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Abstract: South Asia, one of the most important food producing regions in the world, is facing
a significant threat to food grain production under the influence of extreme high temperatures.
Furthermore, the probability of simultaneous trends in extreme precipitation patterns and extreme
heat conditions, which can have compounding effects on crops, is a likelihood in South Asia. In
this study, we found complex relationships between extreme heat and precipitation patterns, as
well as compound effects on major crops (rice and wheat) in South Asia. We also employed event
coincidence analysis (ECA) to quantify the likelihood of simultaneous temperature and crop extremes.
We used the Enhanced Vegetation Index (EVI) as the primary data to evaluate the distinct responses
of major crops to weather extremes. Our results suggest that while the probability of simultaneous
extreme events is small, most regions of South Asia (more than half) have experienced extreme
events. The regulatory effect of precipitation on heat stress is very unevenly distributed in South
Asia. The harm caused by a wet year at high temperature is far greater than that during a dry
year, although the probability of a dry year is greater than that of a wet year. For the growing
seasons, the highest significant event coincidence rates at a low EVI were found for both high- and
low-temperature extremes. The regions that responded positively to EVI at extreme temperatures
were mainly concentrated in irrigated farmland, and the regions that responded negatively to EVI at
extreme temperatures were mostly in the mountains and other high-altitude regions. Implications
can guide crop adaptation interventions in response to these climate influences.

Keywords: extreme temperature; extreme precipitation; crop; South Asia

1. Introduction

The impacts of climate change and extreme weather events on agricultural productivity
observed over the last two decades are projected to continue into the future [1–3]. Global
warming is leading to an increased rate of evapotranspiration, increasing intensity and
duration of drought [4], and more frequent and extended extreme weather events [5–7],
all of which can affect crop yields. Temperature and precipitation are closely related to
crop growth and crop yield. Therefore, better understanding the effects of temperature
and precipitation extremes is important for the agricultural sector for mitigation and
adaptation to climate change, and to increase resilience and resistance to negative impacts
on food production.

In South Asia, average annual temperatures in Bangladesh, India and Myanmar
have continued to rise, annual precipitation has increased and high temperature heat
waves, extreme precipitation events, extreme drought and storm surge events all showed
increasing trends in most regions, potentially leading to food insecurity in the region [8–13].
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Extreme temperature and precipitation events, and their threat to food security, are spatially
heterogeneous, but becoming more serious in some areas of South Asia, especially in
Bangladesh, India and Myanmar [14,15]. For example, the effects of temperature variability
and extremes on crops showed an intra-regional difference in India [16]. In Bangladesh,
location-specific climatic hazards were identified to be rainfall, temperature and combined
effects [17]. Myanmar also showed uneven effects of dry-wet spatial variation on crops [18].
The frequency of extreme weather events is projected to increase as climate warming
intensifies [19]. With the prospect of increasing frequencies and/or intensities of extreme
meteorological events in South Asia [20–23], farmers face serious challenges to adapt to and
mitigate climate change [24]. Under the circumstances, it is imperative to investigate the
effects of temperature and precipitation extremes and their combined effects on crop yield.

Generally speaking, the occurrence of an extreme weather event, such as extreme
temperature or extreme precipitation patterns, may cause severe crop damage, but when
extreme temperature and precipitation conditions are intertwined, the damage caused
by extreme weather may be moderated [25–27]. For example, during high temperatures,
plants can emit water through high evapotranspiration to prevent heat damage [28,29]. Up
until now, few studies have investigated the combined effect of extreme temperature and
extreme precipitation patterns on crop yield over a global scale [30–32].

Remote sensing has been widely used to quantify effects of climate change on veg-
etation on local to global scales. The Normalized Difference Vegetation Index (NDVI)
from Global Inventory Modeling and Mapping Studies (GIMMS) has been shown to be
a robust and reliable measure to represent real responses of vegetation to climate vari-
ability [33,34], and can be used to quantify effects from extreme climates due to its long
time series spanning from 1981 to 2015 [35–38]. The Enhanced Vegetation Index (EVI)
was developed to minimize atmospheric- and soil-background effects [39] and be more
sensitive to high biomass areas, all of which pertain to vegetation in tropical regions [40–42].
The EVI product from MODIS (Moderate resolution Imaging Spectroradiometer) has been
improved in data quality by removing the major sensor degradation impacts [43] and
implementing several improvements in its retrieval algorithm [44]. Therefore, both EVI and
NDVI provide a chance to analyze extreme temperature and precipitation effects on crop
growth, quantified by the Vegetation Index (VI), maximizing their respective strengths.

This study aims to (i) quantify the probability and likely extent of extreme temperature
events under different precipitation amounts and their combined impact on crops, and
(ii) examine the impacts of extreme temperature events on crop growth through event
coincidence analysis. This study provides a framework to quantify the impact of compound
weather extremes on crops, which can be useful for prioritizing needs for mitigation and
adaptation through cropping systems management.

2. Materials and Methods
2.1. Study Area

The study area includes three low-latitude countries: Bangladesh, India and Myanmar
in South Asia. This region has a tropical monsoon climate with mean annual temperature
of 27 ◦C, an annual precipitation between 1500 and 2000 mm and shows both an obvious
dry and rainy season.

In the context of frequent climate extremes, recurrent and consecutive droughts
have led to uncertainty about rainfed agriculture and its sustainability in India and
Myanmar [45–47]. Meanwhile, Bangladesh is a flood-prone country and often experiences
devastating floods during the monsoon season that cause damage to crops and property.

About 65% of the study area is cropland, with 8.84%, 87.00% and 4.16% of the entire
study area in Bangladesh, India and Myanmar, respectively (Figure 1). The total amount
of arable land in India ranks first in Asia, and India is one of the world’s largest food
producers. The Ganges Plain and Deccan Plateau are flat and fertile, and they are the main
farming areas of India. The terrain of Myanmar is high in the north and low in the south.
The central river valley and plains are very suitable for farming.
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Figure 1. Types of land use in the study area.

The rice cropping systems in India are generally divided into three types: Aus, Kharif
and Rabi, related to the strong influence of the seasonal pattern of precipitation [48]. Aus
is the summer crop, starting in March and going to June. Kharif is the rainy season crop
starting in June and going to November, and Rabi is the winter crop, or dry season crop,
starting in December and extending to March. In Myanmar, there are two distinct cropping
seasons [49]: Rabi (mid-November to mid-March) and Aus (mid-July to mid-November).
In a calendar year, Bangladesh has three main crop growing seasons, that is, the monsoon
period between June and October, the winter period between November and February
and the summer period between March and June [50]. In Bangladesh, India and Myanmar,
wheat is generally sown in November-December and harvested in March-April.

Agriculture in the study area, therefore, is mainly the rice-wheat double or triple
cropping system, varying somewhat across the three countries (Table 1). Considering India
has the largest area of cropland, which is ten times that of Myanmar, and twenty times
that of Bangladesh (Figure 1), the cropping seasons of India were applied to the other two
countries and the same periods were applied to avoid the impacts of the differences in
growing periods. The final cropping seasons for this study include Rabi (January–February),
Aus (May–June), and Kharif (August–September).
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Table 1. The crop calendar for the study region of Bangladesh, India and Myanmar. The blue color is
for crop sowing, green for crop growing and yellow for crop harvest.

Country Crop Variety Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Bangladesh rice
Aus sowing growing harvest

kharif harvest sowing growing harvest
Rabi sowing growing harvest sowing

wheat growing harvest sowing

India
rice

Aus sowing growing harvest
Kharif sowing growing harvest
Rabi growing harvest sowing

wheat growing harvest sowing

Myanmar rice
Aus harvest sowing growing harvest
Rabi growing harvest sowing

wheat growing harvest sowing

2.2. Data

The datasets used in this study include EVI and meteorological data and are summa-
rized in Table 2. The EVI data were applied to quantify the impact of extreme weather on
crop growth and is derived from the Global Vegetation Indices Monthly L3 data product
of MODIS (MOD13C2) [51]. It has a spatial resolution of 0.05◦ latitude and longitude
(near 5 km) from 2000 to 2018. The dataset was resampled to a spatial resolution of 5 km
with an equal area map projection and monthly temporal resolution [52]. For this paper,
the results are primarily determined from examining EVI-based analyses. The GIMMS-
based NDVI were also analyzed, taking advantage of the long-term observations spanning
from 1981 to 2015, and improved data quality by accounting for biases such as calibration
loss, orbital drift, volcanic eruptions [53,54], etc. The results from NDVI are shown in
Supplementary Figures S1 and S2.

Table 2. Datasets used in this study.

Product Range Temporal
Resolution

Spatial
Resolution Resampling

NDVI GIMMS NDVI3g 1982–2015 Monthly 5000 m
Monthly
5000 m ×

5000 m

EVI MOD13C2 2000–2018 Monthly 5000 m
Temperature and

Precipitation ERA5 1982–2018 8-days 0.25◦

Land use ESA CCI 2020 Year 300 m

ERA5 [55] is the fifth generation atmospheric reanalysis of the global climate and is
produced by the Copernicus Climate Change Service (C3S) at the European Centre for
Medium-Range Weather Forecasts (ECMWF) [56]. The temperature and precipitation data
were derived from the ERA5, including the hourly air temperature at 2 m height and total
precipitation with a spatial resolution of 0.25◦ latitude and 0.25◦ longitude from 1979 to the
present. The data were resampled to 5 km spatial resolution and calculated at a monthly
temporal resolution to match with EVI data.

Land cover data are obtained from the European Space Agency (ESA) and the product
is an annual ESA CCI (Climate Change Initiative) land cover map of the world at 300 m
resolution [57], which has undergone preprocessing such as atmospheric calibration and
geometric correction [58]. Here, the data of the most recent available year (2020) are used.

2.3. Methods
2.3.1. Frequency and Extent of Climate Extreme Events

Monthly precipitation anomaly percentage (P) was applied to portray precipitation
year conditions [59].

P =
Pm − P

P
·100% (1)
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where Pm is the monthly total precipitation, and P is the monthly precipitation averaged
from 1982 to 2018. When P is greater than 50%, it is a wet year; when P is less than −50%,
it is a dry year, otherwise, it is a normal precipitation year.

The 10th and 90th percentiles were applied to indicate extreme temperature events [60].
The concurrence frequency and extent of extreme temperature and precipitation were
measured by the composition of the monthly total precipitation anomaly (P) and the
monthly mean temperature (T), and nine conditions were indicated, that is:

HTHP: T > 90th and P > 50%,
HTNP: T > 90th and −50% ≤ P ≤ 50%,
HTLP: T > 90th and P < −50%,
NTHP: 10th ≤ T ≤ 90th and P > 50%,
NTNP: 10th ≤ T ≤ 90th and −50% ≤ P ≤ 50%,
NTLP: 10th ≤ T ≤ 90th and P < −50%,
LTHP: T < 10th and P > 50%,
LTNP: T < 10th and −50% ≤ P ≤ 50%,
LTLP: T < 10th and P < −50%.

The frequency and coverage area were calculated for the above nine weather conditions
through the monthly data for each period from 1982 to 2015.

2.3.2. Measuring Influence of Extreme Climate Events on Crop Growth

Influence was measured through the deviation of EVI due to extreme climate events
by comparing with the corresponding EVI under the normal T and P. The measurements
include regional mean, standard deviation and degree of deviation.

2.3.3. Event Coincidence Rate between Extreme Temperature and Extreme EVI

The event coincidence analysis (ECA) computes the event coincidence rate (ECR), that
is, the empirical fraction of simultaneous events in two series [61,62]. By definition, ECR has
a value of between 0 and 1, where the closer to 0, the less likely the events in both series are
to occur at the same time (indicating that there is no corresponding instantaneous statistical
relationship), and the closer the ECR is to 1, the more likely the two events in a series will
always happen at the same time. The statistical significance of the ECRs was obtained
using a simple analytical significance test against the null hypothesis of two independent
Poisson processes with low event rates, using a significance level of α = 0.05 [61].

In this study, the ECA was applied to measure consistency between the two extreme
time series of temperature and EVI, which was defined by the 10th and 90th percentiles of
the time series and were applied to define the extremely low and extremely high EVI for
each growing period [60]. To distinguish between the presence or absence of an extreme
event at the given temporal aggregation level, the positive temperature event was used to
denote extreme high temperature and negative temperature event to represent extreme low
temperature. The strength of defining an anomaly that simultaneously exceeds a univariate
threshold as a joint anomaly is that it provides a spatially consistent and transparent
measure without masking the true joint occurrence of EVI and temperature. Taking different
types of events in both time series (EVI and temperature) leaves us with four possible event
combinations to be considered for three growing seasons:

(i) Both 2 m temperature and EVI are greater than their respective empirical 90% quantiles
(in the following referred to as T90–V90)

(ii) Both 2 m temperature and EVI are lower than their 10% quantile (T10–V10)
(iii) 2 m temperature is lower than its 10% and EVI is greater than its 90% quantile

(T10–V90)
(iv) 2 m temperature is greater than its 90% and EVI is lower than its 10% quantile

(T90–V10)
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For the specific formula on the ECA, please refer to Appendix A [61]. Python was
applied to code an algorithm program to perform ECA and calculated the SCR for the two
extreme time series of temperature and vegetation index.

The above data and method can be summarized in the framework in Figure 2.
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Figure 2. The framework to analyze the impacts of extreme temperature and precipitation on crops
in Bangladesh, India and Myanmar.

3. Results
3.1. Probabilities of Extreme Climate Events

The nine extreme conditions defined in Section 2.3.2 occur in varying probability
among the three growing seasons for the study area (Table 3 and Figure 3). In the three
growing seasons, the probability of extreme high and low temperature is 10.29% and
the probability of occurrence of dry years is much greater than that of wet years. The
probability of dry years from January to February is as high as 52.73%, which is twice that
of wet years or even normal precipitation years. Among the combinations without normal
temperature or normal precipitation, in other words, among the four extreme weather
combinations (HTLP, HTHP, LTLP, LTHP), the combination of higher temperature in a dry
year has the highest probability, reaching 6.81%, 7.19%, and 4.19%, in the three growing
seasons, respectively.
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Table 3. During the 1982–2015 growing seasons, the probability of occurrence of various extreme
meteorological events in the study area and the proportion of areas that experienced various extreme
meteorological events.

Probability (%) Distribution Area (%)

Jan–Feb May–Jun Aug–Sep Jan–Feb May–Jun Aug–Sep

LTLP 4.56 0.44 0.61 92.14 13.02 14.50
LTNP 2.18 4.02 6.16 62.52 84.95 91.64
LTHP 3.56 5.84 3.52 84.63 86.78 93.38
NTLP 41.35 25.79 11.77 100.00 97.57 96.60
NTNP 19.23 37.87 57.66 100.00 100.00 100.00
NTHP 18.82 15.76 9.98 100.00 99.61 93.20
HTLP 6.81 7.19 4.19 99.01 97.11 85.52
HTNP 1.68 2.54 5.97 55.47 86.73 93.86
HTHP 1.80 0.57 0.13 67.16 25.75 5.41
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Figure 3. The cropland percentage of area that experienced extreme high temperature events during
growing seasons in Bangladesh, India, Myanmar and the whole area from 2000 to 2018. (Abbrevia-
tions: NTNP–Normal temperature and normal precipitation, HTLP–Higher temperature and lower
precipitation, HTNOP–Higher temperature without precipitation, HTHP–Higher temperature and
higher precipitation).

Although the probability of extreme weather events is far less than normal weather,
more than half of the cropland in the study area has experienced such extreme weather. The
highest amount of cropland exposed to extreme temperatures from Jan to Feb was 73.88%
and 79.76% for extreme high temperatures and low temperatures, respectively. Only 61.59%
(66.51%) and 69.86% (61.60%) of cropland was exposed to extreme high temperatures
and extreme low temperatures from May to June (August to September). The largest area
exposed to extreme precipitation was also in January–February, reaching 83.93% and 97.05%
in wet and dry years, respectively. In the other two growing seasons, the area exposed to
wet and dry years was between 64.00% and 70.72%.
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We further explored the percentage of crop areas that suffered from extreme high
temperature (Figure 3). From the perspective of the growing seasons, the extreme high
temperature is most frequent in the Jan–Feb season, in the dry years (70.94%), while the area
affected is only 45.85% in wet years. India was exposed to more extreme high temperature
events with an area percentage of 36.16%, followed by Bangladesh and Myanmar.

3.2. Changes of EVI Due to Extreme Climate Events

The changes of EVI due to extreme climate events were analyzed by comparing to
those at normal temperature conditions (NTNP) (Figures 4 and 5) and we found that
the high temperatures significantly affected crop growth, according to one-way ANOVA
(Table 4). Specifically, under the condition of extreme high temperatures without consider-
ing differences in precipitation (HTNOP), the EVI would decrease 1.85%, 8.25% and 2.36%,
respectively, in the three growing seasons of Jan–Feb, May–Jun and Aug–Sep. If considering
the condition of higher precipitation (HTHP), the negative effect would be 3.85%, 32.29%
and 24.19%, while under the condition of HTLP, crop growth would decrease 4.26%, 15.15%
and 6.52%, respectively, in three seasons according to EVI. The results revealed that the
effects of high temperature extremes occur mainly in May–Jun and are usually four times
and two times greater for crop growth under the combination of flooding or drought, and
to a larger extent for solely high temperatures.

3.3. Event Coincidence Analysis

The occurrence of events coincidence with the different SCRs are presented in Figure 6.
The event coincidence occurrence area of extreme temperature and EVI showed a very
extensive and wide distribution in the study region (Figure 7). As shown in Table 5, during
January–February, the average probability of the T90–V90 is 14.52%, which is three times
the probability of T90–V10 (Figure 6a). However, the SCR area of the T90–V90 combination
is smaller than that of the T90–V10 combination, accounting for 42.50% and 57.50% of the
study area, respectively. The significant SCRs (SCR > 0.5) of T90–V90 were found in the
Deccan Plateau of India and central Myanmar, while the significant SCRs of T90–V10 are
mainly distributed along the Siwalik Hills, northern Bangladesh and southern Myanmar.
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Figure 4. Frequency distribution of EVI under high temperature extreme events combined higher, nor-
mal and lower precipitation in three growing seasons of Jan–Feb (a), May–Jun (b) and Aug–Sep (c).
(Abbreviations: NTNP –Normal temperature and normal precipitation, HTLP–Higher tempera-
ture and lower precipitation, HTNOP–Higher temperature without precipitation, HTHP-Higher
temperature and higher precipitation).
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Figure 5. The comparison of the averaged EVI for different meteorological combination events in
Bangladesh (B), India (I) and Myanmar (M), with error bars representing standard deviations. (Ab-
breviations: NTNP–Normal temperature and normal precipitation, HTLP–Higher temperature and
lower precipitation, HTNOP–Higher temperature without precipitation, HTHP–Higher temperature
and higher precipitation).

Table 4. The Analysis of variance (ANOVA) of the impacts of extreme high temperatures on EVI
during three growing seasons.

2000–2018 Grop Sum Mean Variance SS df MF F α F Crit

January–
February

NTNP 31,873.58 0.26 0.01 Within
groups 9.16 3.00 3.05 292.58 0.00 2.60HTHP 20,033.14 0.25 0.01

HTLP 30,092.49 0.25 0.01 Between
groups 4566.31 437,428.00 0.01HTNOP 31,191.08 0.26 0.01

May–June

NTNP 28,007.44 0.23 0.01 Within
groups 165.15 3.00 55.05 5211.33 0.00 2.60HTHP 4777.05 0.16 0.01

HTLP 22,283.32 0.20 0.01 Between
groups 4040.82 382,534.00 0.01HTNOP 25,670.35 0.21 0.01

August–
September

NTNP 47,735.72 0.40 0.01 Within
groups 95.39 3.00 31.80 2377.91 0.00 2.60HTHP 2472.22 0.30 0.03

HTLP 36,986.52 0.37 0.01 Between
groups 4640.95 347,078.00 0.01HTNOP 46,522.06 0.39 0.01

Abbreviations: NTNP–Normal temperature and normal precipitation, HTLP–Higher temperature and
lower precipitation, HTNOP–Higher temperature without precipitation, HTHP–Higher temperature and
higher precipitation.
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Figure 7. The area proportions of significant event coincidence rates (SCRs) between different
combinations of extremes; lower (the 10th quantile) and higher (the 90th quantile) temperature (T10

and T90) and vegetation index (V10 and V90) in the three growing periods for Bangladesh (B), India
(I), Myanmar (M) and the entire region (BIM).

Table 5. Significant event coincidence rates (SCRs) between different combinations of extremes; lower
(the 10th quantile) and higher (the 90th quantile) temperature (T10 and T90) and vegetation index
(V10 and V90) in the three growing periods for Bangladesh (B), India (I), Myanmar (M) and the entire
region (BIM).

Jan–Feb May–Jun Aug–SepSignificant Event
Coincidence

Rates (%) B I M BIM B I M BIM B I M BIM

T90–V90 5.10 13.80 27.00 14.52 8.76 4.60 2.89 4.57 14.49 7.39 10.08 7.83

T90–V10 13.44 4.65 2.03 4.78 6.94 15.56 30.30 16.58 5.04 14.07 8.59 13.29

T10–V10 11.29 8.13 10.66 8.48 8.36 7.20 7.03 7.26 13.74 13.24 15.32 13.50

T10–V90 4.41 8.94 2.81 8.14 8.30 14.93 10.00 14.12 4.01 6.79 5.10 6.47

The average probability of the T10–V10 is similar to that of the T10–V90 (Figure 6b).
The difference is that the SCRs of the T10–V10 combination accounted for 73.74% of the
study area, which was three times that of the T10–V90. The SCRs of T10–V10 are mainly
concentrated in the Ganges Plain, Indus Plain and Central Mountain Plateau, of T10–V10
are widely distributed in the study area, where the significant SCRs are located in the high
mountains such as the Kasha Mountains, Naga Hills, Western Ghats and Eastern Ghats.

Unlike the Jan–Feb season, the average probability of T90–V10 in May–Jun was 16.58%,
and was three times higher than that of T90–V90 (Figure 6c). Here, the SCRs cover 84.93%
of the total area and concentrate in five distinct regions: The Deccan Plateau, Eastern Ghats,
along the Ganges Plain, the Indian Desert and the Bago Mountains in Myanmar, while
the SCRs for T90–V90 are concentrated only along the lower Indus, lower Ganges and
Brahmaputra rivers.
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The probability of the T10–V90 (14.12%) is twice that of T10–V10 in May–Jun (Figure 6d).
The area of SCRs accounted 43.01% of the whole study area in May–Jun, which is the maxi-
mum area appearing (or happening) among the three seasons. Notably, these distributions
were somewhat similar to the T90–V90 observations between Jan and Feb: SCRs were con-
centrated in central India and Myanmar. Although the distribution of T10–V10 is relatively
loose, its SCRs are concentrated in southern India and the Sahyadri Mountains.

In Aug–Sep, the extreme values of EVI at extreme temperatures also showed the
opposite in space. In extreme high temperature, an extremely high EVI is more widely
distributed in the east of India, and an extremely low EVI is distributed in the west, while
in extreme low temperature, an extremely high EVI is concentrated in western India, and
an extremely low EVI is distributed in the west of India. In particular, the SCRs of T90–V10
accounted for 74.81% of the study area, and among them, the most significant SCRs can be
found on the western coast of India. The SCRs of T90–V90 are mainly distributed between
the Ganges River and the Godavari River (Figure 6e). The significant SCRs of T10–V10 are
scattered along the Ganges River (Figure 6f), the SCRs of T10–V90 are concentrated in the
Indus Plain (Figure 6f) and a small agglomeration is concentrated in the Eastern Ghats,
accounting for 21.13% of the study area as a whole.

It could be found that the both T90–V10 and T10–V10 showed the highest probability
and widest area according to their SCRs. The spatial distribution of SCRs varied with the
regions. The regions where the EVI positively responded to extreme temperature were
mainly in irrigated farmland, while the regions where the EVI responded negatively to
extreme temperature were mostly in the mountains and other high-altitude regions.

4. Discussion
4.1. Extreme Climate Events under Global Warming

The frequency and intensity of extreme high temperatures has undoubtedly increased
in the study area, as reported by IPCC AR6 [63]. At the same time, heat extremes often were
accompanied by increasing extreme precipitation patterns such as drought or flooding, and
the combined extreme events occur with a higher probability [64,65]. In addition, crops in
the study area were extensively exposed to extreme weather during the growing season
as shown in Table 3 and Figure 3. These extreme weather conditions have resulted in
widespread damage to crop growth and yield (Figures 4 and 6), and threatened crop safety,
not only for people in this study area, but also for neighboring countries. However, this
study is the first to quantify probability of the combined effect and spatial distribution for
this region.

Extreme heat under global warming may associate with insufficient precipitation,
which is generally the main factor controlling drought onset, resulting in insufficient soil
moisture, episodic combination of soil moisture supply deficit and atmospheric vapor
demand requirements that exert water stress on the crop growth [66]. On the other hand,
continued global warming is projected to further intensify the global water cycle, including
extremely high precipitation, droughts and compound extremes [67]. Most South Asian
countries have experienced extreme precipitation, with more spatial heterogeneity within
sub-regions, such as in India [68–71].

4.2. The Mechanism of Crop Yield Reduction Caused by Extreme Climate

When extreme heat and moisture conditions are intertwined, the combined hazard
to crops is far greater than the single hazard of extreme heat (Figure 4). Although the
probability of extreme drought is greater than that of extreme high precipitation (Table 1),
the damage intensity and area of crops in rainy years are more serious than those in dry
years, and the average vegetation index further supports this conclusion (Figure 5). Severe
water stress can lead to crops slowing net photosynthesis and shortening the growth
period, in particular when droughts persist for an extended period or occur during key
plant developmental stages, eventually leading to crop failure [72,73]. On the contrary,
during periods of high precipitation, increasing temperatures not only reduce the efficiency
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of photosynthesis, but also result in a faster development of crops; this leads to a shorter
life cycle, resulting in smaller crops, then a shorter grain filling period, and finally, to lower
yields [74]. Once flood stress occurs, the limited function of root systems leads to weakened
respiration and even root damage, while nutrient loss and soil erosion reduce nutrient
supply, thus affecting crop growth.

Under the trend of global warming, the possibility of extreme high temperature in
South Asia is much greater than that of extreme low temperature as shown in Table 3. It has
been found that in South Asia, low productivity mostly was caused by low temperatures,
resulting from the enzymatic reaction of plants, not by abnormal low temperature-induced
freezing injury [75–77]. Therefore, this study mainly considered the extreme high tem-
perature that generally is defined as temperature above a critical threshold for a specific
crop [78], but here the pixel-scale temperature at the 90th quantile was used. On the other
hand, duration of heat exposure is another aspect that results in productivity losses by
varying mechanisms such as causing thermal denaturation of proteins, damaging tissues
and inducing drought conditions [79–84]. Therefore, the duration of heat extreme events
and their effects on crop growth should be further studied in the future.

4.3. Similarities and Differences in Vegetation Index

Remote sensing-based analysis is a common method to illustrate the effects of extreme
climate events on actual crop growth for rainfed or irrigated cropland. We applied the EVI to
quantify the combined effects of extreme temperature and precipitation on crops, and used
the NDVI as a comparison. The results showed that the EVI is more sensitive to quantifying
the effects of extreme climate events than the NDVI (Supplementary Figure S1). Although
the average deviation of the vegetation index at different precipitation levels under high
temperature were both mainly negative deviations, the extent of negative deviation from
the EVI was more intense and showed a more clear spatial pattern than that from the
NDVI (Figure 8 and Supplementary Figure S2). The largest negative deviation of EVI
was −19.83% in the wet years in Aug–Sep (Figure 9), while the largest negative deviation
from the NDVI was only −3.02% in the wet years in May–Jun (Supplementary Figure S3).
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Figure 9. The degree of deviation of EVI under extreme climate in Bangladesh, India, Myanmar
and South Asia (Abbreviations: High–Higher temperature and higher precipitation, Low–Higher
temperature and lower precipitation, Not–Higher temperature without considering precipitation,
Nor–Higher temperature and normal precipitation).

In this study, both NDVI and EVI presented similar results for the responses of the
crop growth to extreme climate events. Regardless of whether precipitation is high or low,
high temperatures mostly result in lower crop growth over large areas, especially in India.
Here, India plays a dominant role with the largest cropland area in this study region.

It is worth mentioning that crops also positively respond to extreme high temperature
events, and these positive responses are typically overlaid in areas with irrigated farmland;
negative responses (Figures 6 and 8) are typically distributed at higher elevations such as
mountains [85–88]. Exceptionally, in irrigated areas such as the Gangetic Plain and the
Indus Plain, the EVI showed a significant negative response (Figure 6c,e), likely due to
intensive irrigation that intensified the heat and humidity stress in the Indo-Gangetic Plain
in wet years, increasing heat stress indicators and posing a serious threat to crops [89].

4.4. Adapting Measures to Climate Change

A historical assessment of extreme climate and its effects on crop yield are still needed
to mitigate and adapt to climate change in the agriculture sector [90]. Seasonal adjustments
to planting dates and crop varieties may be effective ways to combat increasing frequency
and extent of climate changes [91–95]. Breeding new crop varieties through genetic modifi-
cation to generate or accumulate genetic components that improve the adaptability of crops
to one or more climatic stresses is an important method for long-term adaptation to stress
conditions [96]. Furthermore, water management has been found to be relatively affordable
and easier to implement on irrigated cropland [97]. Farmers are also becoming aware of
the need to apply mixed cropping systems to minimize the risk of crop failure [98].

This study had some limitations. For example, the actual yield loss was not assessed
due to the unavailability of on-the-ground yield measures. However, this study provides
a fundamental understanding of impacts of extreme climate on crop growth through re-
mote sensing-based measurements. Further crop model-based analysis and prediction are
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essential for assessing the complex effects from extreme events interacting with multiple en-
vironmental factors [98,99], which is expected to help mitigate and adapt to climate change
in the future for this area of Bangladesh, India and Myanmar, a prominent agricultural
region of the world [100–106].

5. Conclusions

The frequency of climate extremes was found to be increasing and multiple events
coincidently occur. Therefore, it is essential to quantify and assess the probability and extent
of extreme events, and their effects on crop growth, to understand the full implications.
Our results revealed that while the average probability of extreme temperatures is small,
most regions (more than half) have experienced extreme events. At the same time, we
applied remote sensing methods to provide a spatially explicit statistical assessment of the
combined effects of extreme temperature under different precipitation levels on crops in
South Asia. Although the probability of occurrence of dry years is greater than that of wet
years, the harm caused by high temperature in wet years is far greater than that in dry
years. From a geographical point of view, the areas with positive responses for crops under
high temperature are mostly concentrated in irrigated cropland and negative responses
are mostly in the mountains and other high-altitude regions. The event coincidence rate
for extreme temperature and vegetation indices occurrence was investigated through
event coincidence analysis. The three growing seasons displayed the highest densities
of significant event coincidence rates at a low EVI for both high- and low-temperature
extremes. In the future, further crop model research is essential to diagnose the mechanism
of extreme climate impact on crop yields and predict possible crop yield loss under extreme
climate change. This study provides some foundation for determining how extreme climate
impacts crop growth, which is very important to be able to suggest actions for sustainable
agricultural development while mitigating and adapting to climate change in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14236093/s1, Figure S1: Spatial patterns of significant event
coincidence rates (SCRs) between different combinations of low and high temperature and Vege-
tation Index NDVI extremes during the three considered time periods(a, c, e and b, d, f represent
extreme NDVI under extreme high and extreme low temperatures in Jan-Feb, May-Jun and Aug-Sep,
respectively, with red representing extreme low NDVI values and green representing extreme high
EVI values). Figure S2: The degree of deviation of NVI between normal temperature with normal
precipitation and different precipitation under extreme high temperature during growing seasons.
Figure S3: The degree of deviation of NDVI under extreme climate in Bangladesh, India, Myanmar
and South Asia (Abbreviations: High–Higher temperature and higher precipitation, Low–Higher
temperature and lower precipitation, Not–Higher temperature without considering precipitation,
Nor–Higher temperature and normal precipitation).
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Appendix A

Event consistency analysis is used to calculate the consistency between different types
of events. In this paper, it is hypothesized that events in extreme Vegetation Index (B)
precede events in extreme temperature (A), which are validated and tested.

Defining the consistency of the occurrence of two events first needs to determine the
consistency in time. A pair of event time series A and B is here defined as two ordered event
sets with timings

{
tA
1 , . . . , tA

iA

}
and

{
tB
1 , . . . , tB

JB

}
with number of events iA, JB, respectively.

Both event series are assumed to cover a time interval
(

t0, t f

)
of length T = t f − t0, such

that t0 ≤ tA
1 ≤ . . . ≤ tA

iA
≤ t f and t0 ≤ tB

1 ≤ . . . ≤ tB
JB
≤ t f .

When the symmetrical coincidence interval of A event is satisfied, and the assumption
that B event must precede A event is relaxed, if⌈

tA
i − tB

j

⌉
≤ ∆T (A1)

Then the event coincidence analysis is satisfied.
Standard and composite measurements can be made for the consistency of occurrence

between several events in a series of events available on a spatial grid or in different
regions. This paper quantifies the aggregation consistency across all countries in the
dataset, obtaining an overall measure of the strength of the relationship between the four
types considered and its statistics, taking into account different assumptions. Similar to
the case of single-pair event series, in a given set G of type A and type B events, the event
coincidence rate is consistent for both cases. The aggregated precursor coincidence rate:

rG
p (∆T, τ) =

∑k∈G ∑
NA,k
i=1 Θ

[
∑

NB,k
j=1 1[0,∆T]

(
(tA,K

i − τ)− tB,K
j

)]
∑k∈G NA,k

(A2)

These events are normalized by the maximum possible number of such events to
measure the total number of all events or events occurring in all paired sequences of events.
In the same situation, the aggregated trigger coincidence rate:

rG
t (∆T, τ) =

∑k∈G ∑
NB,k
i=1 Θ

[
∑

NA,k
j=1 1[0,∆T]

(
(tA,K

i − τ)− tB,K
j

)]
∑k∈G NB,k

(A3)

This is consistent with the normalized total number of trigger coincidences that
occurred across all pairwise events. The above algorithm was accomplished through
Python-based code and the code could be shared with the requisition.

References
1. Lai, L.W. The relationship between extreme weather events and crop losses in central Taiwan. Theor. Appl. Climatol. 2018, 134,

107–119. [CrossRef]
2. Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87.

[CrossRef]
3. Regan, P.M.; Kim, H.; Maiden, E. Climate change, adaptation, and agricultural output. Reg. Environ. Chang. 2018, 19, 113–123.

[CrossRef]
4. Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [CrossRef]
5. Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S.

Chapter 3 Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. Adv. Agron.
2009, 102, 91–133.

6. Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3,
115–129. [CrossRef]

7. Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by
climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [CrossRef]

8. Mojid, M.A. Climate change-induced challenges to sustainable development in Bangladesh. IOP Conf. Ser. Earth Environ. Sci.
2020, 423, 012001. [CrossRef]

http://doi.org/10.1007/s00704-017-2261-z
http://doi.org/10.1038/nature16467
http://doi.org/10.1007/s10113-018-1364-0
http://doi.org/10.3354/cr00953
http://doi.org/10.1002/wcc.160
http://doi.org/10.1038/s41467-018-06765-2
http://doi.org/10.1088/1755-1315/423/1/012001


Remote Sens. 2022, 14, 6093 17 of 20

9. Mishra, A.; Singh, R.; Raghuwanshi, N.S.; CHATTERJEE, C.; Froebrich, J. Spatial variability of climate change impacts on yield of
rice and wheat in the Indian Ganga Basin. Sci. Total Environ. 2013, 468, S132–S138. [CrossRef]

10. Rohini, P.; Rajeevan, M.; Mukhopadhay, P. Future projections of heat waves over India from CMIP5 models. Clim. Dyn. 2019, 53,
975–988. [CrossRef]

11. Sattar, A.; Srivastava, R.C. Modelling climate smart rice-wheat production system in the middle Gangetic plains of India. Theor.
Appl. Climatol. 2021, 144, 77–91. [CrossRef]

12. Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble:
Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [CrossRef]

13. Gu, H.; Wang, G.; Yu, Z.; Mei, R. Assessing future climate changes and extreme indicators in east and south Asia using the
RegCM4 regional climate model. Clim. Chang. 2012, 114, 301–317. [CrossRef]

14. Brown, P.T.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 2017, 552, 45–50.
[CrossRef] [PubMed]

15. Huang, J.; Zhang, X.; Zhang, Q.; Lin, Y.; Hao, M.; Luo, Y.; Zhao, Z.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic
warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–879. [CrossRef]

16. Swami, D.; Dave, P.; Parthasarathy, D. Analysis of temperature variability and extremes with respect to crop threshold temperature
for Maharashtra, India. Theor. Appl. Climatol. 2021, 144, 861–872. [CrossRef]

17. Chowdhury, M.A.; Zzaman, R.U.; Tarin, N.J.; Hossain, M.J. Spatial variability of climatic hazards in Bangladesh. Nat. Hazards
2021, 110, 2329–2351. [CrossRef]

18. Sein, Z.M.M.; Zhi, X.; Ogou, F.K.; Nooni, I.K.; Lim Kam Sian, K.T.C.; Gnitou, G.T. Spatio-Temporal Analysis of Drought Variability
in Myanmar Based on the Standardized Precipitation Evapotranspiration Index (SPEI) and Its Impact on Crop Production.
Agronomy 2021, 11, 1691. [CrossRef]

19. Zhu, X.; Troy, T.J. Agriculturally Relevant Climate Extremes and Their Trends in the World’s Major Growing Regions. Earth’s
Future 2018, 6, 656–672. [CrossRef]

20. Dash, B.K.; Rafiuddin, M.; Khanam, F.; Islam, M.N. Characteristics of meteorological drought in Bangladesh. Nat. Hazards 2012,
64, 1461–1474. [CrossRef]

21. Hoarau, K.; Bernard, J.; Chalonge, L. Intense tropical cyclone activities in the northern Indian Ocean. Int. J. Climatol. 2012, 32,
1935–1945. [CrossRef]

22. Khudri, M.M.; Bagmar, M.S.H.; Redwan, A.M. Characterisation of spatio-temporal trend in temperature extremes for environ-
mental decision making in Bangladesh. Int. J. Glob. Warm. 2019, 19, 364–381. [CrossRef]

23. Swain, M.; Sinha, P.; Mohanty, U.C.; Pattnaik, S. Dominant large-scale parameters responsible for diverse extreme rainfall events
over vulnerable Odisha state in India. Clim. Dyn. 2019, 53, 6629–6644. [CrossRef]

24. Sikka, A.K.; Rao, B.B.; Rao, V.U.M. Agricultural disaster management and contingency planning to meet the challenges of extreme
weather events. Mausam 2016, 67, 155–168. [CrossRef]

25. Aleshina, M.A.; Semenov, V.A.; Chernokulsky, A.V. A link between surface air temperature and extreme precipitation over Russia
from station and reanalysis data. Environ. Res. Lett. 2021, 16, 105004. [CrossRef]

26. Chan, S.C.; Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature
for future hottest days. Nat. Geosci. 2016, 9, 24–28. [CrossRef]

27. Lenderink, G.; Barbero, R.; Westra, S.; Fowler, H.J. Reply to comments on “Temperature-extreme precipitation scaling: A two-way
causality?”. Int. J. Climatol. 2018, 38, 4664–4666. [CrossRef]

28. Hernandez, M.J.; Montes, F.; Ruiz, F.; Lopez, G.; Pita, P. The effect of vapour pressure deficit on stomatal conductance, sap pH
and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes. Ann. Bot. 2016, 117,
1063–1071. [CrossRef]

29. Huybers, P.; Holbrook, N.M.; Siebert, S.; Ray, D.K.; Butler, E.E.; Rhines, A.; Mueller, N.D. Global Relationships between Cropland
Intensification and Summer Temperature Extremes over the Last 50 Years. J. Clim. 2017, 30, 7505–7528.

30. Lee, S.; Bae, Y.S.; Kim, H.S. The Study and Analysis of Extreme Weather in Seoul. Seoul Stud. 2011, 12, 1–17.
31. Min, S.-K.; Son, S.-W.; Seo, K.-H.; Kug, J.-S.; An, S.-I.; Choi, Y.-S.; Jeong, J.-H.; Kim, B.-M.; Kim, J.-W.; Kim, Y.-H.; et al. Changes in

weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci. 2015, 51, 103–121. [CrossRef]
32. van der Wiel, K.; Selten, F.M.; Bintanja, R.; Blackport, R.; Screen, J.A. Ensemble climate-impact modelling: Extreme impacts from

moderate meteorological conditions. Environ. Res. Lett. 2020, 15, 034050. [CrossRef]
33. Zeng, F.W.; Collatz, G.J.; Pinzon, J.E.; Ivanoff, A. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global

Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales. Remote
Sens. 2013, 5, 3918–3950. [CrossRef]

34. Wang, J.B.; Dong, J.W.; Liu, J.Y.; Huang, M.; Li, G.C.; Running, S.W.; Smith, W.K.; Harris, W.; Saigusa, N.; Kondo, H.; et al.
Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia. Remote Sens.
2014, 6, 2108–2133. [CrossRef]

35. Tiedemann, J.L. Fenología y productividad primaria neta aérea de sistemas pastoriles de Panicum maximun en el dpto. Moreno,
Santiago del Estero, Argentina, derivada del NDVI MODIS. Ecol. Apl. 2015, 14, 27–39. [CrossRef]

36. Valverde-Arias, O.; Garrido, A.; Valencia, J.L.; Maria Tarquis, A. Using geographical information system to generate a drought
risk map for rice cultivation: Case study in Babahoyo canton (Ecuador). Biosyst. Eng. 2018, 168, 26–41. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2013.05.080
http://doi.org/10.1007/s00382-019-04700-9
http://doi.org/10.1007/s00704-020-03497-6
http://doi.org/10.1002/jgrd.50188
http://doi.org/10.1007/s10584-012-0411-y
http://doi.org/10.1038/nature24672
http://www.ncbi.nlm.nih.gov/pubmed/29219964
http://doi.org/10.1038/s41558-017-0009-5
http://doi.org/10.1007/s00704-021-03558-4
http://doi.org/10.1007/s11069-021-05039-3
http://doi.org/10.3390/agronomy11091691
http://doi.org/10.1002/2017EF000687
http://doi.org/10.1007/s11069-012-0307-1
http://doi.org/10.1002/joc.2406
http://doi.org/10.1504/IJGW.2019.104269
http://doi.org/10.1007/s00382-019-04949-0
http://doi.org/10.54302/mausam.v67i1.1173
http://doi.org/10.1088/1748-9326/ac1cba
http://doi.org/10.1038/ngeo2596
http://doi.org/10.1002/joc.5799
http://doi.org/10.1093/aob/mcw031
http://doi.org/10.1007/s13143-015-0066-5
http://doi.org/10.1088/1748-9326/ab7668
http://doi.org/10.3390/rs5083918
http://doi.org/10.3390/rs6032108
http://doi.org/10.21704/rea.v14i1-2.79
http://doi.org/10.1016/j.biosystemseng.2017.08.007


Remote Sens. 2022, 14, 6093 18 of 20

37. Vannoppen, A.; Gobin, A.; Kotova, L.; Top, S.; De Cruz, L.; Viksna, A.; Aniskevich, S.; Bobylev, L.; Buntemeyer, L.; Caluwaerts,
S.; et al. Wheat Yield Estimation from NDVI and Regional Climate Models in Latvia. Remote Sens. 2020, 12, 2206. [CrossRef]

38. Xu, X.; Piao, S.; Wang, X.; Chen, A.; Ciais, P.; Myneni, R.B. Spatio-temporal patterns of the area experiencing negative vegetation
growth anomalies in China over the last three decades. Environ. Res. Lett. 2012, 7, 035701. [CrossRef]

39. Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234.
[CrossRef]

40. Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A
data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric.
For. Meteorol. 2013, 171, 137–152. [CrossRef]

41. Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the
US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [CrossRef]

42. Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary
production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [CrossRef]

43. Lyapustin, A.; Alexander, M.J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y. Observation of mountain lee waves with
MODIS NIR column water vapor. Geophys. Res. Lett. 2014, 41, 710–716. [CrossRef]

44. Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Vegetation Index and
Phenology Lab, University of Arizona: Tucson, AZ, USA, 2015.

45. Mishra, V. Long-term (1870–2018) drought reconstruction in context of surface water security in India. J. Hydrol. 2020, 580, 124228.
[CrossRef]

46. Mishra, V.; Tiwari, A.D.; Aadhar, S.; Shah, R.; Xiao, M.; Pai, D.S.; Lettenmaier, D. Drought and Famine in India, 1870–2016.
Geophys. Res. Lett. 2019, 46, 2075–2083. [CrossRef]

47. Thomas, T.; Nayak, P.C.; Ghosh, N.C. Irrigation planning for sustainable rain-fed agriculture in the drought-prone Bundelkhand
region of Madhya Pradesh, India. J. Water Clim. Chang. 2014, 5, 408–426. [CrossRef]

48. Biradar, C.M.; Xiao, X. Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with
multi-temporal MODIS imagery in 2005. Int. J. Remote Sens. 2011, 32, 367–386. [CrossRef]

49. Hossain, M.S.; Qian, L.; Arshad, M.; Shahid, S.; Fahad, S.; Akhter, J. Climate change and crop farming in Bangladesh: An analysis
of economic impacts. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 424–440. [CrossRef]

50. Gumma, M.K.; Thenkabail, P.S.; Deevi, K.C.; Mohammed, I.A.; Teluguntla, P.; Oliphant, A.; Xiong, J.; Aye, T.; Whitbread, A.M.
Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system. GIScience
Remote Sens. 2018, 55, 926–949. [CrossRef]

51. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

52. Zhengxing, W.; Chuang, L.; Alfredo, H. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecol.
Sin. 2003, 23, 979–987.

53. Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR
8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [CrossRef]

54. Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [CrossRef]
55. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.

The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
56. Copernicus Climate Change Service. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernic.

Clim. Chang. Serv. Clim. Data Store (CDS) 2017, 15, 2020.
57. Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.;

Kirches, G. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover
CCI. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 13 December 2013; pp. 9–13.

58. Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover
changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data
2018, 10, 219–234. [CrossRef]

59. Al-Nassar, A.R.; Jansa, A.; Sangrà, P.; Alarcon, M.; Jansa, A. Cut-off low systems over Iraq: Contribution to annual precipitation
and synoptic analysis of extreme events. Int. J. Climatol. 2019, 40, 908–926. [CrossRef]

60. Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of temperature extremes on European vegetation during the
growing season. Biogeosciences 2017, 14, 4891–4903. [CrossRef]

61. Donges, J.F.; Schleussner, C.F.; Siegmund, J.F.; Donner, R.V. Event coincidence analysis for quantifying statistical interrelationships
between event time series. Eur. Phys. J. Spec. Top. 2016, 225, 471–487. [CrossRef]

62. Odenweller, A.; Donner, R.V. Disentangling synchrony from serial dependency in paired-event time series. Phys. Rev. E 2020,
101, 052213. [CrossRef]

63. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on
14 October 2022).

http://doi.org/10.3390/rs12142206
http://doi.org/10.1088/1748-9326/7/3/035701
http://doi.org/10.1016/0034-4257(94)90018-3
http://doi.org/10.1016/j.agrformet.2012.11.004
http://doi.org/10.1016/j.rse.2006.11.021
http://doi.org/10.1016/j.rse.2003.11.008
http://doi.org/10.1002/2013GL058770
http://doi.org/10.1016/j.jhydrol.2019.124228
http://doi.org/10.1029/2018GL081477
http://doi.org/10.2166/wcc.2014.025
http://doi.org/10.1080/01431160903464179
http://doi.org/10.1108/IJCCSM-04-2018-0030
http://doi.org/10.1080/15481603.2018.1482855
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1080/01431160500168686
http://doi.org/10.3390/rs6086929
http://doi.org/10.1002/qj.3803
http://doi.org/10.5194/essd-10-219-2018
http://doi.org/10.1002/joc.6247
http://doi.org/10.5194/bg-14-4891-2017
http://doi.org/10.1140/epjst/e2015-50233-y
http://doi.org/10.1103/PhysRevE.101.052213
https://www.ipcc.ch/report/ar6/wg1/


Remote Sens. 2022, 14, 6093 19 of 20

64. Sedlmeier, K.; Feldmann, H.; Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor.
Appl. Climatol. 2017, 131, 1493–1501. [CrossRef]

65. Gu, L.; Chen, J.; Yin, J.B.; Slater, L.J.; Wang, H.M.; Guo, Q.; Feng, M.Y.; Qin, H.; Zhao, T.T.G. Global Increases in Compound
Flood-Hot Extreme Hazards Under Climate Warming. Geophys. Res. Lett. 2022, 49, e2022GL097726. [CrossRef]

66. van der Velde, M.; Tubiello, F.N.; Vrieling, A.; Bouraoui, F. Impacts of extreme weather on wheat and maize in France: Evaluating
regional crop simulations against observed data. Clim. Chang. 2012, 113, 751–765. [CrossRef]

67. Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [CrossRef]
[PubMed]

68. Singh, V.; Goyal, M.K. Spatio-temporal heterogeneity and changes in extreme precipitation over eastern Himalayan catchments
India. Stoch. Environ. Res. Risk Assess. 2017, 31, 2527–2546. [CrossRef]

69. Vinnarasi, R.; Dhanya, C.T. Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall. J. Geophys.
Res.-Atmos. 2016, 121, 2146–2160. [CrossRef]

70. Reshma, T.; Varikoden, H.; Babu, C.A. Observed Changes in Indian Summer Monsoon Rainfall at Different Intensity Bins during
the Past 118 Years over Five Homogeneous Regions. Pure Appl. Geophys. 2021, 178, 3655–3672. [CrossRef]

71. Sahu, R.T.; Verma, M.K.; Ahmad, I. Some non-uniformity patterns spread over the lower Mahanadi River Basin, India. Geocarto
Int. 2021, 23, 1010–6049. [CrossRef]

72. Zampieri, A.C.M.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global,
national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [CrossRef]

73. Prado, K.; Maurel, C. Regulation of leaf hydraulics: From molecular to whole plant levels. Front. Plant Sci. 2013, 4, 255. [CrossRef]
74. Degife, A.W.; Zabel, F.; Mauser, W. Climate change impacts on potential maize yields in Gambella Region, Ethiopia. Reg. Environ.

Chang. 2021, 21, 60. [CrossRef]
75. Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Changes in the severity of compound drought and hot extremes over global land areas.

Environ. Res. Lett. 2018, 13, 124022. [CrossRef]
76. Huo, Y.; Peltier, W.R. Dynamically Downscaled Climate Change Projections for the South Asian Monsoon: Mean and Extreme

Precipitation Changes and Physics Parameterization Impacts. J. Clim. 2020, 33, 2311–2331. [CrossRef]
77. Xu, Y.; Zhou, B.-T.; Wu, J.; Han, Z.-Y.; Zhang, Y.-X.; Wu, J. Asian climate change under 1.5–4 degrees C warming targets. Adv.

Clim. Chang. Res. 2017, 8, 99–107. [CrossRef]
78. Reddy, K.R.; Seghal, A.; Jumaa, S.; Bheemanahalli, R.; Kakar, N.; Redoña, E.D.; Wijewardana, C.; Alsajri, F.A.; Chastain, D.; Gao,

W.; et al. Morpho-Physiological Characterization of Diverse Rice Genotypes for Seedling Stage High- and Low-Temperature
Tolerance. Agronomy 2021, 11, 112. [CrossRef]

79. Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms
of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [CrossRef]

80. Lesk, C.; Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res.
Lett. 2021, 16, 055024. [CrossRef]

81. Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize
production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [CrossRef]

82. Tack, J.; Barkley, A.; Hendricks, N. Irrigation offsets wheat yield reductions from warming temperatures. Environ. Res. Lett. 2017,
12, 114027. [CrossRef]

83. Tao, F.; Zhang, S.; Zhang, Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic
causes. Reg. Environ. Chang. 2012, 13, 743–759. [CrossRef]

84. Timsina, J.; Jat, M.L.; Majumdar, K. Rice-maize systems of South Asia: Current status, future prospects and research priorities for
nutrient management. Plant Soil 2010, 335, 65–82. [CrossRef]

85. Li, Y.; Guan, K.; Peng, B.; Franz, T.E.; Wardlow, B.; Pan, M. Quantifying irrigation cooling benefits to maize yield in the US
Midwest. Glob. Chang. Biol. 2020, 26, 3065–3078. [CrossRef] [PubMed]

86. Luan, X.; Bommarco, R.; Scaini, A.; Vico, G. Combined heat and drought suppress rainfed maize and soybean yields and modify
irrigation benefits in the USA. Environ. Res. Lett. 2021, 16, 064023. [CrossRef]

87. Minoli, S.; Mueller, C.; Elliott, J.; Ruane, A.C.; Jaegermeyr, J.; Zabel, F.; Dury, M.; Folberth, C.; Francois, L.; Hank, T.; et al. Global
Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation. Earths Future
2019, 7, 1464–1480. [CrossRef]

88. Rao, A.; Chandran, M.A.S.; Bal, S.K.; Pramod, V.P.; Sandeep, V.M.; Manikandan, N.; Raju, B.M.K.; Prabhakar, M.; Islam, A.;
Kumar, S.N.; et al. Evaluating area-specific adaptation strategies for rainfed maize under future climates of India. Sci. Total
Environ. 2022, 836, 155511.

89. Mishra, V.; Ambika, A.K.; Asoka, A.; Aadhar, S.; Buzan, J.; Kumar, R.; Huber, M. Moist heat stress extremes in India enhanced by
irrigation. Nat. Geosci. 2020, 13, 722–728. [CrossRef]

90. Jackson, N.D.; Konar, M.; Debaere, P.; Sheffield, J. Crop-specific exposure to extreme temperature and moisture for the globe for
the last half century. Environ. Res. Lett. 2021, 16, 064006. [CrossRef]

91. Babaeian, F.; Delavar, M.; Morid, S.; Srinivasan, R. Robust climate change adaptation pathways in agricultural water management.
Agric. Water Manag. 2021, 252, 106904. [CrossRef]

http://doi.org/10.1007/s00704-017-2061-5
http://doi.org/10.1029/2022GL097726
http://doi.org/10.1007/s10584-011-0368-2
http://doi.org/10.1073/pnas.1205276109
http://www.ncbi.nlm.nih.gov/pubmed/22869707
http://doi.org/10.1007/s00477-016-1350-3
http://doi.org/10.1002/2015JD024310
http://doi.org/10.1007/s00024-021-02826-8
http://doi.org/10.1080/10106049.2021.2005699
http://doi.org/10.1088/1748-9326/aa723b
http://doi.org/10.3389/fpls.2013.00255
http://doi.org/10.1007/s10113-021-01773-3
http://doi.org/10.1088/1748-9326/aaee96
http://doi.org/10.1175/JCLI-D-19-0268.1
http://doi.org/10.1016/j.accre.2017.05.004
http://doi.org/10.3390/agronomy11010112
http://doi.org/10.3390/ijms14059643
http://doi.org/10.1088/1748-9326/abeb35
http://doi.org/10.1038/nclimate1832
http://doi.org/10.1088/1748-9326/aa8d27
http://doi.org/10.1007/s10113-012-0357-7
http://doi.org/10.1007/s11104-010-0418-y
http://doi.org/10.1111/gcb.15002
http://www.ncbi.nlm.nih.gov/pubmed/32167221
http://doi.org/10.1088/1748-9326/abfc76
http://doi.org/10.1029/2018EF001130
http://doi.org/10.1038/s41561-020-00650-8
http://doi.org/10.1088/1748-9326/abf8e0
http://doi.org/10.1016/j.agwat.2021.106904


Remote Sens. 2022, 14, 6093 20 of 20

92. Duffy, C.; Pede, V.; Toth, G.; Kilcline, K.; O’Donoghue, C.; Ryan, M.; Spillane, C. Drivers of household and agricultural adaptation
to climate change in Vietnam. Clim. Dev. 2020, 13, 242–255. [CrossRef]

93. Harvey, R.J.; Chadwick, D.R.; Sánchez-Rodríguez, A.R.; Jones, D.L. Agroecosystem resilience in response to extreme winter
flooding. Agric. Ecosyst. Environ. 2019, 279, 1–13. [CrossRef]

94. Holzkämper, A.; Klein, T.; Seppelt, R.; Fuhrer, J. Assessing the propagation of uncertainties in multi-objective optimization for
agro-ecosystem adaptation to climate change. Environ. Model. Softw. 2015, 66, 27–35. [CrossRef]

95. Khanal, U.; Wilson, C.; Hoang, V.N.; Lee, B.L. Autonomous adaptations to climate change and rice productivity: A case study of
the Tanahun district, Nepal. Clim. Dev. 2019, 11, 555–563. [CrossRef]

96. Beacham, A.M.; Hand, P.; Barker, G.C.; Denby, K.J.; Teakle, G.R.; Walley, P.G.; Monaghan, J.M. Addressing the threat of climate
change to agriculture requires improving crop resilience to short-term abiotic stress. Outlook Agric. 2018, 47, 270–276. [CrossRef]

97. Kato, T.; Kimura, R.; Kamichika, M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse
canopy using a compartment model. Agric. Water Manag. 2004, 65, 173–191. [CrossRef]

98. Singh, N.P.; Anand, B.; Khan, M.A. Micro-level perception to climate change and adaptation issues: A prelude to mainstreaming
climate adaptation into developmental landscape in India. Nat. Hazards 2018, 92, 1287–1304. [CrossRef]

99. Skinner, C.B.; Poulsen, C.J.; Mankin, J.S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 2018,
9, 1094. [CrossRef]

100. Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating severity-area-frequency (SAF) of
seasonal droughts in Bangladesh under climate change scenarios. Stoch. Environ. Res. Risk Assess. 2020, 34, 447–464. [CrossRef]

101. Arreyndip, N.A. Identifying agricultural disaster risk zones for future climate actions. PLoS ONE 2021, 16, e0260430. [CrossRef]
102. Islam, A.R.M.T.; Nabila, I.A.; Hasanuzzaman, M.; Rahman, M.B.; Elbeltagi, A.; Mallick, J.; Techato, K.; Pal, S.C.; Rahman, M.M.

Variability of climate-induced rice yields in northwest Bangladesh using multiple statistical modeling. Theor. Appl. Climatol. 2022,
147, 1263–1276. [CrossRef]

103. Islam, A.R.M.T.; Rahman, M.S.; Khatun, R.; Hu, Z. Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during
1975–2017. Theor. Appl. Climatol. 2020, 141, 869–887. [CrossRef]

104. Jha, R.; Mondal, A.; Devanand, A.; Roxy, M.K.; Ghosh, S. Limited influence of irrigation on pre-monsoon heat stress in the
Indo-Gangetic Plain. Nat. Commun. 2022, 13, 4275. [CrossRef] [PubMed]

105. Lacombe, G.; Chu Thai, H.; Smakhtin, V. Multi-year variability or unidirectional trends? Mapping long-term precipitation and
temperature changes in continental Southeast Asia using PRECIS regional climate model. Clim. Chang. 2012, 113, 285–299.
[CrossRef]

106. Prodhan, F.A.; Zhang, J.; Sharma, T.P.P.; Nanzad, L.; Zhang, D.; Seka, A.M.; Ahmed, N.; Hasan, S.S.; Hoque, M.Z.; Mohana, H.P.
Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach.
Sci. Total Environ. 2022, 807, 151029. [CrossRef] [PubMed]

http://doi.org/10.1080/17565529.2020.1757397
http://doi.org/10.1016/j.agee.2019.04.001
http://doi.org/10.1016/j.envsoft.2014.12.012
http://doi.org/10.1080/17565529.2018.1469965
http://doi.org/10.1177/0030727018807722
http://doi.org/10.1016/j.agwat.2003.10.001
http://doi.org/10.1007/s11069-018-3250-y
http://doi.org/10.1038/s41467-018-03472-w
http://doi.org/10.1007/s00477-020-01768-2
http://doi.org/10.1371/journal.pone.0260430
http://doi.org/10.1007/s00704-021-03909-1
http://doi.org/10.1007/s00704-020-03244-x
http://doi.org/10.1038/s41467-022-31962-5
http://www.ncbi.nlm.nih.gov/pubmed/35879272
http://doi.org/10.1007/s10584-011-0359-3
http://doi.org/10.1016/j.scitotenv.2021.151029
http://www.ncbi.nlm.nih.gov/pubmed/34673078

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 
	Frequency and Extent of Climate Extreme Events 
	Measuring Influence of Extreme Climate Events on Crop Growth 
	Event Coincidence Rate between Extreme Temperature and Extreme EVI 


	Results 
	Probabilities of Extreme Climate Events 
	Changes of EVI Due to Extreme Climate Events 
	Event Coincidence Analysis 

	Discussion 
	Extreme Climate Events under Global Warming 
	The Mechanism of Crop Yield Reduction Caused by Extreme Climate 
	Similarities and Differences in Vegetation Index 
	Adapting Measures to Climate Change 

	Conclusions 
	Appendix A
	References

