerPheno with an
aim to facilitate the development of algorithms for the detection and counting of flowers to
compute flower-based phenotypes. The imaging setup used to acquire the images and the
description of the dataset is given below.

3.1. Imaging Setup

The plants used to create the FlowerPheno dataset were grown in the greenhouse
equipped with the Lemnatec 3D Scanalyzer of the high-throughput plant phenotyping core
facilities located at the University of Nebraska-Lincoln (UNL), USA. The system has the
capacity to host 672 plants with heights up to 2.5 m. It has three watering stations, each
with a balance that can add water to a target weight or specific volume, and records the
specific quantity of water added daily. The plants are placed on metallic and composite
containers on a movable conveyor belt that transfers the plants from the greenhouse to the
imaging chambers in succession to capture images of the plants in multiple modalities by
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proximal sensing. The cameras installed in the four imaging chambers from left to right are
(a) chamber 1—visible light side view and visible light top view, (b) chamber 2—infrared
side view and infrared top view, (c) chamber 3—fluorescent side view and fluorescent
top view, and (d) chamber 4—hyperspectral side view and near-infrared top view. Each
imaging chamber has a rotating lifter for up to 360 side view images. The specifications
of the different types of cameras and detailed descriptions of the time required to capture
images using those cameras can be found in [1,2]. Figure 1 shows the LemnaTec Scanalyzer
3D HTP3 at the UNL with the view of the watering station and the plants entering into the
imaging chambers.

Figure 1. LemnaTec Scanalyzer 3D high-throughput plant phenotyping facility at the UNL: view of
the automated greenhouse (top-left); watering station (top-right); a plant entering the fluorescent
chamber (bottom-left); and plants on the conveyor belt heading towards the visible light chamber
(bottom-right).

3.2. Dataset Description

The dataset consists of 60 folders containing RGB image sequences of three flowering
plant species, i.e., sunflower (Helianthus annuus), canna (Canna generalis), and coleus (Plec-
tranthus scutellarioides). There are 20 plants for each species. The images are captured from
a top view, and nine side views, i.e., 0◦, 36◦, 72◦, 108◦, 144◦, 216◦, 252◦, 288◦, and 324◦. The
images were captured once daily in the LemnaTec Scanalyzer 3D high-throughput plant
phenotyping facility located at the University of Nebraska-Lincoln, USA, for 24 to 35 days,
starting five days after germination. Thus, each plant was imaged starting from the seedling
stage until full-grown, capturing the transition event from vegetative to reproductive stage.

The dataset contains two subfolders, i.e., ‘Images’ and ‘Training’. The ‘Images’ sub-
folder is subdivided into three folders corresponding to the three flowering plants, namely,
‘canna’, ‘coleus’, and ‘sunflower’. The “Training” subfolder is further divided into three
folders, ‘Canna-dataset’, ‘Coleus-dataset’, and ‘Sunflower-dataset’, each of which contains
100 randomly selected images along with their ground-truth (i.e., the coordinates of the
bounding rectangles enclosing the flowers) in “.txt” format. The total number of images in
the dataset is 17,022. The resolution of the original images is 4384 × 6576. In the released
version, the images are downsampled to 420 × 420. The dataset can be freely downloaded
from https://plantvision.unl.edu/dataset, accessed on 15 February 2021.

https://plantvision.unl.edu/dataset
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4. Materials and Methods

FlowerPhenoNet considers a sequence of images of a plant from the early vegetative
to the flowering stage as the input. The goal of FlowerPhenoNet is: Given an input image
sequence of a plant, P, compute the set of phenotypes, G, where P and G are formally
defined as below Algorithm 1.

Algorithm 1: Problem definition: FlowerPhenoNet

Input: The image sequence of a plant, i.e., P={αd1 , αd2 ,. . . ,αdn }, where αdi
denotes the

image obtained on day di, n denotes the total number of imaging days, and di < di+1, ∀
1 ≤ i < n. Furthermore, αdi

= {αdi ,v1 , αdi ,v2 , . . . , αdi ,vm }, where αdi ,vj
is the j-th view (vj) of

the plant P taken on day di where di < di+1, and m denotes the total number of views.
Goal: To compute a set, G of flower-based phenotypes for each image in the sequence,
where G = {Gd1 , Gd2 , . . . , Gdn} and Gdi

is the set of phenotypes for day di.

As with all deep-learning-based approaches, training is an essential process in Flower-
PhenoNet. After the network is trained, a test image sequence of a plant is used to locate
the flowers in each image and evaluate the performance of the network. Then, a set of
novel temporal flower-based phenotypes are computed. Figure 2 shows the schematic of
the FlowerPhenoNet system. Each of the steps is described next.

Figure 2. Block diagram of FlowerPhenoNet.

4.1. Image Labeling

We randomly selected 300 images from the dataset (100 images from each of the three
flowering plant species, i.e., sunflower, canna, and coleus) containing multiple views of a
set of plants for training the network. The plants were at different stages of growth bearing
flowers from emergence to full bloom. Thus, the training set consists of a range of images
containing buds to full-grown flowers, which is an essential criterion to achieve the goal of
flower emergence timing detection and flower growth monitoring. Figure 3 shows some
sample labeled images of the training set. The flowers in the training set are manually
enclosed by rectangular boxes (shown in red) using the open source image annotation tool
called ‘LabelImg’ [19].
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Figure 3. Sample labeled multi-view images from FlowerPheno dataset used for training: Coleus
(row-1); Canna (row-2); and Sunflower (row-3). Top-view (column-1); Side-view 0◦ (column-2);
Side-view 108◦ (column-3); Side-view 288◦ (column-4).

4.2. Data Augmentation

Deep convolutional neural networks perform remarkably well on many computer
vision tasks, e.g., image segmentation, image classification, and object detection. However,
these networks are heavily reliant on large training datasets to combat overfitting by
increasing the generalizability of the models [20]. Data augmentation strategy encompasses
a suite of techniques to increase the size and quality of the training sets by usually applying
various geometric and photometric transformations to the original labeled images during
training [20]. It helps in adding more variety to the training set without actually having to
increase the number of labeled training samples. In this method, the images in the training
set are first cropped and then labeled for flowers before being subjected to augmentation.
In FlowerPheno, data augmentation is performed after flower samples are labeled prior
to training the network. The transformations used in this step include random horizontal
flipping, scaling, and changing contrast. Figure 4 shows the results of data augmentation
strategies used in FlowerPhenoNet. Note that test images are supposed to be representative
of the original images without any alteration, and hence, must not be subjected to data
augmentation for unbiased evaluation.
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Figure 4. Illustration of data augmentation strategies using transformations and illumination alter-
ation: original image (top-left); scaled image (top-right); reflected image (bottom-left) and illumina-
tion altered image (bottom-right).

4.3. Neural Network Architecture and Training

Flower detection can be logically mapped to the object detection problem that has been
widely studied in computer vision using both traditional and deep learning approaches.
Object detection typically entails identifying the presence of the object, its location, and its
type. YOLO (You Only Look Once) is a fast object detection algorithm proposed by [21] for
real-time processing that has been widely used in a variety of applications. It is a one-stage
object detection method that makes predictions of bounding boxes and class probabilities
simultaneously by using an end-to-end neural network. Its architecture consists of a feature
extraction network followed by a detection network. Thus, YOLO has a better inference
speed than the two-stage models (e.g., R-CNN, Fast R-CNN, and Faster R-CNN). YOLOv3
used in this research uses the Darknet-53 [22] network which has 53 convolution layers
with residual blocks. Residual blocks are used in deep neural networks to avoid saturation
of accuracy with increasing depth.

The performance of the YOLO detector depends heavily on the quality of the labeling,
i.e., masks generated from the images in the training dataset corresponding to different
instances of the classes. Many open-source tools are available to generate the masks effec-
tively. In this research, we have used the ‘LabelImg’ [19], a graphical image annotation tool,
that generates the masks in the ‘YOLO’ format and hence can be fed directly into the YOLO
architecture for training. Then, the images, along with their corresponding masks (ground-
truth) are used to train the Darknet-53 framework, the core of the YOLOv3 architecture.
The network is pre-trained on the COCO dataset [23] consisting of 80 classes. We then
retrained the network with our labeled training data. Some important hyperparameters
specified in our configuration include batch size (set to 32), max batches (set to 2000), and
the number of filters (set to 18). The updated weights in the network were saved after
3000 epochs to constitute the FlowerPhenoNet.

YOLOv4 and YOLOv5 share the same head and neural network type as YOLOv3, but
differ in the backbone, neck, and loss function ([24]). While YOLOv3 uses Darknet53 as
the backbone, YOLOv4 uses CSPDarknet53. YOLOv5 uses a Focus structure with CSP-
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darknet53 as a backbone where the Focus layer evolved from YOLOv3. YOLOv5 replaces
the first three layers of YOLOv3 to create a single focus layer. Most of the comparative
studies among YOLOv3, YOLOv4, and YOLOv5 reported that YOLOv4 and YOLOv5 out-
performed YOLOv3 in terms of accuracy but at the expense of slower inference speed [25].
Since the goal of FlowerPhenoNet is not to provide comparative performance analysis
among different versions of YOLO for flower detection but to demonstrate the efficacy of
the algorithm to compute temporal flower phenotypes for characterizing a plant’s vigor, we
choose YOLOv3 for our application. YOLOX also uses YOLOv3 with Darknet-53 backbone
and spatial pyramid pooling (SPP) layer as the baseline, but it is anchor-free [25]. Since
anchors play a vital role in FlowerPhenoNet, YOLOX is not a feasible option.

Modern deep-learning-based object detectors make use of anchor boxes to predict
the location and size of an object in an image accurately with faster speed [26]. A detailed
description of the anchor box optimization technique used in FlowerPhenoNet to automati-
cally learn the shapes of anchors during training can be found in [26]. Choosing the number
of anchors is an important training hyperparameter that requires careful consideration and
is determined using empirical analysis. Note that a value greater than 0.5 for mean IoU
implies that the anchor boxes overlap well with the bounding boxes of the training samples.
Figure 5 shows the mean intersection-over-union (IoU) versus the number of anchors. It is
clear from the figure that the mean IoU can be improved if the number of anchor boxes
is increased; however, using more anchor boxes in an object detector can also increase
the computational complexity and lead to overfitting, which results in poor detection
performance. In Figure 5, mean IoU shows an upward trend until the number of anchor
boxes reaches 9, and then drops to a lower value at the number of anchor boxes 10 before
it continues to remain somewhat steady. To make a trade-off between the computational
complexity and the performance, we chose the value of the number of anchor boxes to be 9.

Figure 5. Mean IoU versus number of anchors: determination of the number of anchor boxes using a
sunflower test sequence by analyzing the evaluation metric mean IoU.

4.4. Testing and Evaluation

For testing the performance of the flower detector, we used an image sequence con-
sisting of images of all days for available views of a plant. The test images are resized to
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match the size of the images in the training set. We have used IoU, confidence score (CS),
and precision–recall curve as our evaluation metrics. IoU is an evaluation metric used to
measure the accuracy of an object detector on a particular dataset. IoU is computed using
Equation (1) where the numerator is the area of overlap between the predicted bounding
box and the ground-truth bounding box. The denominator is the area of the union of the
predicted bounding box and the ground-truth bounding box.

IoU =
Area o f Overlap
Area o f Union

(1)

The confidence score, CS, is the probability that an anchor box contains an object. It is
usually predicted by a classifier. It is calculated using Equation (2) as follows:

CS = P(Object)× IoU (2)

where P(Object) is the probability of a predicted bounding box containing an object.
We use the average precision metric to evaluate the performance of the algorithm.

The average precision is a single number that incorporates the ability of the detector to
make correct classifications, i.e., precision, and the ability of the detector to find all relevant
objects, i.e., recall, which is computed as the area under the precision–recall curve. The
precision/recall curve highlights how precise a detector is at varying levels of recall. The
ideal value of precision is 1 at all levels of recall, i.e., the area under the curve equals 1.

4.5. Phenotype Computation

After the flowers are detected in the plant images, FlowerPhenoNet generates a flower
status report consisting of the following temporal phenotypes.

4.5.1. Trajectory-Based

In an HTP3, a plant is imaged at regular intervals for a significant period of its life
cycle to capture salient information about its development. The phenotypes computed by
analyzing each image of the sequence can therefore be represented as a discrete time series,
mathematically represented by, p1, p2, . . . , pn, where pi denotes the phenotype p for the i-th
image of the plant (which is also the i-th timestamp), and n is the number of times the plant
was imaged and hence is the length of the sequence [27]. A set of phenotypes computed
from a time series of plant images is called a trajectory-based phenotype. Trajectory-
based phenotypes are often represented graphically for visualization. In this research, we
compute two trajectory based phenotypes, i.e., flower growth trajectory and blooming
trajectory. Flower growth trajectory or flower blooming trajectory is formally denoted by
the graphical representation of p1, p2, . . . , pn, where pi represents the flower size (for flower
growth trajectory) or total flower count (for flower blooming trajectory) for the i-th image
of the plant.

4.5.2. Event-Based

Event-based phenotype reports the timing (i.e, the day of imaging) of the significant
events of a plant’s life cycle, i.e., the timing of transition from the vegetative stage to the
reproductive stage by the emergence of the first flower. Thus, the flower status report
consists of the following phenotypes, i.e., the timing of emergence of the first flower, the
total number of flowers present at any given time in the image sequence, the size of each
flower, flower growth trajectory, and the highest number of flowers bloomed in the plant
during its life cycle.

5. Experimental Design and Analysis

The performance of FlowerPhenoNet is evaluated based on experimental analysis of
the FlowerPheno dataset for (a) flower detection and (b) phenotype computation.
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5.1. Flower Detection

Figures 6 and 7 show the image sequences of a sunflower plant (Plant-ID D2)
captured from a side view and the top view, respectively, along with the detected
sunflowers. The figures show that multiple flowers with different sizes and orientations are
efficiently detected.

Figure 6. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for the side view 0◦ over consecutive days (following left to right direction) starting from Day
10 (top-left) to Day 24 (bottom-right).

Figure 7. Illustration of flower emergence timing detection using a sample sunflower image sequence
(D2) for the top view over consecutive days (following left to right direction) starting from Day 16
(top-left) to Day 27 (bottom-right).
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Figure 8 shows the precision/recall curve for the sunflower test sequence shown
in Figure 6. The average precision for all images of this sequence is 0.93. Canna and
coleus plants are considered to be characterized by the presence of a single flower in
an image. FlowerPhenoNet was able to detect all of them for all image sequences of
FlowerPheno dataset. Hence, for canna and coleus, we show the IoUs against days for
different view angles. Figures 9 and 10 show the IoUs against different days for a canna and
a coleus image sequence, respectively. The figures show that the IoU values lie in the range
of [0.6, 0.95], where majority of them are above 0.75.

Figure 8. The precision/recall curve for a sunflower test sequence.

Figure 9. Performance analysis using IoU for a canna image sequence for multiple views (Plant-ID:
Canna-C1).
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Figure 10. Performance analysis using IoU for a coleus image sequence for multiple views (Plant-ID:
Coleus-D1).

Figure 11 shows the average precision and mean IoU for all 20 sunflower plants from
the FlowerPheno dataset. Mean IoU is computed by taking the mean of IoUs of all flowers
in a given image. The figure shows that average precision lies in the range [0.89, 0.94],
whereas mean IoU reports a slightly lower range of values, i.e., [0.816, 0.835].

Figure 11. Flower detection performance of sunflower plants from FlowerPheno dataset using
average precision and mean IoU.
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Figures 12 and 13 show the image sequences of a canna plant (Plant-ID D1) captured
from the side view 0◦ and the top view, respectively, along with the detected canna flower
in each image. The confidence score is shown on the top of the bounding rectangle
enclosing each detected flower. For the side view 0◦, the confidence score lies in the range
of [0.980, 0.999] (Figure 12), while in the case of the top view (Figure 13), the confidence
score lies in the range of [0.621, 0.988].

Figure 12. Illustration of flower emergence timing detection and its growth over consecutive days
(following left to right direction) using a sample canna image sequence (D1) for the side view 0◦

starting from Day 28 (top-left) to Day 35 (bottom-right).

Figure 13. Illustration of flower emergence timing detection and its growth over consecutive days
(following left to right direction) using a sample canna image sequence (D2) for the top view starting
from Day 28 (top-left) to Day 35 (bottom-right).

Similarly, Figures 14 and 15 show the image sequences of a coleus plant (Plant-ID
D1) captured from the side view 0◦ and the top view, respectively, along with the detected
flowers in each image. The figures show a very high range of confidence scores for both
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the side view and the top view, in the range of [0.911, 0.999]. In summary, the results
demonstrate the efficacy of FlowerPhenoNet in detecting flowers in three diverse species,
where the flowers are detected even at very early stages of appearance.

Figure 14. Illustration of flower emergence timing detection and its growth over consecutive days
(following left to right direction) using a sample Coleus image sequence (D2) for the side view 0◦

starting from Day 16 (top-left) to Day 33 (bottom-right).

Figure 15. Illustration of flower emergence timing detection and its growth over consecutive days
(following left to right direction) using a sample Coleus image sequence (D2) for the top view starting
from Day 16 (top-left) to Day 33 (bottom-right).

5.2. Phenotype Computation

The flower emergence day of a plant is defined as the day on which the flower is first
detected in the image sequence. It is clear from Figure 6 that the day of the first appearance
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of the flower as detected by the FlowerPhenoNet is Day 15; however, Figure 7 reports that
Day 17 is the day on which the flower is first detected in this plant.

The 3D bar graphs in Figure 16a,b represent the flower status graphs for two sample
sunflower plants (plant-IDs D5 and D6, respectively). The flower status graph provides
important information including (a) the emergence day of the flower in each view; (b) the
total number of flowers present in the plant for a given view on any day; and (c) the highest
number of flowers bloomed in the plant. The 3D bars in the graph represent the number of
flowers present in the plant image sequence in all views. It is clear from Figure 16b that
Day 13 is the earliest when flowers are first detected in the image sequence (reported by
side view 144◦ and the top view). Hence, Day 13 is denoted as the flower emergence day
for this plant. Note that all views report the existence of at least one flower for this plant on
Day 16. The flower status graph reports the number of flowers present in all views and
helps us determine the highest number of flowers in the plant on a given day. For example,
the highest number of flowers on Day 19 is 4. The highest number of flowers blooming
in the plant is 5, and that first appeared on Day 20 in several views. For plant-ID D5 (see
Figure 16a), the top-view first shows a detected flower on Day 12, and hence, Day 12 is
noted as the flower emergence day for this plant. Again, all views report the existence of at
least one flower for this plant on Day 15. The highest number of flowers blooming in this
plant is 7, and they first appeared on Day 20 in the top view.

Figure 16. The flower status graphs for two sample sunflower plants: (a) Plant-ID D5;
(b) Plant-ID D6.

The size of the flower is measured by the area of the bounding rectangle enclosing
the detected flower in the image. The flower size as a function of time is represented as
the flower growth trajectory. Note that drooping of petals, frequent change in orientation
of flowers, and partial occlusions of flowers by leaves pose challenges in the accurate
estimation of flower size based on area measurement from a 2D image. The computation of
flower growth trajectory is not applicable for the flowers, which change their orientation
frequently (e.g., sunflower). because, for those cases, the area of the bounding rectangle
enclosing a detected flower in the time series image data changes in accordance to the
change of orientation of the flower, and hence, is not a representation of the growth of the
flower; thus, this paper uses coleus and canna to demonstrate the flower growth trajectory.
Figures 17 and 18 show the growth trajectories of coleus and canna flowers for five side
views and the top view, respectively. The five side views are chosen alternatively from the
sequence of side views in the FlowerPheno dataset such that they cover the range [0◦, 360◦]
with uniform view interval. The results show an overall increasing trend in flower size for
both canna and coleus flowers for most views.
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Figure 17. Illustration of the growth trajectory of a canna flower in multiple views (Plant-ID: Canna-D1).

Figure 18. Illustration of the growth trajectory of a coleus flower in multiple views (Plant-ID: Coleus-D1).

The experimental analyses were performed using the Kaggle Notebook, a free cloud
computing platform that allows executing code using dedicated GPUs. We used a GPU
Kernel with Tesla P100 16 GB VRAM as GPU, with 13 GB RAM and a 2-core Intel Xeon as
CPU. The training data were generated using the open-source image annotation tool called
‘LabelImg’. FlowerPhenoNet is implemented in Python programming language which is
featured with a plethora of useful packages, e.g., OpenCV, TensorFlow, Keras, Scikit-learn,
etc. The number of images used for training is 300. The execution time for training the
FlowerPhenoNet is 1.5 h.

6. Discussion

Flowering plants (angiosperms) emerged on our planet approximately 140 to
160 million years ago and currently, they represent about 90% of the more than 350,000
known plant species [28]. Flowers are the reproductive organs of a plant and play a critical
role in the production of fruits and seeds. The transition timing of vegetative meristems
to the formation of flowers and their morphological development manifested in shape,
size, and color provide crucial information about a plant’s vigor. Hence, the study of
flower-based phenotyping is important in the understanding of plant growth processes.
Furthermore, the timing of flowering is critical for reproductive success in many plant
species. For example, flowering must occur early enough in the growing season to enable
proper seed development, but premature flowering when a plant is small will limit the
amount of seed that can be produced [29].
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The proposed algorithm is applicable to a wide variety of flower species with varying
shapes, architectures, and growth patterns, using images captured in an HTP3. In this paper,
we focus on three representative flowering plant species, i.e., sunflower, canna, and coleus,
which pose different computer vision challenges due to their variations in architectures,
and thus, enable us to establish the robustness of the proposed method. Sunflower is an
economically important crop primarily used as a source of edible oil, and sunflower seeds
are used for food as well. One of the fastest-growing plants, sunflowers, is often used by
farmers to feed livestock. A sunflower plant is characterized by the presence of multiple
flowers that rotate to align with the direction of incident sunlight. Canna is a tropical
plant with gladiolus-like flower spikes that bloom atop erected stems. It is one of the most
popular garden plants; however, in some parts of the world, its rhizomes are consumed
as a source of starch. Canna seeds are also used as beads in jewelry. Coleus is a plant that
has been used since ancient times to treat heart disorders such as high blood pressure and
chest pain (angina) and respiratory disorders such as asthma. In the FlowerPheno dataset,
both canna and coleus plant images are considered to have single composite flowers.

With the enormous growth of the processing capability of computers, deep learning
has been impacting the world in recent times, replacing traditional approaches to solving
computer vision tasks. For the task of object detection, as in FlowerPhenoNet, the tradi-
tional image analysis pipelines consist of low-level image processing steps followed by
intermediate-level feature extraction and ending with a classifier. State-of-the-art computer
vision systems overwhelmingly use end-to-end learning that directly maps images to class
labels using deep neural networks. Deep neural networks are characterized by a structure
that contains a lot of layers, and in each layer, neurons are able to implicitly represent
features from the data that propagate to the next layer [30]. In this way, more complex in-
formation can be obtained in later layers, and image features are automatically determined
by the network. These systems have demonstrated superiority over traditional approaches
for a wide variety of tasks, in many cases matching the performance of humans.

This paper introduces a novel deep-learning-based framework called FlowerPhenoNet
to detect flowers in an image sequence and generate a flower status report consisting of a
set of novel temporal flower phenotypes. The paper also introduces a benchmark dataset
to allow further development of new methods and provide a common basis for uniform
comparison of the state-of-the-art methods. The dataset consists of three representative
flowering plant species, i.e., sunflower, canna, and coleus. These three different species of
plants have different architectures and flowering patterns. The shapes and textures of their
flowers are also different. The demonstrated high performance of FlowerPhenoNet on this
dataset shows its potential applicability to a wide variety of flower species with different
shapes and topologies.

Plants are not static but living organisms that change in shape and topology over time.
The occlusions of flowers by the leaves, drooping of petals, and change in orientation of
flowers in accordance with the incident sunlight pose challenges to the accurate compu-
tation of flower size from 2D images. In general, it is not feasible to compute the growth
trajectory of a sunflower from any single view image (based on estimating the area of its
enclosed bounding rectangle), as the sunflower changes its orientation based on incident
sunlight at different times of the day, resulting in the change in the area of the bounding
rectangle in accordance with flower rotation but not its growth. Thus, to accurately estimate
the size, our future work will consider the 3D model reconstruction of the sunflowers using
multiview images. In addition to the change in orientation, the occlusion of flowers by
leaves also poses challenges to flower size estimation, and, consequently, computation
of flower growth trajectory. Since different parts of a plant generate unique reflectance
patterns in different image spaces, we will explore hyperspectral imagery in future work to
address this occlusion issue. Note that our proposed method shows a consistent overall
increasing trend of flower growth for coleus and canna because these two plants are not
considerably affected by changes in orientation and occlusion of flowers by leaves (see
Figure 17 and 18).
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The highest number of flowers blooming in the plant is estimated by the maximum
number of flowers visible in any view in any image of the sequence. Although this
assumption holds true for all sunflower plants in the FlowerPheno dataset; however, there
might be cases where the image view with the maximum number of flowers excludes a few
flowers that are visible in other views; thus, future work will consider view registration to
ensure all flowers are counted accurately to report the highest number of flowers blooming
in the plant.

7. Conclusions

The transition timing of vegetative meristems to the formation of flowers and their
morphological development over time plays a significant role in yield estimation and
breeding. The paper introduces a novel deep-learning-based system called FlowerPhe-
noNet for monitoring flower-based phenotypes using time-series images captured in an
HTP3. FlowerPhenoNet uses the YOLOv3 [21] deep-learning-based object detector to locate
flowers in the multiview image sequence for application in temporal plant phenotyping. A
benchmark dataset is indispensable for new algorithm development, performance evalua-
tion, and uniform comparisons among the existing algorithms. To support this goal, we
publicly introduce a benchmark dataset called FlowerPheno comprising visible light image
sequences of sunflower, canna, and coleus plants captured from multiple viewing angles in
the LemnaTec Scanalyzer 3D HTP3. Following flower detection, FlowerPhenoNet generates
a flower status report consisting of a set of novel temporal phenotypes, e.g., the day of
emergence of the first flower in a plant’s life cycle, the total number of flowers present
in the plant at a given time, the highest number of flowers bloomed in the plant, flower
growth trajectory, and blooming trajectory. In this paper, the efficacy of FlowerPhenoNet
is demonstrated using experimental analysis on three flowering plant species, namely
sunflower, canna, and coleus; however, the method has the potential to be applied to a
wide variety of species with varying shapes, architectures, and growth patterns. In future
work, we will consider augmenting the FlowerPheno dataset to include images of more
flowering plant species captured from multiple side views in the HTP3 of UNL. We will
perform a comparative analysis in terms of flower detection accuracy and speed using
newer object detection networks that have evolved from YOLOv3, i.e., YOLOv4, YOLOv5,
YOLOX, etc., using the augmented dataset. Future work will also consider the 3D model
reconstruction of the flowering plants to achieve accuracy in flower size estimation, and
counting of the highest number of flowers bloomed in the plant.
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