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Abstract: Damage detection algorithms employing the conventional acceleration measurements and
the associated modal features may underperform due to the limited number of sensors used in the
monitoring and the smoothing effect of spline functions used to increase the spatial resolution. The
effectiveness of such algorithms could be increased if a more accurate estimate of mode shapes were
provided. This study presents a hybrid structural health monitoring method for vibration-based
damage detection of bridge-type structures. The proposed method is based on the fusion of data
from conventional accelerometers and computer vision-based measurements. The most commonly
used mode shape-based damage measures, namely, the mode shape curvature method, the modal
strain energy method, and the modal flexibility method, are used for damage detection. The accuracy
of these parameters used together with the conventional sparse sensor setups and the proposed
hybrid approach is investigated in numerical case studies, with damage scenarios simulated on
a simply-supported bridge. The simulations involve measuring the acceleration response of the
bridge to ambient vibrations and train crossings and then processing the data to determine the
modal frequencies and mode shapes. The efficiency and accuracy of the proposed hybrid health
monitoring methodology are demonstrated in case studies involving scenarios in which conventional
acceleration measurements fail to detect and locate damage. The robustness of the proposed method
against various levels of noise is shown as well. In the studies considered, damage as small as 10%
decrease in flexural stiffness of the bridge and localized in less than 1% of the span-length of the
bridge is reliably detected even with very high levels of measurement noise. Finally, a modified
modal flexibility damage parameter is derived and used to alleviate the shortcomings of the modal
flexibility damage parameter.

Keywords: damage detection; vibration-based; structural health monitoring; computer vision; curvature;
strain energy; modal flexibility

1. Introduction

Rapidly aging bridge infrastructure is becoming a major problem around the world.
Most of the bridges in Europe and North America were built during the first half of the
twentieth century and now have reached the end of their design life. For example, Europe’s
highway bridge count is around one million, and more than 35%, or half a million railway
bridges, are over 100 years old, with many more close to the end of their 50-year design
life [1]. Similarly, in the United States, more than 42% of the 617,000 bridges are at least
50 years old, 7.5% of the country’s bridges are considered structurally deficient, and the
estimated backlog cost of bridge repair is USD 125 billion [2]. An important increase
in mobility, traffic, and urbanization, as well as climate change, is causing significant
deviations from original design assumptions and accelerating the deterioration process [3].

Today, bridge maintenance decisions are mainly based on manual and visual inspec-
tions, and consume significant time and money. As such, detailed bridge inspections are
generally performed at long intervals or after major events, leaving the infrastructure
potentially vulnerable. Furthermore, visual inspections are strongly subjective, and the
outcome of an inspection depends on the experience and skills of the inspector. This
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prevents an objective comparison of the condition of different bridges. Structural Health
Monitoring (SHM) techniques offer an alternative to manual inspection by generating
objective real-time data on the condition of bridges. Of the different SHM techniques,
vibration-based methods provide an attractive approach; the readily available vibrations
of the structure can provide information about the behavior of the bridge at the global
level and an opportunity for damage detection without prior knowledge of the damage
location. Therefore, vibration-based damage detection in civil structures has been an in-
tensively investigated subject in recent decades [4–17]. Numerous approaches have been
developed that utilize the modal properties of structures or other properties originating
from modal features [9,16,18,19]. Bridge structures have been the focus of several studies
employing vibration signatures [1,7,20–23]. Long-term vibration analysis of bridges and
the relationship between vibration and structural damage have been investigated in various
studies [24–27]. The most common mode shape-based features used for damage detection
and location include mode shape curvature, modal strain energy, and modal flexibility. For
example, Dilena and Morassi [28] performed dynamic identification on a single-span bridge
subjected to increasing levels of damage and used the mode shape curvature method to
detect the location of the damage. Grande and Imbimbo [29] proposed a method based on
modal flexibility to detect damage in multiple locations. Limongelli and Giordano [30] in-
vestigated the performance of these three damage parameters for damage localization and
compared the results in terms of the information gain they provide. The same authors [31]
tested these damage detection methods on a prestressed concrete bridge (the S101 Bridge)
using the monitoring data. However, these methods are known to suffer significantly
from measurement uncertainties and sensitivity of damage indicators to the location and
severity of damage. One of the well-documented reasons for these shortcomings is the
limited number of sensors commonly used in monitoring and the smoothing effect of spline
functions fitted to discrete measurements to increase spatial resolution [32,33].

Computer vision provides an attractive alternative to alleviate this problem, as com-
puter vision-based multipoint measurements can provide information with much higher
spatial resolution at the critical regions of the structure. Further, low cost and non-contact
measurements without the need for markers for accurate measurements significantly ease
the application of computer vision-based measurements. Indeed, computer vision applica-
tions in civil engineering have gained significant momentum [34–36]. Consumer-grade and
high-speed cameras have been used to extract modal frequencies and mode shapes under
laboratory conditions [37–40]. Feng and Feng showed in both the laboratory [41] and field
environment [42] that the accuracy of the measurements could be improved using markers in
such situations where the camera is far away from the structure. Computer vision methods
have been tested on real bridges [42–45] and other structures [46–48]. However, there are
challenges with respect to the resolution and sensitivity of measured vibrations, as the size of
the bridge, the field-of-view and resolution of the camera sensor, and the properties of the
camera dictate the application. Considering that the deformations due to the vibrations of
structures under service loads are very small compared to the length of the bridges, high-
resolution sensors or several cameras are needed to capture the vibrations with high enough
sensitivity to be able to detect subtle changes in the modal parameters due to damage. Further,
monitoring of the middle sections of bridges with cameras can be challenging, as these sections
are elevated and cross obstacles that make camera placement difficult.

In order to address these problems, the present study proposes a hybrid vibration-
based structural health monitoring and damage detection methodology. The proposed
methodology combines the use of conventional accelerometers with computer vision,
thereby fusing the information from different sensors. This method leverages the increased
spatial resolution of computer vision in the sensitive regions of the structure, providing
virtually continuous information, while acceleration in other regions is measured using
conventional sensors. More specifically, damage parameters based on changes in mode
shapes have been well documented to be less reliable in support regions, while their perfor-
mance is much better in the mid-span [32,33]. Therefore, increasing the spatial resolution
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of the data collected near the abutments with computer vision while using conventional
sensors in other parts of the bridge can lead to significantly improved damage detection
and localization. As such, this method benefits from the strength of both approaches. As
an example, in Figure 1, the computer vision system provides continuous vibration data
for the highlighted portions, which are near the abutments of a bridge deck and are in the
camera’s area of sight, while conventional and sparsely distributed acceleration sensors
measure the vibrations at discrete locations along the rest of the bridge deck.

In the proposed method, a standard video camera is used to measure the displacement
and acceleration of a specific part of the bridge. The modal displacement in the part moni-
tored using computer vision provides continuous modal information, which is combined
with the modal displacement obtained from the conventional sparse measurement system
data. As such, the amount of modal information about the bridge increases at critical
locations and a better fit for a spline function can be achieved. Furthermore, the previously
mentioned smoothing effect of the spline fit can be eliminated in the region measured using
computer vision.

Figure 1. Proposed methodology illustrated on an isolated one-span bridge deck.

The proposed hybrid methodology [49] is tested using a numerical study to simulate
(i) ideal conditions, (ii) high levels of excitation with train crossings over a bridge, and
(iii) low levels of ambient vibration responses of a bridge combined with different levels
of noise. A simply-supported bridge model is generated using the Finite Element (FE)
method, then the acceleration signals obtained at the sensor locations are processed to
determine the modal properties of the bridge. The benchmark case simulates a conventional
vibration measurement system with low spatial resolution, whereas the hybrid monitoring
system has increased resolution near the supports, where conventional approaches are
known to struggle the most to detect and locate damage. A total of six case studies are
conducted with various damage scenarios and acceleration levels to assess the efficacy of the
proposed methodology.

2. Damage-Sensitive Features

This section briefly describes the vibration-based damage indicators that were devel-
oped in the early 1990s [33,50,51] and are widely used in vibration-based health monitoring.
The common practice in vibration-based damage detection studies is to measure the vi-
bration signals of the structure at discrete locations and employ the mode shapes and
damage-sensitive features presented below. Dynamic identification using the measured
signals provides modal information, such as the modal displacements at the measurement
locations. Then, the spatial resolution of the mode shapes is increased by fitting continuous
functions such as splines or polynomials to discrete measured values and interpolating
the area between them to cover the entire space. This procedure is necessary in order to
detect damage locations with higher accuracy, especially when the damage is in a narrow
region that is further away from the sensor location. However, the function fitted to the
discrete mode shape data often smooths the data, potentially concealing subtle changes in
the mode shape due to damage [33].
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In this study, we use three vibration-based damage indicators that are widely used in
the structural health monitoring literature [52]. Other methods based on pattern recognition
and novelty detection exist as well [53–55]; interested readers are referred to the reference
studies in [19,33] for a detailed review of these methods.

2.1. Mode Shape Curvature

For structures that can be represented with the Bernoulli–Euler formulation under
flexural actions, the curvature at a specific location x can be calculated using the moment
at that location, M(x), along with the flexural stiffness EI(x) of the beam cross-section. In
Equation (1), the curvature ν2(x) is

ν2 «
Mpxq

EI
(1)

where E is the modulus of elasticity of the material and I is the cross-sectional moment of
inertia. Equation (1) shows that the curvature is inversely proportional to the flexural stiffness
of the beam. Therefore, under the same loading conditions, damage in a given cross section
(i.e., reduction in flexural stiffness) increases the curvature at the location of the damage. In
this regard, changes in curvature can be tracked to detect and locate damage [50].

Mode shapes detected using Experimental or Operational Modal Analysis (EMA or
OMA) techniques are discrete values at sensor locations. The spatial resolution of the
detected mode shapes can be increased using continuous functions such as cubic spline
in order to improve the estimation of the location of possible damage. Subsequently, the
modal curvature of a beam at the discrete measurement points equally spaced at a distance
h can be approximated using the central difference theorem. Consequently, the second
derivative of the modal displacement at the degree of freedom (DOF) k of a mode shape Φ
can be calculated using Equation (2):

ν2pΦi,kq «
Φi,k´1 ´ 2Φi,k `Φi,k`1

h2 (2)

where ν2pΦi,kq is the curvature of the ith mode shape at the kth DOF. The difference between
the modal curvature of the possibly damaged state d and the healthy or undamaged state
u is defined as the Curvature Damage Index, or CDI, and can be used to detect, locate, and
eventually quantify any potential damage using the identified mode shapes

CDIk “

nModes
ÿ

i“1

|ν2pΦi,kq
d ´ ν2pΦi,kq

u|. (3)

2.2. Modal Strain Energy

Another damage index based on modal features is the modal strain energy, which can be
defined as the strain energy stored in a structure when it deforms purely in its mode-shape
pattern, based on the idea that the distribution of the strain energy throughout the structure
changes with damage. More specifically, when the stiffness of one segment of the structure
is reduced due to sustained damage, it can no longer absorb the same amount of energy as
when healthy [51]. This results in a deviation from the original strain energy distribution,
which can then be used to detect and locate any potential damage.

If a Bernoulli–Euler beam is divided into N subregions, then the energy stored in each
subregion j in the ith mode shape is provided by Equation (4a), while the total energy
stored in the entire beam can be computed using Equation (4b).

Ui,j “
1
2

ż aj`1

aj

pEIqjrν2i pxqs
2 dx (4a)

Ui “
1
2

ż L

0
EIrν2i pxqs

2 dx (4b)
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where aj and aj`1 are the start and end coordinates of subregion j and L is the length of the
entire beam.

Assuming that the subregions are small enough and flexural rigidity is constant in
the subregions, the fractional energy Fij, defined as the ratio of the energy stored in each
subregion j to the total strain energy stored in the entire beam, can be computed as follows:

Fij “
Ui,j

Ui
“

şaj`1
aj rν2i pxqs

2 dx
şL

0 rν
2
i pxqs

2 dx
(5)

Taking into account all identified modes, a damage index βij can then be defined for
each subsegment j and mode shape i of the beam as the ratio of the respective fractional
energies of the potentially damaged state d and healthy state u. As such, the strain energy-
based damage indicator β j can be defined as below by considering all identified mode
shapes [56].

β j “

řnModes
i“1 Fd

ij
řnModes

i“1 Fu
ij

(6)

2.3. Modal Flexibility

Flexibility is defined as the deformation of a structure corresponding to the associated
unit load applied at a specific degree of freedom. The flexibility matrix is the inverse of the
stiffness matrix, and is generally more straightforward to identify compared to the stiffness
matrix. The elements of the flexibility matrix Gij correspond to the displacement at DOF i
caused by a unit load applied at DOF j. The deformation pattern that a structure attains
when a unit load is applied at a specific DOF is provided by the associated column of the
flexibility matrix. Damage to a structure that reduces stiffness leads to an increase in the
flexibility of the structure. Damage detection using this method is based on computing
the modal flexibility matrix for the healthy and potentially damaged states of the structure
from the identified mode shapes using the following equation:

rGs “
nModes

ÿ

i“1

1
w2

i
rφsirφs

T
i (7)

The change in the flexibility matrix between the two states of the structure can then be
calculated as r∆Gs “ rGds ´ rGus. For each degree of freedom j, the change in the flexibility
matrix for that degree of freedom is defined as the maximum absolute value of the elements
in the jth column of the matrix ∆G:

maxj “ maxr∆Gs “ max|δGij| “ max|Gd
ij ´ Gu

ij| (8)

The quantity maxj, which is a measure of the change in flexibility between the two states of
the structure, can be used to detect and locate the damage. In other words, the column of
the ∆G matrix corresponding to the largest maxj shows the degree of freedom where the
damage is located.

2.4. Modified Modal Flexibility

An issue related to the modal flexibility method is that maxj represents the maximum
of the displacement differences for the two states of the beam. However, for the simply
supported beam considered here, the displacements are larger towards the middle of the
beam when a unit load is applied at a DOF, and are lower close to the supports. Therefore,
the damage index maxj is prone to missing damage near the supports, as the difference
between the two small values tends to remain small even for considerable levels of damage
near the supports. To alleviate this shortcoming, the damage index maxj calculated using
the flexibility method can be normalized using the maximum of the displacements created
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by a unit load at DOF j. In other words, maxj can be normalized by dividing it to the
maximum absolute value of each column of the flexibility matrix; we call this quantity the
“modified maxj”, represented by maxmj:

maxmj “ maxr∆Gsj{max|Gu
j |. (9)

3. Verification Study: Case I

In this case study, the damage-sensitive features are applied on a simply-supported
beam represented by a Bernoulli–Euler formulation which represents a hypothetical single-
span bridge structure. The modulus of elasticity of the beam and the moment of inertia of its
cross-section are 32.7 GPa and 5.47 m4, respectively. In the verification study, it is assumed
that the mode shapes acquired from an experimental campaign, where modal identification
is normally carried out using accelerations recorded by a set of accelerometers, are identical
to those obtained from the eigenvalue analysis of the model. Twelve sensors are located
at equal distances of 4.54 m across the span to simulate a conventional instrumentation
setup, as depicted in Figure 2a. The hybrid method proposed in this study enables the pro-
vision of spatially continuous information at the edges of the bridge. To approximate this
approach numerically, the bridge segment between Points 1 and 2 in Figure 2a, i.e., the first
segment, is divided into twenty pieces such that the modal displacements are measured at
an interval of 0.23 m along this segment (Figure 2b), simulating a case where the vibrations
and the associated mode shapes of the first 4.54 m of the beam are extracted using com-
puter vision algorithms [34,35]. Therefore, in the setup of the hybrid monitoring system,
31 sensor locations are taken into account, and more detailed information is obtained near
the abutment, where vibration-based damage detection methods conventionally strug-
gle [33]. On the other hand, a conventional sparsely-located sensor setup is used for the rest
of the beam, as the damage-sensitive parameters mentioned above have a much higher suc-
cess rate for detecting the damage located in this region. It should be noted that even denser
modal information can be achieved at the edges by using computer vision algorithms and
a sensor with higher resolution; however, in this study the total number of segments is lim-
ited to twenty for numerical efficiency. In addition, note that only the first half of the beam
is considered here for the hybrid monitoring application because of the symmetry of the
beam. In a real-life application, both edges of the bridge are assumed to be monitored using
computer-based algorithms.

In the presented verification study, the damage is simulated as a 10% reduction in the
bending stiffness and is concentrated at a length of 0.45 m near the abutment, as shown
by the part highlighted with pink in Figure 2c. The efficacy of the conventional sensor
setup (Figure 2a) and the proposed hybrid method (Figure 2b) when used together with
the mode shape-based damage parameters is evaluated to detect and locate damage. The
change in the structural frequencies due to the simulated damage is negligible, and the
first four vertical mode shapes are used to compute the damage-sensitive parameters. The
first four modal frequencies are determined as 1.75, 6.91, 14.40, and 26.04 Hz. Note that in
reality the identified modal parameters can be altered by environmental factors. Here, we
assume that the effects of such factors on modal properties have been eliminated, as this is
the common approach in damage detection studies.

Cubic splines are used to increase the spatial resolution of the data when sensors are
sparsely located. Here, damage-sensitive parameters are computed using both a conven-
tional and a hybrid setup. As such, the modal displacements and the associated damage-
sensitive parameters are calculated at 221 equidistant points (i.e., 220 equally long intervals)
for both sensor setups. Figure 3 shows the difference in the mode shapes (MS) obtained
using conventional and hybrid methods for the first and third modes. In addition, Figure 3
clearly represents the differences in the estimates of the mode shapes from the conventional
and hybrid approaches, which are larger for the third mode and much smaller for the first.
This results in an improved estimate of the damage-sensitive parameters, as depicted in
Figure 4 and explained further in the following.
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(a)

(b)

(c)
Figure 2. Measurement points of (a) the conventional monitoring system, (b) the hybrid monitoring
system, and (c) a rendered view of the FE model representing a typical bridge cross-section, the
refined first segment, and damage locations.

Figure 3. Example showing the difference in modal displacements between conventional and hybrid
measurements.
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(a) (b)

(c) (d)

Figure 4. Results of damage detection methods for Case I: (a) mode shape curvature, (b) modal strain
energy, (c) modal flexibility, and (d) modified modal flexibility.

Figure 4 presents the damage-sensitive parameters computed using both the conven-
tional sensor setup and the proposed hybrid methodology. All four damage-sensitive mea-
sures provide greatly improved performance when used in conjunction with the proposed
hybrid methodology in comparison with the conventional sparse sensor setup. For each of
the four damage-sensitive parameters, although damage can be arguably detected using the
conventional setup, the smoothing effect of the spline function prevents all four parameters
from correctly locating the damage. On the other hand, the damage-sensitive parameters
at the damaged location reach much higher values compared to their counterparts at the
undamaged locations when the proposed hybrid methodology is used. This difference,
which is especially visible for the modal curvature and modal strain energy parameters,
shows promise in avoiding the potential negative effects of measurement noise, which is
considered in the following section. Furthermore, the location of the damage can clearly
be identified with the proposed approach thanks to the increased spatial resolution of the
information provided by the computer vision methods close to the abutments.

Finally, Figure 4c clearly demonstrates the inferiority of the flexibility-based damage
index compared to the modal curvature and modal strain energy methods. This can be
attributed to the relatively low contribution of the higher modes to the flexibility-based
damage index, as these have higher modal displacements close to the abutments compared
to the first-mode shape. Further, as mentioned above, the flexibility method relies on non-
normalized modal displacements that are very small close to the abutments, leading to poor
performance in detecting and locating damage at these locations. In fact, normalizing the
difference in modal displacements between undamaged and damaged cases with that of the
undamaged case, i.e., by using the modified modal flexibility parameter proposed in this
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article, provides much improved performance in detecting and locating damage, particularly
when used in conjunction with the proposed hybrid monitoring approach (see Figure 4d).

It is intuitive that if the mode shapes present significant changes, then the possibility
of the presented damage detection methodologies capturing such changes is increased.
Therefore, we inspect the difference between the modal displacements of damaged and
healthy cases obtained using only the hybrid monitoring approach in Figure 5. It is clear that
the change in the modal displacements is the maximum in the damage interval for all modes.
Figure 5 provides significant insight in terms of the effect of the modes considered in the
damage detection analysis on the results. One such insight is into the relationship between
the location of the damage and the success of damage-sensitive features in detecting it.
The choice of the mode shapes to be included in calculating the damage sensitive features
affects the results significantly. For example, if the damage is located where the differences
in modal displacements are the largest for the fourth mode and this mode is not included in
the analysis (as in this example), then the probability of detecting and locating the damage
decreases. For simple structures, such as a single-span bridge, ad hoc selection of mode
shapes may lead to better results. For more complex structures, one option for weighing
the contribution of mode shapes to the results is to multiply their contribution by the modal
mass participation ratios corresponding to each mode.

Figure 5. Difference in the modal displacements of healthy and damaged states using only hybrid
measurements.

4. Case Studies

Having verified the feasibility of the proposed approach under ideal conditions in Case
I, i.e., where there is no measurement noise, the applicability of the proposed monitoring
strategy is investigated through the numerical simulation of measurement campaigns with
different sources of excitation. The acceleration response of the bridge under train crossings
and ambient vibrations are considered to simulate two common cases of operational modal
analysis that aim to identify the mode shapes from measured vibrations. SAP2000 finite
element software is used for the numerical simulations conducted in this study. Two cases
are simulated: i) the dynamic response of the bridge in damaged and healthy conditions is
computed under train crossing effects, and ii) three scenarios of ambient vibration recordings
are considered. Various levels of white noise are added to the computed acceleration response
at the sensor locations in order to simulate measurement noise. In all cases, the induced
damage is assumed to result in a 10% reduction in the bending stiffness of the beam.

4.1. Train Crossings

The modal properties of bridges can be obtained experimentally using their accelera-
tion response during train crossings [57–59]. The vehicle–bridge interaction, which affects
the dynamic response of both the vehicle and the bridge, can be modeled using various
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approaches [60,61]. In this study, the train action is modeled as a series of moving loads
that act on the bridge. The ICE-2 train is selected as the train model to represent a modern
passenger train. The configuration and axle distances for a typical ICE-2 train are shown
in Figure 6. The axle load used in the numerical analysis is 150 kN. Dynamic analyses
are performed for a speed of 180 km/h for two localized damage cases. In one case, the
damage is located at the same location as the verification study, whereas in the other case it
is located even closer to the support. Damage located between 0.23 and 0.68 m from the
support (Case II) or between 2.05 and 2.50 m from the support (Case III) are highlighted
in green and pink, respectively, in Figure 2c. The damping is modeled using Rayleigh
damping anchored at the first and third mode frequencies, and the damping ratio is set to
2%. The duration of the analysis is set to 40 s to ensure that both the forced vibration and
free vibration responses of the structure can be captured.

Figure 6. Axle distance and configuration for a typical ICE-2 train [62].

Acceleration responses captured at the sensor locations with both the conventional
and hybrid approaches are processed using the Frequency Domain Decomposition (FDD)
method [63] to estimate the structure’s modal frequencies and mode shapes at the discrete
sensor locations. The spatial resolution of the mode shapes is increased using cubic spline
functions for both the conventional and hybrid sensor setups. Figure 7 shows the recorded
acceleration for the undamaged case and the Fourier Amplitude Spectra (FAS) for the
sensor data in the hybrid monitoring setup. The first three modal frequencies are identified
as 1.75, 6.81, and 14.11 Hz. These three modes are used in damage detection, as the other
modal frequencies are above 25 Hz and generally very difficult to capture in real-life
measurement campaigns. No additional noise is considered in the vibration records in case
of train crossings, as train loads result in high-amplitude vibration, which renders the noise
negligible.
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Figure 7. (a) Time history of the bridge acceleration responses and (b) Fourier amplitude spectra of
the vibrations.

4.1.1. Damage Next to the Support: Case II

In this case, the damage is located between 0.23 and 0.68 m away from the left support,
and is represented as a 10% reduction in the elastic stiffness of the bridge girder. The damage
does not produce any noticeable changes in the identified frequencies. The results presented



Remote Sens. 2022, 14, 6054 11 of 20

in Figure 8 show that both the proposed hybrid methodology and the conventional sensor
setup can detect damage successfully in this scenario. However, the value of the damage
parameter at the location of the damage is much higher for the hybrid approach compared
to the undamaged parts of the bridge, leaving no doubt about the presence of damage. On
the other hand, for the conventional sensor setup, the value of the damage parameter at the
damage location is barely above the values at the undamaged regions of the bridge, and
fails to provide a clear picture of the presence or location of the damage.

(a)

(b)

(c)
Figure 8. Results of damage detection methods for Case II: (a) mode shape curvature, (b) modal
strain energy, and (c) modified modal flexibility.

4.1.2. Damage near the Support: Case III

In this scenario, the damage is located between 2.05 and 2.50 m from the left support,
and is represented as a 10% reduction in the elastic stiffness of the beam elements. The
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mode shapes are identified and their resolution increased using the same procedure as
in the previous case. The results presented in Figure 9 show that the proposed hybrid
procedure provides a very clear picture of damage and its location when used together
with the mode shape curvature and modal strain energy parameters. On the other hand,
the values of these damage parameters at the damaged location are very close to those at
the undamaged locations when the conventional sensor setup is used, creating doubt about
the presence of damage. Moreover, the conventional setup cannot accurately capture the
damage location correctly, as the damage is located in the middle between two sensors.
Instead, it predicts that the damage is at one of the sensor locations.

(a)

(b)

(c)
Figure 9. Results of damage detection methods for Case III: (a) mode shape curvature, (b) modal
strain energy, and (c) modified modal flexibility.
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The performance of the conventional and hybrid approaches is much closer to each
other when the modified flexibility damage parameter is used. First, the damage parameter
values obtained from both approaches are very similar to each other and provide a very
clear indication of the presence and location of the damage. However, the location of the
damage as estimated by both methods lacks precision, as shown in Figure 9c. When used
with the modified flexibility parameter, the conventional approach estimates the damage to
be located at the support. The hybrid approach, although it correctly predicts the damage
location, overestimates the length of the damaged portion.

4.2. Ambient Vibration

The OMA of bridges under ambient vibrations is arguably the most widely used
method for structural identification and damage detection of bridges. The response of the
structure to the ambient vibrations caused by a variety of actions such as wind and nearby
traffic is measured and processed to obtain the modal properties. In most of the system
identification methods used in OMA, the input is unknown and assumed to be stationary
white noise. To simulate such applications, Gaussian white noise acceleration with a total
duration of six hundred seconds is applied to the supports of the structure in the vertical
direction and the response is measured at the sensor locations with a sampling frequency
of 100 Hz. Figure 10 displays the bridge acceleration responses that are significantly lower
compared to the response during the train crossing (Figure 7a).

The response data are then processed using the FDD method to obtain the power
spectral density (PSD) graph presented in Figure 10 for the healthy bridge. Peaks corre-
sponding to the first and third modal frequencies are identified as 1.75 and 14.11 Hz from
the PSD, and the associated mode shapes are determined. Note that the second modal
frequency is not visible in the PSD, as the modal mass participation of the second mode is
zero due to the perfect symmetry of the beam; thus, the second mode does not contribute
to the numerical response. Therefore, only the first and third modes are used to calculate
damage-sensitive features when the ambient vibration response is used. For all cases in
this section, the damage is located between 2.05 and 2.50 m away from the left support and
is represented as a 10% reduction in the elastic stiffness of the beam elements.

(a) (b)

Figure 10. (a) Ambient vibration response measured at the sensor locations and (b) PSD graph of
vibration responses for Case VI-healthy bridge.

In OMA with ambient vibrations, noise levels are of great concern for the accuracy
of system identification algorithms due to the very low levels of vibration response of the
bridge, which accentuates the measurement noise. To investigate the sensitivity of the
proposed methodology to noise and compare its performance with conventional sensor
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setups in detecting and locating damage, the noise-free acceleration signal at each sensor
location is polluted with Gaussian noise for both the conventional setup and the hybrid
approach:

:u “ :u0 ` βγpmaxpabsp:u0qqq (10)

where :u0 is the noise-free acceleration record, :u is the noisy acceleration signal, β is a
parameter that determines the level of noise, and γ is a random number with a standard
normal distribution. Three cases, with the signals are contaminated by (i) 2% noise, (ii)
15% noise, and (iii) 30% noise, are considered here in order to account for low, moderate,
and high levels of noise, respectively. The signal-to-noise ratios (SNR) can be computed as
follows: (i) SNR=34 dB for 2% noise, (ii) SNR=16.5 dB for 15% noise, and (iii) SNR=10.5 dB
for 30% noise, using

SNR “ 20 log10p
1
β
q, (11)

where β is the noise level.

4.2.1. Low Noise: Case IV

In the case of low measurement noise, the results presented in Figure 11 demonstrate
that this level of noise does not impact the performance of the proposed hybrid method
in detecting and locating the damage when the mode shape curvature and modal strain
energy methods are used. As in the case of no noise (Figure 4), the hybrid approach can
clearly detect and locate the damage, while the conventional approach fails to locate the
damage and provides a much smaller damage index than the proposed hybrid approach.
On the other hand, the proposed normalized modal flexibility damage index is much
more prone to measurement noise, as the performance of both hybrid and conventional
approaches in locating damage declines significantly even for the low level of noise applied.
It can be stated with confidence that the addition of further noise would further reduce the
accuracy of the normalized modal flexibility parameter; therefore, this parameter is not
included in the discussion of higher levels of noise.

4.2.2. Moderate Noise: Case V

When the noise level increases from low (2%) to moderate (15%), the performance of
the conventional approach in detecting and locating damage decreases significantly for the
modal curvature damage index, as shown in Figure 12a. In addition to the left support,
which is close to the actual damage location, the damage index attains non-zero values at
the mid-span and close to 40 m from the left support, leading to uncertainty in damage
detection. Further, it renders correct location of the damage impossible. In addition, the
conventional method fails to correctly locate the damage when using the modal strain
energy parameter, as seen in Figure 12b. On the other hand, Figure 12 shows that the hybrid
approach can clearly detect the damage and locate it even with moderate noise levels by
using both the modal curvature and modal strain energy damage parameters, as the hybrid
methodology remains unaffected by the moderate noise level.
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(a)

(b)

(c)
Figure 11. Results of damage detection methods for Case IV (low noise): (a) mode shape curvature,
(b) modal strain energy, and (c) modified modal flexibility.
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(a)

(b)

Figure 12. Results of damage detection methods for Case V (moderate noise): (a) mode shape
curvature and (b) modal strain energy.

4.2.3. High Noise: Case VI

Figure 13 shows that the proposed hybrid methodology is able to clearly detect and
locate the damage even with high levels of measurement noise when used with either the
modal curvature or modal strain energy damage parameters. Recalling that the simulated
damage is minor, as it only leads to a 10% decrease in the flexural stiffness of a 0.45 m
strip of a 50 m long bridge, and the added level of noise is very high, as indicated by
the signal-noise-ratio of 10.5 dB, it can be stated that the proposed hybrid approach is
very robust against measurement noise even when detecting and locating low levels of
damage. However, the conventional sensor setup when used together with the modal
curvature damage index provides a very confusing picture and fails to detect and locate
the damage. Although the performance of the conventional approach increases when used
with the modal strain energy parameter, it remains inferior to the performance of the hybrid
approach and cannot locate the damage, as shown in Figure 13b.
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(a)

(b)

Figure 13. Results of damage detection methods for Case VI (high noise): (a) mode shape curvature
and (b) modal strain energy.

5. Conclusions

In this paper, we have proposed a hybrid monitoring approach based on data fusion
from conventional acceleration sensors and computer vision to detect and locate damage
in bridges. The efficacy of the proposed method compared to conventional sparse sensor
setups was investigated through numerical analyses of a 50-m-long simply-supported
bridge. The bridge was excited by two vibration sources of significantly different levels:
a passenger train crossing and ambient vibrations. The mode shapes of the bridge in
damaged and healthy states were identified from the data at the discrete sensor locations
using the FDD algorithm. It was assumed that the sensor used to simulate computer vision
provided vibration measurements at 21 discrete points with a distance of 0.23 m between
consecutive points, significantly increasing the spatial resolution of the data. Four damage
parameters were used to identify two damage scenarios simulated by reducing the flexural
stiffness of a 0.45-m strip of the bridge by 10%. Three different levels of measurement noise
were added to the ambient vibration measurements in order to investigate the robustness
of the proposed method to measurement noise.

The results indicate that the use of cameras at the ends of the bridge in conjunction
with traditional sensors in the middle of the bridge provides a very attractive alternative
for vibration-based structural health monitoring applications. Computer vision was able to
provide detailed and continuous information in the sensitive regions of the investigated
beam, and improved the mode shape estimates in comparison to those obtained from the
conventional health monitoring method using discrete sensor locations. When using the
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hybrid approach in which vibration data were gathered from computer vision sensors at
the ends of the bridge, the performance of both the mode shape curvature and modal strain
energy damage parameters increased significantly. On the other hand, these parameters
failed to detect and locate damage when based on a conventional sparse sensor setup for
damage close to the abutments. For all of the considered damage scenarios, excitation
sources, and noise levels, the hybrid methodology was able to clearly detect and locate
the damage using the modal curvature and modal strain energy parameters. On the other
hand, the same parameters provided much inferior estimates when used together with the
conventional sparse sensor setup. The proposed hybrid approach was proven to be very
robust against measurement noise, as the damage could be detected and located clearly
even with very high levels of measurement noise.

This study demonstrates the applicability and strong potential of the hybrid monitor-
ing system for the detection of bridge damage. A simply-supported bridge was chosen for
its ubiquitous presence, as it is arguably the most commonly observed and studied type of
bridge. Therefore, the hybrid monitoring approach was first tested on this bridge typology.
It should be noted that bridges can be much more complex, with several spans and different
boundary conditions, and the efficacy of the proposed method must be tested on such
complex bridges in future work. In addition to the assumptions and limitations stated
throughout the article, adequate consideration should be given to the uncertainties related
to the damage detection problem. They include, but are not restricted to, the modeling of
the investigated structure and its boundary conditions [64], variations in material proper-
ties and loading [65], and uncertainties in mode shape estimations [66]. Future research
will focus on the practical aspects of fusing the modal data obtained from heterogeneous
sources, i.e., the camera and conventional accelerometers. In the practical application of the
hybrid method, an acceleration sensor could be placed in the middle of the area monitored
with cameras and used to cross-validate the proposed method and conventional monitoring
by generating a common measurement point. Future studies will also include practical
applications in the laboratory and on existing bridges.
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