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Abstract: To address the problem that the performance of hyperspectral target tracking will be
degraded when facing background clutter, this paper proposes a novel hyperspectral target tracking
algorithm based on the deep edge convolution feature (DECF) and an improved context filter (ICF).
DECF is a fusion feature via deep features convolving 3D edge features, which makes targets easier to
distinguish under complex backgrounds. In order to reduce background clutter interference, an ICF is
proposed. The ICF selects eight neighborhoods around the target as the context areas. Then the first
four areas that have a greater interference in the context areas are regarded as negative samples to
train the ICF. To reduce the tracking drift caused by target deformation, an adaptive scale estimation
module, named the region proposal module, is proposed for the adaptive estimation of the target box.
Experimental results show that the proposed algorithm has satisfactory tracking performance against
background clutter challenges.

Keywords: hyperspectral video target tracking; deep edge convolution feature; improved context
filter; region proposal module

1. Introduction

As an important branch of computer vision, target tracking [1–4] is widely used in
pedestrian monitoring [5,6], robot navigation [7,8], regional control [9,10], and other fields.
The target tracking algorithm estimates the state of the target in each frame after giving the
position and size of the target in the video sequence’s first frame. Most of target tracking
methods based on visible light videos use the shape, appearance, and color information
to track the target. However, when the color of the target and the background color are
similar, how to accurately and robustly track the moving target is a challenge.

Compared to visible images, hyperspectral images (HSIs) [11,12] contain not only
spatial but also spectral information about the target, so it has a wide range of applications
in the fields of ground target recognition [13] and resource exploration [14]. Due to the
large data scale of HSIs, it is difficult for traditional equipment to obtain hyperspectral
videos (HSVs). The development of snapshot hyperspectral sensors provides a basis for us
to use HSVs to track targets. Recently, Uzkent et al. [15] proposed a deep kernel correlation
filter (DeepHKCF) to convert the hyperspectral image to a pseudo-color image, thereby
obtaining the depth features of the image, ignoring the role of the spectrum. Qian et al. [16]
proposed a hyperspectral target tracking method based on convolutional networks (CNHT),
which only selects small cubes in the target area to train convolutional filters, ignoring
the band correlation. In the HSVs, the usage of spectral information can improve the
discrimination of targets, Xiong et al. [17] proposed a material-based hyperspectral target
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tracking method (MHT) that uses multidimensional gradient histograms to obtain spatial
and spectral features, but it is difficult to maintain robustness when the background clutter
is strong. Subsequently, Zhang et al. [18] adopted a variety of features for tracking, which
caused tracking drift in the face of deformation due to the lack of a corresponding scale
estimation strategy. However, the above trackers do not have corresponding strategies to
deal with the interference of background clutter. Consequently, we optimize the traditional
context-aware correlation filter (CACF) and propose a novel improved context filter (ICF)
against the background clutter challenge.

In this paper, we propose a depth and convolution hyperspectral video tracker (DC-
HVT) by using the deep edge convolution feature (DECF) and ICF for hyperspectral
video target tracking. DC-HVT is based on the traditional correlation filtering framework,
and the whole framework includes three parts: feature extraction, correlation filtering,
and regression. The feature extraction part can be divided into a depth feature branch
and a 3D edge feature branch. In the depth feature branch, the HSIs are dimensionality-
reduced by principal components analysis (PCA) [19,20], and the results are fed into
a pretrained ResNet50 [21] network to extract depth features. In the 3D edge feature
branch, the spatial-spectral features of HSIs are extracted without destroying the overall
structural information. Features of the two branches are convolutionally fused to obtain a
more discriminative DECF. In the correlation filtering part, the adaptive weight is used to
suppress the background clutter and increase the accuracy of the target localization. In the
regression section, a region proposal module (RPM) is utilized to generate the rectangle
boxes of target.

Following are the four primary contributions of this paper.

1. We propose a 3D edge feature-extraction method. The three directional edge features
are fused with directional adaptive weights to extract a 3D matrix, which enhances
the edge information and contains spatial-spectral features.

2. We first used a novel convolution fusion feature named DECF, which is obtained by con-
volving the grouped depth features with the 3D edge features. DECF greatly preserves
semantic and spatial-spectral information and makes the target more discriminative.

3. An ICF is first proposed. First, eight influence factors are calculated in the context areas.
Secondly, four areas corresponding to the first four influence factors are regarded as
negative samples to train context filter. At last, adaptive weights calculated by four
influence factors are used to suppress background clutter.

4. Inspired by the region proposal network (RPN), this paper proposes a new adaptive
scale estimation method named RPM. The estimation of the target box is achieved by
adjusting the length and width of the target box by using RPM.

The rest of this research paper is organized as follows: Section 2 provides an overview
of the related work. Section 3 describes the proposed approach. Section 4 presents the
experiments for validating and analyzing the proposed framework. Section 5 discusses the
conclusions drawn from this research.

2. Related Work

Our proposed DC-HVT can be divided into three parts, including feature extraction,
correlation filtering-based trackers (CF trackers), and scale estimation. We reviewed the
related methods that are relevant to these three parts as follows.

2.1. Feature Extraction

In order to fully extract the spatial-spectral features of HSIs, researchers have proposed
various spatial-spectral feature extraction methods. Traditional manual features are typi-
cally represented by texture features and shape features, such as Gabor features [22], local
binary pattern (LBP) features [23], and morphological profile features [24]. Zhu et al. [25]
used 3D Gabor features to extract HSIs features from three angles for fusion, but this feature
is only applicable to small samples. Li et al. [26] oriented to the rotation-invariant texture
structure of HSIs local spatial information, and applied LBP to HSI feature extraction for the
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first time. This attempt yielded satisfactory results. In addition, feature-extraction methods
based on LBP and sparse representation have also made progress. For example, Tu et al. [27]
proposed a hyperspectral image classification method that combines LBP with a joint sparse
representation classifier in order to fully utilize the texture features of images. This method
improves the classification accuracy of hyperspectral images. With the development of
deep learning [28,29], many computer vision works have made breakthroughs, and deep
learning techniques have been widely used in HSIs. In the early days, Chen et al. [30]
proposed a deep belief network, but it needed to represent the spatial information as vectors
before training, and thus could not extract spatial information effectively. He et al. [31]
built a 3D convolutional neural network (CNN) in order to extract the spectral and spatial
information of HSIs at the same time, but the CNN model needs to convolve a fixed-sized
region and cannot fully adapt to geometric changes.

2.2. CF Trackers

CF was first applied in the field of target detection. In 2010, Bolme et al. [32] proposed
the minimum output sum of squared error (MOSSE) algorithm, which first used CF for
video target tracking. Due to the small number of training samples in the MOSSE algorithm,
it is easy to produce problems such as overfitting. For this reason, Henriques et al. [33]
proposed a tracking-by-detection model, which uses a single grayscale feature [34] and
does not adapt well to complex environments. Based on this, Henriques et al. [35] improved
the single channel feature to a multichannel gradient histogram feature. This algorithm
uses image gradients to improve the tracking accuracy. However, it brings boundary
effects. To overcome this problem, Galoogahi et al. [36] expanded the training sample
area to reduce the boundary effects. Danelljan et al. [37] introduced spatial regularization
in spatially regularized discriminative correlation filters (SRDCF) to penalize boundary
regions. Different from SRDCF, Mueller et al. [38] proposed a CACF, which uses the target
context information as negative samples for filter training. But the performance of this
method is restricted by the context area including four image patches.

2.3. Scale Estimation

Because CF usually uses a fixed-size window, it is easy to generate tracking drift when
the target size changes. In order to solve this problem, Li et al. [39] used bounding boxes
with multiple scales to match the target region in the previous frame and selected the
bounding box with the highest similarity. Martin et al. [40] added a one-dimensional scale
filter to the position filter to perform target localization and scale estimation respectively,
but this method increased the computation complexity. Danelljan et al. [41] reduced the
computational effort by using dimensionality reduction operation and QR decomposition.
With the advancement of deep learning, Bertinetto et al. [42] pioneered the application
of Siamese networks to track target and used, proposing the use of fully convolutional
Siamese networks (SiamFC) to calculate the similarity between the template and the search
region to achieve better performance in target tracking. However, SiamFC does not use
regression to adjust the scale of the target box and requires multiscale testing to estimate
the box’s size. To solve this problem, Li et al. [43,44] proposed the Siamese RPN model,
which can better adapt to the scale changes of the tracked target.

3. Proposed Approach

To address the problems of degraded tracking accuracy and tracking drift under
background clutter, DC-HVT is proposed in this paper. The proposed tracking framework is
summarized in Figure 1. In frame 1, we selected the ground truth and search region manually.
The frame 1 is used to train the template. PCA and ResNet are used to extract deep features
of ground truth. Linear space scale theory [45–47] is used to extract 3D edge features of
search region. In order to get the feature that contain more information, we convolved the
above two features to get DECF. ICF is used to suppress the tracking drift caused by the
background clutter. After ICF, we can get a response map to locate the target. RPM is used to
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adapt to the change of size during the movement of the target. After predicting the location
and scale of the target in the next frame, the parameters of the ICF are updated. Therefore,
DC-HVT maintains a good tracking performance against background clutter challenge.
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Figure 1. The framework of our tracker.

3.1. PCA Dimensionality Reduction

The input of the pretrained ResNet50 is usually a one-band grayscale image or a
three-band RGB image. Because the HSIs we used have 16 bands, the 16-band HSIs cannot
be directly input into the network. So PCA [19,20,48] is used to reduce experimental HSIs
with 16 bands to single-band images to meet the input requirements of the network.

Let X be the data sample such that X = (x1, x2, x3, . . . , xp), xi ∈ Rp×l , p represents the
pixels of HSIs, and l represents the bands of HSIs, the value of l is 16. We have

ψ = xi − X (1)

where ψ is the matrix after decentralization. X is the average pixel value for each band.
Furthermore, a covariance matrix K, having significant location information, is constructed as

K =
1

p− 1

p

∑
i=1

ψψT , (2)

where the superscript T denotes the transpose operation. Furthermore, through the eigen-
value decomposition, the eigenvalues of K and the corresponding eigenvectors are obtained.
We have

Kν = τν (3)

where ν represents the eigenvector, τ represents the eigenvalue. Then eigenvalues are sorted
to get the largest eigenvalue τmax and the corresponding eigenvector νmax, X is dimensionality
reduced as

Xp = νmaxX, (4)
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where Xp is the matrix after dimensionality reduction. As shown in Figure 2, after the
dimension reduction of PCA, the amount of HSI data is reduced and becomes an image of
one band.

PCAPCA

Figure 2. The results after PCA dimensionality reduction.

3.2. Deep Features

ResNet [21] adopts identity connection, which cleverly skips the influence of the deep
network weights, to achieve constant mapping [49]. The ResNet structure not only speeds
up the training, but also ensures that the training accuracy is not affected by the increase in
network depth. It also alleviates the problem of network degradation.

In this paper, ResNet50 is used to extract the deep features from the HSVs. The archi-
tecture constitutes of 50 layers, including 49 convolutional layers and one fully connected
layer. The first stage facilitates input preprocessing, and the next four stages consist of
bottlenecks, with convolutional units 2, 3, 4, and 5, respectively consisting of 3, 4, 6, and
3 bottlenecks.

In the field of target tracking, the spatial information is used to achieve accurate target
localization, while the semantic information contained in deep features can enhance the
robustness of the tracking algorithm. The spatial information is already provided by 3D
edge features mentioned in Section 3.3. The deep features, extracted by res3d_branch2c in
the pretrained ResNet50 network, are used to make up for the lack of semantic information.

Xp is the input of ResNet50, and E is the feature extracted by ResNet50. Figure 3 shows
the first 128 channels of deep features obtained by the experiment. It may be noted that the
size of deep features is m× n× r. m represents the row of the deep features, n represents
the column of the deep features, r is the number of channels. Our proposed algorithm uses
the deep features extracted by res3d_branch2c, so the output feature’s size of this layer is
28× 28× 512.

Figure 3. The first 128 channels of deep features.
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Figure 3 shows the first 128 channels of deep features. Because of the lack of spatial
information, the target and background cannot be distinguished in Figure 3.

3.3. 3D Edge Features

As described earlier, HSIs are a three-dimensional cube consisting of two spatial dimen-
sions and a spectral dimension. The feature-extraction methods based on RGB [50] images
need to operate the bands of HSIs independently, which ignores the relationship between
bands. Moreover, HSIs have many bands and a large amount of data, so using CNN [51] for
feature extraction requires a large amount of computation.

HSIs are not only a three-dimensional data cube but also a three-dimensional discrete
function, so the problem of obtaining the gradient of HSIs in three directions can be solved
by obtaining partial derivatives for the three-dimensional discrete function. We use the
derivative of the image to represent the gradient. In the spatial direction, the edge of the
target is more obvious when the absolute value of the gradient increases [52,53], which
facilitates target location. In the spectral direction, the target spectral curve is different from
the background spectral curve, which can be observed by derivative differences. Therefore,
when the target and the background are similar in space, the derivative differences of the
spectral direction contribute to distinguish the target from the background. Hence, three-
dimensional feature-extraction techniques are required. According to the linear scale space
theory [45–47], any derivative of scale space can be computed by using convolution of the
Gaussian kernel’s derivative. Hence, the derivative of HSIs in each direction can be obtained
by solving the derivative of the Gaussian function in the corresponding direction.

In a 3D HSIs image, the Gaussian function can be expressed as

G(x, y, z) =
(

1√
2πσ

)3
e−

x2+y2+z2

2σ2 , ∀x, y, z ∈W, (5)

where x and y represent the spatial dimensions, z denotes the spectral dimension, σ denotes
the standard deviation of the normal distribution, and W denotes w × w × w window.
The first order partial derivatives of the Gaussian function with respect to x, y and z,
respectively denoted as ∂G(x,y,z)

∂x , ∂G(x,y,z)
∂y , ∂G(x,y,z)

∂z , are given as

∂G(x,y,z)
∂x =

(
1√
2πσ

)3
e−

x2+y2+z2

2σ2
(
− x

σ2

)
= − x

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2

∂G(x,y,z)
∂y =

(
1√
2πσ

)3
e−

x2+y2+z2

2σ2
(
− y

σ2

)
= − y

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2

∂G(x,y,z)
∂z =

(
1√
2πσ

)3
e−

x2+y2+z2

2σ2
(
− z

σ2

)
= − z

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2 .

(6)

In this paper, the search area for HSIs are denoted by H, H ∈ Ru×v×l . u and v represent
the width and height of the search region, respectively, and l denotes the number of bands.
The first-order partial derivatives of H on x, y, z, respectively denoted as Ix, Iy, Iz, are given as

Ix = H(x, y, z) ∗ ∂G(x,y,z)
∂x = H(x, y, z) ∗ − x

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2

Iy = H(x, y, z) ∗ ∂G(x,y,z)
∂y = H(x, y, z) ∗ − y

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2

Iz = H(x, y, z) ∗ ∂G(x,y,z)
∂z = H(x, y, z) ∗ − z

(
√

2π)
3
σ5

e−
x2+y2+z2

2σ2 ,

(7)

where ∗ denotes convolution. The first-order derivative of the Gaussian function is em-
ployed to obtain the edge detection results in three directions. As the edge features in
different directions have different effects on the image, fusion using simple weighted
averaging or usage of static (nonadaptive) weights results in blurred edges.
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This paper proposes a method to determine the fusion weights based on the change in
the derivative value. The derivative of the image means the gradient of the image. The larger
the absolute value of the gradient is, the more obvious the edge of the target is [52,53],
which is convenient for locating the target. The gradient in the spectral direction represents
the differences between adjacent bands, and it will be helpful to identify the target when
the target and the background are similar in space. Therefore, by calculating the sum of
the derivatives of each pixel in the direction of the edge, the proportion of the derivatives
along different edge directions can be obtained. These proportions are used as weights for
the corresponding edges for realising adaptive fusion of the image features. The adaptive
weights can use the adjustable value when the background clutter changes. Figure 4 shows
the distribution of a central pixel point and surrounding pixels within Ix, Iy, Iz in the HSIs.

Dxc

Dx2Dx1 Dx3

Dx4 Dx6

Dx7

Dx5

Dx8 Dx9

(a)

Dy1 Dy2 Dy3

Dy4 Dy5 Dy6

Dy7 Dy8 Dy9

Dyc

(b)

Dz1 Dz2 Dz3

Dz4 Dz5 Dz6

Dz7 Dz8 Dz9

Dzc

(c)

Figure 4. (a) the distribution of the pixel in the center of Ix and surrounding pixels; (b) the distribution
of the pixel in the center of Iy and surrounding pixels; (c) the distribution of the pixel in the center of
Iz and surrounding pixels.

Taking a 3 × 3 × 3 region of the HSIs as an example, let the pixel locations in the center
of the region within Ix, Iy, Iz have the values Dxc, Dyc, Dzc. Let the value of the pixel point
in the direction Dxc within Ix be Dxi. It may be noted that D

′
xc is defined as the sum of the

values of the pixel points in the Ix matrix that traverses the centre of the image. Similarly,
D
′
yc and D

′
zc can also be obtained. Hence, D

′
xc, D

′
yc and D

′
zc are computed as

D
′
xc =

26

∑
i=1

Dxi (8)

D
′
yc =

26

∑
i=1

Dyi (9)

D
′
zc =

26

∑
i=1

Dzi. (10)

This weight is related to a cube with a size of 3 × 3 × 3 centered on the pixel. Except
for the center pixel where the weight needs be calculated, there are still 26 pixels around
the center pixel in 3D space. Therefore, the upper limit of the summation sign is set to 26. It
may be noted that toward the edges of the matrix, the neighborhood values are subjected to
a complementary 0 operation. Then, the adaptive weights of the edge features in different
directions are given as

φ =
D
′
xc

D′xc + D′yc + D′zc
(11)

ϕ =
D
′
yc

D′xc + D′yc + D′zc
(12)
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ϑ =
D
′
zc

D′xc + D′yc + D′zc
, (13)

where φ, ϕ and ϑ denote the fusion weights in the x-direction, y-direction, and z-direction,
respectively. The weighted fusion of the multi-directional edge detection results can be
denoted as

Q =
{

Qc | Qc = φ× Dxc + ϕ× Dyc + ϑ× Dzc
}

c∈{1,··· ,u×v×l}, (14)

where Q denotes the 3D edge features of the HSIs, and Qc represents the c-th element in
Q. Figure 5 shows the edge features in 16 bands. As illustrated in Figure 5, the edges of
the target are obvious and contain a lot of detailed information. In the last eight bands,
the edge features of the target gradually become clear.

Figure 5. Edge features in 16 bands.

3.4. Deep Edge Convolution Feature

To ensure that the fused image contains multiple features, the feature fusion is imple-
mented by using convolution. Resnet50 extracts the deep features of the image and uses
them as convolution kernels to retain the relevant local features.

As shown in Figure 6, we demonstrated the fusion process of DECF. In stage I, the deep
features are equally divided into 32 groups, each group having a size of 28 × 28 × 16, and are
denoted as Ei, i ∈ [1, 32]. In stage II, the edge features Q ∈ Ru×v×l are used as inputs, and Ei
is used as the bootstrap convolution kernel to convolve Q. The output of the convolution
layer is given as

Z = {Zi | Zi = Q ∗ Ei}i∈{1,··· ,32}, (15)

where Z denotes the DECF, Zi is a channel in Z, ∗ denotes the convolution symbol, and Ei
is the i-th group of deep features. Moreover, the size of Q is equivalent to the size of the
search area. In particular, because the size of the search area varies with the size of the target
bounding box, the spatial scale of Q is also not fixed. The resulting feature map is an edge
feature having a depth feature guide, ensuring the detailed information and target visibility.
Figure 7 shows the DECF after fusion with both edge information and semantic information.
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Stage Ⅰ
Dividing Group

Stage Ⅱ
Convolution Fusion

.  .  .

Deep Features

28×28×512

Convolutional Kernel

Input

 u × v × l32 times

Deep Edge Convolution Feature

28×28×16

Output
.  .  .

32 Groups

*

*

*

*

Figure 6. Fusion process of DECF.

Figure 7. Fused DECF.

3.5. Improved Context Filter

In a traditional context filter [38], the initial sample corresponding to the circular
matrix A0 is taken as the positive sample. The four regions above, below, left, and right
are regarded as the context regions, and are represented as negative samples Ai. It may be
noted that Ai generates a response of 0 in the region Ai during training, and thus enables
the tracker to effectively discriminate the target and the background. Hence, the objective
function is expressed as

min
ω
‖A0ω− y‖2

2 + λ1‖ω‖2
2 + λ2

4

∑
i=1
‖Aiω‖2

2, (16)

where ω is the trained correlation filter, A0 denotes the image of the target region after
circular displacement, Ai is the image the background region after the cyclic shift, y is the
label matrix, and λ1, λ2 are the regularisation factors.

As shown in Equation (16), the context filter adopts a constrained strategy to train the
positive samples with high response values and the negative samples with low response
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values. The approach computes the solution of ω in the frequency domain, based on the
diagonalization property of the circular matrix, as

ω̂ =
â∗0 � ŷ

â∗0 � â0 + λ1 + λ2 ∑4
i=1 â∗i � âi

, (17)

where a0 represents the original image block of the target area, ai represents the original
image block of the background area, ˆ denotes the Fourier transform, (·)∗ denotes the
conjugate, and � denotes the dot product.

During training, four regions around the target are selected as the background regions.
It may be noted that the selected regions are not targeted and cannot effectively eliminate
the background information. Moreover, the same suppression weights are used with regard
to the target’s contextual information, and the method does not take into account the degree
of background interference on the target.

To address these problems, the ICF is proposed to introduce an interference factor that
represents the contextual information. The interference factor is based on the curve of the
filtered response map, and evaluates the influence of the context on the tracking target.
Furthermore, the area around the target is divided into eight regions that are comprehen-
sively sampled and ranked based on the interference factor. The top four background
regions with the highest influence on the target are selected for suppression. Then, the
suppression weights are adaptively computed so that the background information with
stronger interference is suppressed more as compared to the one with lesser interference.

As shown in Figure 8, there are eight neighborhoods, A1 ∼ A8, in the top, bottom,
left, right, and four diagonal areas, respectively. As compared to the traditional context
filter, we also added four diagonal areas as negative samples. It may be noted that A0 is the
target region filled with positive samples.

A3

A0

A1 A2

A4 A5

A6 A7 A8

A3

Figure 8. Contextual sampling area diagram.

As is evident from the tracking response map, the ideal response map should be the
curve with a peak in the centre of the target and a smooth background area. However,
in general, due to the influence of external factors such as background clutter and light
changes, some background response values can be higher, leading to tracking drift. In this
regard, the interference factor β is used to assess the extent to which the background affects
the target, and is computed as

βi = ln
Fmax

Fi
, (18)

where Fmax represents the peak of the response map after correlation filtering in the A0
region, and Fi represents the peak of the response map after correlation filtering in the
Ai region. Based on Equation (18), the interference factors, β1 ∼ β8, for each of the
eight sampling regions, shown in Figure 8, are obtained. Furthermore, β1 ∼ β8 are
ranked in ascending order and the top four are selected. The top ranked βi means that its
corresponding Ai interferes more with the target. Therefore, a higher weight is used to
suppress that interference. Hence, the weight ζi is computed as
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ζi =

{
0, βi > 1

1− (βi)
2, 0 < βi ≤ 1,

(19)

where β is the monotonically incrementing factor. As shown in Equation (19), a value of
βi > 1 represents the background region having less influence on the target region. Hence,
no weight is assigned. When 0 < βi ≤ 1, and as βi tends to zero, the background region
will have a greater influence on the target region and a higher weight needs to be assigned.
Hence, the objective function in Equation (16) can be reformulated as

min
ω
‖A0ω− y‖2

2 + λ1‖ω‖2
2 +

4

∑
i=1

ζi‖Aiω‖2
2. (20)

Solving for it gives

ω̂ =
â∗0 � ŷ

â∗0 � â0 + λ1 + ∑4
i=1 ζi â∗i � âi

. (21)

The response map obtained after ICF is shown in Figure 9. As is evident, the response
of the target region is obvious and the background clutter is effectively suppressed.

Figure 9. Response map after background suppression.

It may be noted that the trained filter is denoted as ω̂. The regularization factor λ1
is used to prevent overfitting. In this experiment, λ1 was set to 0.0001. After the target
position is predicted, the filter is updated as follows,

ω̂t+1 = (1− θ)ω̂t−1 + θω̂t, (22)

where t denotes the t-th frame of the input image sequence and θ represents the learning
rate. The larger the value of θ is, the faster the filter is updated. In this experiment, we
empirically set θ to 0.02.

3.6. Adaptive Scale Estimation

Scale shifts are frequently caused by the target’s movement during the tracking process.
Even if the scale of the target frame is fixed, deformation or occlusion of the target will
obscure the target information or substitute background information, affecting the tracking
accuracy. To resolve these issues, this paper proposes an adaptive scaling method using an
RPM. The RPM-based sliding window scaling adopts the scale of the target box from the
previous frame to generate a different size target box. The approach can be denoted as

ST = (M + εi)×
(

N + ε j
)
, (23)

where ST is the size of the target box, and M and N represent the length and width
of the target box of the previous frame, respectively. It may be noted that ε is an even
number, ε ∈ [−2, 2]. Moreover, the ranges of integers i and j are empirically set to 1, 2,
and 3. Different sizes of target boxes are obtained by using Equation (23). The scale of the



Remote Sens. 2022, 14, 6219 12 of 21

target box, having the highest response value, is chosen as the scale of the target for the
current frame.

4. Experimental Results and Analysis

This section discusses the experimental setup and data collection for validating the
proposed algorithm. In addition, the qualitative and quantitative analyses of the proposed
and state-of-the-art algorithms are also presented.

4.1. Experimental Setting

The algorithms, developed and analyzed in this study, are implemented by using MAT-
LAB R2021b technology on a workstation with an Intel(R) Core(TM) i7-12700HCPU@2.30 GHz,
16 GB RAM, and RTX3060 GPU. The algorithm attained a processing speed of 3.5 frames per
second. The matconvnet toolkit is used to extract the deep features from the Resnet50 network.

In this research, we use six different video sequences for the performance analysis of
our tracking algorithm. The sequences are all from the publicly available hyperspectral
dataset in [17]. To test the ability of this algorithm against background clutter (BC), we
selected four sequences with a BC challenge. In order to analyze the generality of the
algorithm, the selected sequences also contain the illumination variation (IV), motion blur
(MB), occlusion (OCC), scale variation (SV) and out-of-plane rotation (OPR) challenges.
The RGB images of these video sequences are shown in Figure 10. Table 1 represents the
detailed information of the six selected video sequences.

(a) Coin (b) Fruit (c) Pedestrain

(d) Kangaroo (e) Drive (f) Forest

Figure 10. Six RGB experiments.

Table 1. Details of the six experimental sequences.

Sequences Coin Fruit Pedestrain Kangaroo Drive Forest

Frames 149 552 306 117 725 530
Resolution 219× 120 293× 232 351× 167 385× 206 297× 142 512× 256
Initial Size 16× 16 37× 32 31× 11 22× 41 48× 36 45× 18
Challenges BC, MB BC, OCC SV, IV OPR, SV SV, BC OCC, BC

The publicly available dataset has a total of 35 video sets, each consisting of hyper-
spectral video and visible video, which are pixel to pixel. All video sequences are taken
from a 16-band hyperspectral camera with a wavelength of 470–620 nm. The hyperspec-
tral camera adopts the snapshot VIS produced by IMEC, and bandwidth of each band is
around 10 nm. The full name of nm is nanometer, and nm is the meaning of wavelength.
The camera shoots video up to 180 frames per second, whereas all videos in the public
dataset are shot at 25 frames per second. The dataset can be downloaded on the website
(www.hsitracking.com accessed on 1 January 2020).

www.hsitracking.com
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As shown in Table 1, six sets of HSI sequences are used as the test sequences. The
target and target size are determined manually at the initial frame. The initial size of the
target is presented in the fourth row of Table 1. The second row of Table 1 indicates the
number of frames in each image sequence, and the third row indicates the size of each
image sequence. The fifth row of Table 1 represents the challenges faced by the sequence.

The sequence Coin consists of 149 frames having a large number of coins, causing
BC and MB while moving. The sequence Fruit consists of 552 frames, where the color of
background is similar to the target, causing BC and OCC while moving. The sequence
Pedestrian consists of 306 frames, where the walking person walks from the tree shade to
clearing, causing SV and IV when moving. The sequence Kangaroo consists of 117 frames,
in which the kangaroo jumps and produces SV and OPR. The sequence Drive consists of
341 frames, in which the background gets cluttered as the man moves, causing SV and BC.
The sequence Forest consists of 530 frames, in which the target is affected by the OCC and
BC of the trees while moving.

4.2. Qualitative Comparison

In this experiment, we compare the performance of our algorithm and other hyper-
spectral target trackers, including MFI-HVT [18], MHT [17], DeepHKCF [15], CNHT [16],
context, edge and RES. In MFI-HVT, multiple features are used instead of a single fea-
ture. The MHT approach extracts the material information of the target, by using SSHMG,
to distinguish the targets and backgrounds of similar color. In the DeepHKCF technique,
features are extracted by using a trained deep convolutional network, and ROI mapping
is employed to improve the robustness and computational efficiency. In CNHT, features
are extracted by using a double-layer convolutional network to facilitate discriminative
information. For the RES approach, the features extracted from the dimensionally-reduced
image via Resnet50 are used to track the target. To verify the effectiveness of the improved
context filter and 3D edge features, two compared algorithms named context and edge
are used. Different from our algorithm, the context algorithm uses CACF, and the edge
algorithm only uses 3D edge features in the feature-extraction module.

The results of the proposed algorithm and seven other algorithms discussed in this
paper, over the six test sequences, are summarized in Figures 11–16.

In Figure 11, the background is filled with similar coins, making it difficult to track
the target accurately, and the coins are pinched and moved by the fingers throughout the
sequence causing the target to be partially obscured. DeepHKCF does not adapt well to
the background clutter during tracking, making it drift throughout the tracking process.
The edge and the context tracked robustly throughout the coin sequence, showing good
performance to the challenge of background clutter.

Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 11. Qualitative outcomes for the coin sequence.

In Figure 12, the fruit moves above the leaves, causing a change in size making tracking
difficult. The MHT, MFI-HVT, and the proposed algorithm take advantage of the spectral
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characteristics of the target and perform well in this sequence. However, CNHT substitutes
too much background clutter in the tracking process leading to tracking failure at frame 153.

Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 12. Qualitative outcomes for the fruit sequence.

In Figure 13, the pedestrian walks from the shadows into the sunlight, causing the
pedestrian to become smaller and smaller. Methods such as MHT and DeepHKCF do not
have a target frame estimation module, resulting in the drifting of the target frame after
frame 224.

Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 13. Qualitative outcomes for the pedestrian sequence.

In Figure 14, there is some background interference due to the rapid jumping of the
kangaroo and the similarity of the tracked kangaroo with other kangaroos. Most of the
trackers perform well on this sequence as most of them use target features.
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Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 14. Qualitative outcomes for the kangaroo sequence.

In Figure 15, the drive moves over a cluttered background, causing the drive to deform
due to directional shifts. During the tracking process, the target changes frequently, causing
the fact that the target boxes of all trackers do not adapt well to the changes of the target.
However, at frame 599, our tracker overlaps perfectly with the ground truth.

Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 15. Qualitative outcomes for the drive sequence.

In Figure 16, the target walks in front of the trees and a portion of the forest causes
occlusion of the target. Hence, MFI-HVT and DeepHKCF, which use depth features, lose
the target from frame 338 onward. However, our tracker is able to accurately locate the
target and adapt to the changes in the target.
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Ours DeepHKCFMHT RESMFI-HVT CNHT Groundtruthcontext edge

Figure 16. Qualitative outcomes for the forest sequence.

4.3. Quantitative Comparison

In this section, we compare the precision and success rate of the proposed algorithm
with seven other algorithms. The precision is defined as the deviation between the centre
positions of the tracking and ground truth target boxes as being not higher than a certain
threshold. Similarly, the success rate is defined as the overlap between the tracking and the
ground truth target boxes as being not lower than a certain threshold.

Tables 2 and 3 show the precision and success rate values for the eight algorithms. It
can be observed that our algorithm has significantly improved the tracking performance.
Figure 17 shows the precision and success rate curves of the algorithm on all sequences,
where the higher area covered by the curve represents a higher value. Figures 18–21 present
the experimental findings related to BC, OCC, SV, and OPR, respectively.

Table 2. The precision of each tracker, with a suffix indicating the challenge faced, and the top two
results are highlighted in red and green respectively. The result has three significant decimal places.

Sequences Precision Precision_BC Precision_OCC Precision_SV Precision_OPR

Ours 0.941 0.918 0.853 0.934 0.946
MHT 0.937 0.906 0.845 0.932 0.958
RES 0.932 0.911 0.837 0.93 0.947

context 0.934 0.916 0.853 0.933 0.943
edge 0.932 0.912 0.842 0.931 0.945

MFI-HVT 0.876 0.917 0.851 0.933 0.775
DeepHKCF 0.723 0.688 0.518 0.713 0.683

CNHT 0.242 0.436 0.196 0.347 0.138

Table 3. The success rate of each tracker, with a suffix indicating the challenge faced, and the top two
results are highlighted in red and green respectively. The result has three significant decimal places.

Sequences Success Success_BC Success_OCC Success_SV Success_OPR

Ours 0.696 0.714 0.556 0.712 0.712
MHT 0.672 0.598 0.569 0.633 0.755
RES 0.667 0.68 0.512 0.686 0.695

context 0.672 0.709 0.551 0.708 0.674
edge 0.665 0.701 0.533 0.698 0.675

MFI-HVT 0.599 0.707 0.541 0.698 0.474
DeepHKCF 0.38 0.388 0.333 0.355 0.417

CNHT 0.0807 0.143 0.06 0.106 0.0551
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Figure 17. Precision and success rate under the overall sequence.
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Figure 18. Precision and success rate under BC challenge.
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Figure 19. Precision and success rate under OCC challenge.
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Figure 20. Precision and success rate under SV challenge.
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Figure 21. Precision and success rate under OPR challenge.

As shown in Tables 2 and 3, the proposed algorithm almost achieves the top two
performances in terms of the various indicators. On a whole, it achieves a precision of 0.941
and a success rate of 0.696, an improvement of 0.4% and 2.4%, respectively, compared with
MHT. It may be noted that MHT is the current state of the art. The edge algorithm does not
show strong robustness in the whole test due to the use of a single feature. Due to the usage
of DECF and ICF, our algorithm yields a better result than the other algorithms against the
BC challenge. The performances of the proposed algorithm are summarized in Figure 18
and the tables. Specifically, our algorithm achieves 91.8% precision and 71.4% success rate
against the BC challenge, which are significant improvements in comparison with MHT and
context algorithm. MFI-HVT gets the second highest score of 91.7% precision because of the
use of multifeatures. The context algorithm achieved the second highest score with a 70.9%
success rate. As for the context algorithm, the success rate is 0.5% lower than ours, and the
precision is 0.2% lower than ours. This is because the filter of the context algorithm is not
improved. Compared with RES algorithm, the success rate of our algorithm is improved by
3.4%, and the precision is improved by 0.7%. Moreover, compared with the edge algorithm,
the success rate of our algorithm is improved by 1.3%, and the precision is improved by
0.6%. These two sets of experiments show that our algorithm with DECF is more efficient
than the algorithm using one feature alone. MFI-HVT shows a poor performance of 77.5%
precision and 47.4% success rate in the OPR challenge. The overall performance indicates
that the MFI-HVT algorithm does not have strong robustness. Additionally, as is evident
from Figure 19, when the target is obscured, our algorithm has a success rate 1.3% lower
than MHT but ranks first in terms of precision. Although the consideration of material
features in MHT facilitate adaptive target recognition, it fails for accurate scale estimation.
As shown in Figure 20, our algorithm outperforms other algorithms owing to the adaptive
scale estimation even when the target is affected by deformation. As shown in Figure 21,
when the target is affected by OPR, the accuracy is only 1.2% lower and the success rate is
only 4.3% lower as compared to MHT.

5. Conclusions

This paper proposes an algorithm based on DECF and ICF for HSV-based target
tracking. The proposed DECF is composed of both the 3D edge features and deep features
of the HSIs. DECF can extract the representation of the targets which have similar color
as the background. The use of ICF ensures that the tracker remains robust even under
BC challenges. Extensive experiments have been conducted by using different HSVs
sequences to demonstrate the superior performance of the proposed algorithm. In future
work, the HSIs’ dimensionality reduction process will be further investigated to utilise the
spectral information to extract the target features.
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