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Abstract: Islamabad is essentially the only well-planned city in Pakistan, but groundwater depletion
has become a serious issue there because of the rapid increase in population, poor water management,
and deforestation. The current water demand of the city is about 220 million gallons per day, with
the Capital Development Authority (CDA) providing up to 70 million gallons per day. The need for
water is mostly fulfilled through groundwater sources, such as water bores and commercial tube
wells. Hence, identifying recharge sites for natural aquifers is a significant component of groundwater
required to overcome the water crisis. Therefore, this study aims to identify potential sites for natural
aquifer recharge by using analytical hierarchy process (AHP), weighted linear combination (WLC),
and fuzzy logic methods. To achieve the stated objective, seven local influencing factors including soil,
slope, water table, population density, land use land cover (LULC), drainage density, and elevation
have been utilized in this study. AHP was utilized for the evaluation of the relative importance of
the above-mentioned factors, while fuzzy logic was applied for the standardization of these factors.
Finally, the AHP-WLC and fuzzy logic approaches were used to merge factor maps in order to identify
suitable sites for natural aquifer recharge in Islamabad City. Two different suitability maps were
constructed from both techniques, and on each of the resulting maps, the subregions were categorized
into five classes: not suitable, less suitable, moderate, suitable, and most suitable. Based on the
AHP-WLC results, 5% of the whole study area is deemed most suitable for natural aquifer recharge
(NAR), whereas from the fuzzy logic results, 10% of the study area is marked as most suitable. In
contrast, 37% and 32% of the whole study area were identified as suitable by the AHP-WLC and fuzzy
logic methods, respectively. While both techniques can obtain satisfactory outcomes, the suitability
map from fuzzy logic has produced more precise results. Hence, we propose to CDA-Islamabad here
different sites for recharge wells based on the results of fuzzy logic. As recommended by this study,
to date CDA has constructed twelve recharge wells.

Keywords: natural aquifer recharge; fuzzy logic; analytical hierarchy process; weighted linear
combination

1. Introduction

Pakistan is the 4th biggest groundwater puller in the world [1]. Its annual groundwater
withdrawal is assessed at 65 BCM (Billion Cubic Meter), and its yearly sustainable ground-
water assets are assessed at 55 BCM [1]. While focusing on the capital region of Islamabad,
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the scenario is not much different because of the increase in population, recorded as 805,235
in the 1998 census and 994,365 in the 2017 census [2]. However, the groundwater sources
are essentially the same as they were in the 1990s. This rapid increase in population has
resulted in overexploitation of groundwater resources. City groundwater is depleting at an
alarming rate of 1.7 m per year as a result of excessive withdrawal [3].

Natural aquifer recharge (NAR) site selection is an integral part of water resources
management. Therefore, delineation of NAR is one of the most crucial steps in water
resource management. Furthermore, timely and reliable NAR site information with respect
to its natural and spatial distribution is fundamental for best utilization of the above-
mentioned reasons. Scientists are encouraged to use Multi-Criteria Decision Making
(MCDM) techniques with integration of GIS for identification and selection of potential
NAR [4]. Different spatio-statistical techniques are used for water resource management [5].
Sarhadi et al. [6] developed an improved regression-based model in order to address the
biases in raw GCMs and to capture the non-linearity between hydroclimate predictions
and atmospheric projection. However, more flexible and powerful approaches are needed
to address the NAR potential zonation.

Groundwater is the most basic source of fresh water in the world and it plays an
important part in the hydrological cycle, as well as in preserving the aquatic ecosystem and
human well-being. Groundwater recharge occurs when water travels beneath the ground
and infiltrates the saturated zones. Its availability mainly depends on precipitation and
recharge systems [7].

Factors such as rapid population growth, climate change, deforestation, urbanization,
and poor groundwater management policies have contributed to the depletion of ground-
water [8]. Multiple studies have been performed for groundwater recharge by utilizing GIS
techniques, especially Multi Criteria Decision Making (MCD), which includes an analytical
hierarchy process (AHP) and fuzzy logic [9]. The MCDM techniques assist decision makers
in solving complex problems where multiple conflict criteria are involved and must be
evaluated. They are robust, cost effective, responsive, and powerful tools that can be used
in many circumstances, such as certainty or uncertainty evaluations to analyze a problem
in a scientific manner [10]. Although there are several methods to explore groundwater
resources—such as drilling, or hydrological and geological methods—all of them require
considerable time, money, expertise, and resources. However, the use of remote sensing
(RS) and Geographic information system (GIS) techniques has proved to be less expen-
sive, more responsive, and more convenient for suitable site selection for groundwater
recharge [11]. Based on RS and GIS, methods like AHP, multi-criteria decision-making
(MCDM), and fuzzy logic are developed, and such methods have been relatively efficient
for appropriate groundwater recharge site zones [11]. However, the identification of natural
aquifer recharge (NAR) sites via AHP, MCDM, and fuzzy logic approaches is relatively
challenging as it involves several factors, such as soil types, land use land cover (LULC),
drainage density, slope, water table, lithology, and geological structure [4,8,12–14]. To
tackle the challenges of natural aquifer recharge, many researchers have worked on further
developing approaches based on GIS, RS, and AHP in order to achieve a novel strategy for
natural aquifer recharge potential sites. In their research, they incorporate factors such as
source water quality, distance to canal, aquifer thickness, groundwater quality, distance to
sensitive areas, and soil quality [14].

Shao et al. [13] also utilized AHP, which is an application of the MCDM method for
locating acceptable recharging sites by incorporating national datasets of slopes, lithology,
land use, drainage density, and soil drainage. Zghibi et al. [15] carried out research on
the Korba aquifer in northeastern Tunisia in order to mitigate groundwater decline by
incorporating AHP with multiple influencing factors—such as slope, lithology, land use
land cover, geomorphology, lineament density, rainfall, soil types, and drainage density—to
map groundwater recharge zones in Tunisia. Al-Shammari et al. [16] integrated GIS and
RS techniques by adopting MCDM to identify aquifer recharge sites and cost-effective
structures for groundwater recharge. They incorporated factors such as drainage, runoff,
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groundwater depth, slope, land use land cover, soil texture, and geology for their research.
Khan et al. [3] delineated locations that have the potential to be used for artificial ground-
water recharge in the Yamuna River basin (India) by incorporating the AHP model in the
GIS environment to determine potential sites for recharge. They utilized different data
sources and Landsat-8 images for different parameters as per their roles in groundwater
recharge. In addition, Xu et al. [4] constructed a technique based on GIS and MCDM
to identify potential sites for artificial recharge in China. Moreover, they incorporated
factors such as source water quality, distance to canal, drainage density, aquifer hydraulic
conductivity, groundwater depth, distance to sensitive areas, and soil quality in their
analysis. Alikhanov et al. [17] performed a study for assessment of influencing factors
on groundwater potential in zones of Uzbekistan by combining GIS and remote sensing
technologies. Kumar et al. [18] incorporated RS and GIS techniques by using fuzzy logic
and analytical hierarchical process to delineate groundwater recharge sites and concluded
that geographic information systems in combination with remote sensing constitutes the
best approach for results that are cost effective, less time consuming, and more responsive.
Arshad et al. [8] carried out a study in Punjab (Pakistan) for potential recharge zones
based on AHP and the probability frequency ratio technique. They assigned weights to
different thematic layers—such as geomorphology, rainfall, depth to water, aquifer media,
topography, soil media, land use land cover, and hydraulic conductivity—based on the
literature and overlaid the maps.

Based on the review of these previous extensive studies, it has been pointed out that
there is still a reasonable, but not followed, approach for the identification of natural aquifer
recharge (NAR) suitable sites, which is to integrate GIS, RS, and MCDA altogether [19].
For Islamabad to overcome the groundwater crisis in upcoming years, emphasis should
be given to effective management strategies based on real-life scenarios, keeping in view
the field reality and water demand for the city. Hence, focused on this critical scenario in
Islamabad, this study has aimed to provide an effective and reality-based spatial insight for
efficient potential sites for natural aquifer recharge in order to overcome the water crisis and
to enhance the prospective water table. In order to identify potential sites for natural aquifer
recharge, we have combined and utilized AHP, weighted linear combination (WLC), and
fuzzy logic methods. This study compared several GIS-based integrated methodologies,
including AHP, fuzzy logic, and WLC methods, using a multi-criteria decision-making
methodology to remove the inherent disadvantages associated with each of the above
methods. The proposed technique is novel because the biasedness stemming from expert
judgment will be removed by the AHP method, while fuzzy set theory will be used to
remove the uncertainty and inconsistency associated with the data and factors.

2. Material and Methods
2.1. Study Area

Islamabad, the Federal Capital of Pakistan, is in the center of the Margalla Hills and
Rawalpindi, with a total area of 906 km2. It is geographically located in the northwest of
the country on the Potohar Plateau between 33◦28′01”N and 33◦48′36”N and 72◦48′36”E–
73◦24′00”E [20], as shown in Figure 1. Islamabad City is partitioned into five major zones,
which are in turn further divided into sectors. Zone Four is the largest residential zone
in the area, whereas Zone I is the most developed. Each residential sector is designated
by an alphabet letter and a number, and it spans an area of nearly 2 km × 2 km. The
urban area of Islamabad is of 220.15 km2, the rural area 466.20 km2, and the parking area is
220.15 km2 [21]. From a hydro-geological standpoint, Islamabad sits in the Soan River basin.
Two major rivers (Kurang and Soan), four perennial streams (Gumrah Kas, Bedarwali Kas,
Tanawala Kas, and Lei Nala), and three reservoirs (Khanpur Dams, Simili, and Rawal) all
flow through this area. The residents of Islamabad depend mainly on groundwater, and
on surface water as well. The major surface water source is Simply Dam, while the rest
of the water demand is fulfilled via public tube wells installed at various locations on the
premises of Islamabad.



Remote Sens. 2022, 14, 6051 4 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 27 
 

 

km2 [21]. From a hydro-geological standpoint, Islamabad sits in the Soan River basin. Two 
major rivers (Kurang and Soan), four perennial streams (Gumrah Kas, Bedarwali Kas, 
Tanawala Kas, and Lei Nala), and three reservoirs (Khanpur Dams, Simili, and Rawal) all 
flow through this area. The residents of Islamabad depend mainly on groundwater, and 
on surface water as well. The major surface water source is Simply Dam, while the rest of 
the water demand is fulfilled via public tube wells installed at various locations on the 
premises of Islamabad. 

 
Figure 1. Location of the study area (Islamabad). 

Driven by changes in the climate over the last couple of years, the inflow of water to 
Simply Dam has decreased because of over-extraction of water from the ground through 
tube wells, which has in turn resulted in a decrease in the groundwater table [21]. Islam-
abad lies at an altitude ranging from 360 to 1538 m from mean sea level. There are four 
kinds of main sources of water supply to Islamabad: streams, springs, reservoirs, and 
groundwater. The Capital Development Authority (CDA) has installed approximately 200 
tube wells, which are used to supply water to Islamabad. 

2.2. Data Sources 
The selection of suitable sites for natural aquifer recharge (NAR) is the main factor in 

the evaluation of hydro resources. Other local influencing factors concern various differ-
ent perspectives, such as topographic, environmental, technical, and economic [7,12]. The 
selection of factors is an important stage for recharge site identification [22,23]. A Digital 
Elevation Model (DEM) with a 12.5-m resolution was downloaded from the Alaska Satel-
lite Facility (ASF) website https://asf.alaska.edu/ on 23 March 2021, and was further uti-
lized to generate thematic maps, such as for slope, drainage density, streams, and linea-
ment density. Furthermore, Sentinal-2B featuring a spatial resolution of 10 m was utilized 

Figure 1. Location of the study area (Islamabad).

Driven by changes in the climate over the last couple of years, the inflow of water to
Simply Dam has decreased because of over-extraction of water from the ground through
tube wells, which has in turn resulted in a decrease in the groundwater table [21]. Islamabad
lies at an altitude ranging from 360 to 1538 m from mean sea level. There are four kinds of
main sources of water supply to Islamabad: streams, springs, reservoirs, and groundwater.
The Capital Development Authority (CDA) has installed approximately 200 tube wells,
which are used to supply water to Islamabad.

2.2. Data Sources

The selection of suitable sites for natural aquifer recharge (NAR) is the main factor in
the evaluation of hydro resources. Other local influencing factors concern various different
perspectives, such as topographic, environmental, technical, and economic [7,12]. The
selection of factors is an important stage for recharge site identification [22,23]. A Digital
Elevation Model (DEM) with a 12.5-m resolution was downloaded from the Alaska Satellite
Facility (ASF) website https://asf.alaska.edu/ on 23 March 2021, and was further utilized
to generate thematic maps, such as for slope, drainage density, streams, and lineament
density. Furthermore, Sentinal-2B featuring a spatial resolution of 10 m was utilized and
processed in a GIS environment for land use on the land cover map. Additionally, a field
survey was performed to obtain groundwater table data for which the CDA tube wells data
were also collected. The data of soil types were collected by assembling an ensemble of soil
samples from the field, and sieve analysis along with hydrometer analysis were performed
to extract soil types in Geotech Lab NICE. The rest of the soil data were collected from
the CDA soil laboratory. Islamabad population data [2] were obtained from the Pakistan
Bureau of Statistics. Table 1 shows the list of factors for this study area, along with the
sources.

https://asf.alaska.edu/
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Table 1. List of factors used and their data sources.

Factors Sources

LULC Sentinal-2B
Population Density Pakistan Bureau of Statistics

Water Table CDA, Field Survey
Drainage Density DEM (ASF)

Slope DEM (ASF)
Soil Types Lab NICE, CDA
Elevation DEM (ASF)

In the consideration of the abovementioned factors, special focus has been given to
their effectiveness for the research region [5]. The factors were considered based on the
level of significance to the recharge and extensive literature review. The following seven
factors were selected for this research: land use land cover (LULC), drainage density (DD),
slope, population density (PD), water table (WT), soil types, and elevation (Table 1).

The above-selected factors have already been widely considered for groundwater
recharge potential sites in various studies [13,24–29], and they were chosen due to their
local influence and the nature of the study area, as Islamabad has a complex natural terrain.

2.3. Preparation of Thematic Maps

Thematic maps for drainage density, slope, water table, soil, population density, land
use land cover, and elevation were constructed from satellite and conventional data (Table 1)
by using ArcMap 10.5. For the preparation of slope maps, the Alaska satellite facility (ASF)
DEM with a 12.5-m resolution was processed in ArcMap 10.5. By using the same DEM,
first streams and drainage lines were obtained, and subsequently drainage density was
computed in a GIS environment.

To develop the soil map for the study area, 400 soil samples were processed first in
the soil laboratory to find out the soil types in sieves, followed by hydrometer analyses of
the soil samples. The data were then further processed in ArcMap to generate a thematic
map of the soil. The map of population density for the study area was utilized to generate
a thematic map for the study area. The thematic map of the water table for natural aquifer
recharge sites was constructed using the observations from 170 CDA tube wells. Tube
wells data were converted into a spatial map through the kriging method in ArcMap 10.5.
A land useland cover map was produced by utilizing Sentinel-2B based on supervised
classification. Seven influencing factors were selected for this study area and their thematic
map was prepared in ArcMap 10.5. Furthermore, they were reclassified, ranked, and
assigned with weights (based on the AHP).

2.3.1. Land Use and Land Cover

Natural aquifer recharge is controlled to a large extent by and use land cover (LULC).
In particular, Watershed is significantly influenced by land use land cover for groundwater
potential zones [23]. Land use land cover map was prepared by utilizing Sentinel 2B
image in ArcMap through supervised classification. Vegetation and agricultural lands
allow more infiltration because of pore spaces that can catch and hold water and facilitate
water percolation. Therefore, areas covered with vegetation and agricultural area were
assigned higher weights for recharge. In contrast, barren land and built-up areas are
deemed unsuitable for recharge due to high runoff potentials; hence, they were given
lower weights and ranks [15]. The sites on the land use land cover map were classified
into six groups (Figure 2a), namely agricultural land, waterbody, built-up area, barren
land, vegetation, and parks. Each class was assigned weights and ranked according to its
expected performance for recharge sites.
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2.3.2. Soil Types

Soil types also have an important impact on natural aquifer recharge. The better the
soil quality, the better the result for recharge will be [4]. A soil map was constructed based
on analysis of 400 soil sample from various locations in the study area in order to achieve
better interpolation results. Soil types play a key role in percolation and infiltration [15].
The soil map for the study area is divided into five classes based on their permeability ratio:
gravely clay, sandy clay, silty clay, low plasticity clay, and lean clay (Figure 2b). The gravely
and sandy types of clay have high degrees of infiltration and, therefore, were given more
weight, whereas low plasticity and lean clay bear low infiltration and, consequently, were
given the lowest weighting for recharge.

2.3.3. Water Table

Water table (W) depth is the altitude of the top of the water in the aquifer [30]. Many
researchers have adopted water table depth as an indicator for the evaluation of ground-
water storage capacity [4]. The study area groundwater depth varied from 15 m to 132 m.
Sites on the water table map were reclassified into five groups: (1) <30 m, (2) 31–50 m,
(3) 51–75 m, (4) 76–100 m, and (5) 101–132 m (Figure 2c). The higher the depth of the water
table renders, the higher the chance of storage capacity or percolation of water through
soil pore spaces into the aquifer. In contrast, in areas with less water table depth, soil pore
spaces are essentially fully saturated, thus there is very little chance for water to percolate
into the aquifer.

2.3.4. Elevation

Elevation is yet another main factor that plays a critical role in locating potential
natural aquifer recharge sites. The relation of elevation with groundwater recharge is
always inverse proportional. The higher the elevation is, the lower the chances of recharge
are, because water flows naturally towards lower elevation areas. Conversely, the lower
the elevation is, the higher the chances of infiltration for recharge are [31]. The elevation
map was prepared by utilizing 12.5-m resolution DEM.

The range of elevation has been divided into five classes based on the extent of
elevation and the corresponding degree in infiltration: (1) 360–494 m, (2) 496–590 m,
(3) 697–707 m, (4) 768–908 m, and (5) 999–1538 m (Figure 2d). In this study area, places
having high elevations are assigned less weighting and lower ranks because of their lower
significance for recharge, whereas areas with low elevations are given more weighting due
to their stronger potential for recharge.

2.3.5. Drainage Density

Many researchers have incorporated drainage density into their toolboxes for the
determination of potential recharge sites [4,30,32]. Low drainage density areas are covered
mostly with high vegetation, which is considered very good for permeability and porosity
and bears high infiltration capacity. In contrast, areas with high drainage density generally
have less recharge rate [4]. Higher drainage density results in higher runoff, whereas lower
drainage density results in lower runoff and likely more chances of recharge [31]. Drainage
density is yet another key component that controls the passage of water and the recharge
rate. The drainage density is the amount of a watershed that is drained by a stream-channel,
and it Drainage density is influenced by several factors, such as the infiltration capacity,
vegetation, type of upper surface over the land, and climate conditions [15]. The sites on
the drainage density map have been categorized into five classes: (1) 0–0.81 km2, (2) 0.82–
1.12 km2, (3) 1.13–1.25 km2, (4) 1.26–1.56 km2, and (5) 1.57–2.37 km2. Higher priority and
ranks were assigned to areas with lower drainage density (Figure 2e).

2.3.6. Slope

Slopes directly influence the runoff and infiltration process [4]. A slope map was
prepared by utilizing DEM having a 12.5-m resolution for the study area in ArcMap 10.5.
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Slopes always imply the capability for groundwater recharge because where the land
has a gentle slope, it will exhibit stronger effects for recharge and high infiltration for
groundwater recharge as a result of low runoff. In contrast, areas with steep slopes bear
low permeability and, thus, a lesser extent of recharge [33]. A steep slope area is normally
associated with hilly and mountainous geography. Based on weights and ranks, sites on
the slope map were divided into five classes: (1) 0◦–2◦ (2) 2◦–10◦ (3) 10◦–15◦ (4) 15◦–30◦,
and (5) >30◦ (Figure 2f).

2.3.7. Population Density

In general, the larger the population is, the more interferences and overexploitation of
groundwater resources there are [34]. Population density is not just a significant factor, but
it also plays an important role in the decrease of groundwater resources because population
growth will limit the amount of available water per person. Population density has an
inversely proportional relationship with groundwater recharge [35]. The findings have also
shown that population density is related to the accessibility of groundwater watersheds [22].
The population density map has been incorporated into this study as a new dimension as
compared to existing methodologies for natural aquifer recharge potential sites. Population
densities were calculated by dividing the total number of people living in the aquifer
area. The map was prepared by incorporating the census data of Islamabad from 2017
(Figure 3), which led to dividing the sites into five classes: (1) 0–500 person per km2,
(2) 5001–1000 person per km2, (3) 1001–2000 person per km2, (4) 2001–3000 person per km2,
and (5) 3001–40,062 person per km2.
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2.4. Methodological Overview

Figure 4 describes the methodology adopted in this study for the identification of
natural aquifer recharge sites based on multi-criteria decision-making techniques such as
AHP, fuzzy logic, and WLC. Figure 4 consists of four stages, as described below.
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In the first stage, seven influencing factors for recharge zones were selected.
The second stage consists of data preprocessing and the generation of thematic maps

in the ArcGIS environment.
The third stage is where the AHP tool was utilized for weight assignment and the

normalization of weights. Selected thematic maps were reclassified into five classes (based
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on their suitability for aquifer recharge) and each class was assigned weights based on its
significance and the corresponding consequences for recharge sites. After the determination
of the significance of the local factors, fuzzy logic technique was utilized to standardize
the factor maps. All layers were combined using AHP-WLC and fuzzy overlay, and the
comparison between them was performed by using suitability index maps for natural
aquifer recharge sites.

The fourth stage consists of result validation and execution of the results.

3. Results
3.1. Analytical Hierarchy Process (AHP)

The analytical hierarchy process emerged as one of the most significant approaches in
decision making in various parameters, such as site selection, land use allocation, and solid
waste management [36]. AHP is a widely proven technique for decision making that is
used for pair-wise comparisons of factors to assess and rank their importance level [32]. In
this study, the AHP procedure suggested by Saaty (1980) [37] has been used to determine
the weights of the selected factors for the identification of recharge sites. To represent the
evaluation of relative importance from pairwise factor comparisons in the first step (a), we
constructed a square matrix in which each factor is represented by a specified number, and
then, by comparing the relative significance between two factors, weights were assigned
according to the factor-importance based on the AHP scale (Table 2).

Table 2. Thomas Saaty 1–9 Scale for AHP Pairwise Comparison.

Scale Inverse Value Decimal Value Description of Preferences

1 1/1 1.000 Equal Importance
2 1/2 0.500 Equally to Moderate
3 1/3 0.333 Moderate Importance
4 1/4 0.250 Moderately to Strong
5 1/5 0.200 Strong Importance
6 1/6 0.167 Strongly to Very Strong
7 1/7 0.143 Very Strong Importance
8 1/8 0.125 Very Strongly to Extreme
9 1/9 0.111 Extreme Importance

Land use land cover (LULC) plays an important role in the identification of recharge
sites, and therefore was placed in the first-row and, correspondingly, the first column of the
matrix. The soil was placed in the second position in the pairwise comparison matrix due
to the significant influence of its infiltration and permeability volume on natural aquifer
recharge. The water table was assigned to the third position as it is the main factor on which
the whole study was performed to delineate suitable sites. Elevation was placed in the
fourth position as it plays an important role in controlling runoff speed and infiltration. The
fifth position was allocated to the drainage density as it can reflect various other influencing
factors, such as the streams order and lineament density. The slope was placed at the sixth
position as it controlled the density of the water that reaches the Earth’s surface and finally
percolates into the ground. The population density was assigned the seventh, i.e., the least
important, place as it has less direct impact on groundwater recharge compared with other
factors that are utilized in the investigation for suitable sites (Table 3).
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Table 3. Pair-wise comparison matrix.

Factors Soil WT LULC DD Slope Elevation PD

Soil 1 1 1/5 3 5 3 5
WT 1 1 1 2 3 3 5

LULC 5 1 1 2 3 3 5
DD 1/3 1/2 1/2 1 2 1/3 2

Slope 1/5 1/3 1/3 1/2 1 1 3
Elevation 1/3 1/3 1/3 3 1 1 3

PD 1/5 1/5 1/5 1/2 1/3 1/3 1

In this study, relative priority is evaluated in a scale from 1 to 5 (equal importance to
strong importance) to reflect relative importance and to rank the influence of each factor.
The reason for using a scale up to 5 is mainly its similarity with the scale from 1 to 5 adopted
for the weighted overlay tool during analysis in ArcMap [13]. Another reason to maintain
the current priority values (1–5) is that the ambiguity and imprecision of the existing data
and predetermined verbal judgments of people make it rather difficult to further refine
numerical values for the assessment of the factors.

(b) In the second step of AHP, relative weight for each factor has been calculated by
computing an eigenvector. In this case, the eigenvector has been calculated by dividing
the individual column values by the column sum of the normalized pairwise comparisons
matrix (Table 4) then averaging the row value.

Table 4. Normalized pairwise comparison matrix.

Factors Soil WT LULC DD Slope Elevation PD Eigen Vector Factor Influence %

Soil 0.12 0.23 0.06 0.25 0.33 0.26 0.21 0.21 20.7%
WT 0.12 0.23 0.28 0.17 0.20 0.26 0.21 0.21 20.9%

LULC 0.62 0.23 0.28 0.17 0.20 0.26 0.21 0.28 28.0%
DD 0.04 0.11 0.14 0.08 0.13 0.03 0.08 0.09 8.9%

Slope 0.02 0.08 0.09 0.04 0.07 0.09 0.13 0.07 7.3%
Elevation 0.04 0.08 0.09 0.25 0.07 0.09 0.13 0.11 10.5%

PD 0.02 0.02 0.02 0.06 0.04 0.04 0.04 0.04 3.7%
Total Effect 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100

(c) The calculation of the consistency ratio was performed through the principal
eigenvalue. The principal eigenvalue is defined as the sum of the eigenvalues. The
consistency of the comparison matrix is dependent on the value of the principal eigenvalue
as it should be equal to or greater than several selected factors (Table 5).

Table 5. Consistency Ratio Matrix.

Factors Soil WT LULC DD Slope Elevation PD Weighted Sum λmax

Soil 0.21 0.21 0.06 0.27 0.37 0.32 0.19 1.61 7.75
WT 0.21 0.21 0.28 0.18 0.22 0.32 0.19 1.59 7.64

LULC 1.04 0.21 0.28 0.18 0.22 0.32 0.19 2.42 8.67
DD 0.07 0.10 0.14 0.09 0.15 0.04 0.07 0.66 7.41

Slope 0.04 0.07 0.09 0.04 0.07 0.11 0.11 0.54 7.36
Elevation 0.07 0.07 0.09 0.27 0.07 0.11 0.11 0.79 7.49

PD 0.04 0.04 0.06 0.04 0.02 0.04 0.04 0.28 7.53

(d) Finalizing the overall weight of each factor was based on their influence on recharge
sites, as shown in table in Section 3.2. A flow chart diagram is shown in (Figure 5) that
describes the entire procedure, adopting the criterion that the weight and consistency ratio
test should return a value equal to or less than 0.1.
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An Excel spreadsheet was used to evaluate the consistency index as defined in
Equation (1) and the consistency ratio as in Equation (2), and the results are shown in
table in Section 3.2.

CI =
(λmax− n)
(n− 1)

(1)

where CI is the consistency index; n is the number of factors selected for the research, which
was seven in our case; and λmax is the value of principal eigenvalue, which is obtained
by taking the average across, as shown in (Table 5). The λ value should be greater than or
equal to several factors incorporated in the study.

CR =
(CI)
(RI)

(2)

where CR is a consistency ratio and RI is a random number pre-defined by Professor Saaty
in 1980 against each matrix size. If CR is greater than 0.10, its mean weights assigned will
be inconsistent, and hence it will need to be revised. A CR value less than 0.10 represents
good consistency, and hence weights assigned are deemed acceptable for further analysis.
In this study, the resulting CR value that was acquired by assigning the weights is 0.087,
which is acceptable, and, in addition, the results are also agreeable. CI is the consistency
index, whereas RI is a random index whose value depends on several factors incorporated
in research, as shown in the random index table. Finally, all factors were reclassified
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(standardized) into five classes. Ranks were assigned to sites on reclassified maps from 1 to
5 classes: (1) not suitable, (2) less suitable, (3) moderate, (4) suitable, (5) most suitable, as
shown in (Table 6).

Table 6. Suitability ranks for Sub-criteria of selected maps.

Layers Category Suitability Values Suitability Ranking

LULC Agriculture land Moderate 3
Water Not Suitable 1
Bulit Up area Not Suitable 1
Barren Land Moderate 4
Low Vegetation Suitable 4
High vegetation Most Suitable 5
Parks Most Suitable 5

Soil Gravelly Clay Most Suitable 5
Sandy Clay Suitable 4
Silty Clay Moderate 3
Low Plasticity Clay Less Suitable 2
Lean Clay Not Suitable 1

Water Table Up to 30 Not Suitable 1
30–50 Less Suitable 2
50–75 Moderate 3
75–100 Suitable 4
Above 100 Most Suitable 5

Drainage Density (Per
Km2)

00–0.8 Most Suitable 5
0.8–1.12 Suitable 4
1.12–1.25 Moderate 3
1.25–1.56 Less Suitable 2
Above 1.56 Not Suitable 1

Slope (Degree) 0◦–2◦ Suitable 4
2◦–10◦ Most Suitable 5
10◦–15◦ Moderate 3
15◦–30◦ Less Suitable 2
Above 30◦ Not Suitable 1

Population Density
(Per Km2) Below 500 Most Suitable 5

501–1000 Suitable 4
1001–2000 Moderate 3
2001–3000 Less Suitable 2

Elevation (m) Above 3000 Not Suitable 1
360–494 Most Suitable 5
495–596 Suitable 4
597–767 Moderate 3
768–998 Less Suitable 2
999–1538 Not Suitable 1

The result from a comparison matrix shows that the maximum lambda (λmax) was
found to be 7.69, which is greater than the selected number of factors and thus demonstrates
a reasonable range. The values of the consistency index and of the random index were
observed at 0.12 and 1.32, respectively. In addition, the value of the consistency ratio was
0.087, which is fewer than 0.1. Hence, according to our statistical hypothesis, it validates
the consistency of calculated weights (Table 7). Furthermore, the weights for the factors in
the comparison matrix reveal that the influence values for the LULC (28%) is the highest
among all selected factors. Furthermore, the priority values for soil (21%), water table
(21%), elevation (10%), drainage density (9%), slope (7%), and population density (4%)
were found and put in order.
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Table 7. Final weights and consistency measurement of factors using AHP.

S/N Factor Weights Rank Lambda Consistency
Index & RI

Consistency
Ratio

1 LULC 28% 1 7.69 0.12, 1.32 0.087 < 0.1
acceptable

2 Soil 21% 2

3 Water
Table 21% 3

4 Elevation 10% 4

5 Drainage
Density 9% 5

6 Slope 7% 6

7 Population
Density 4% 7

3.2. Fuzzy Logic

Fuzzy logic is a useful method that has been utilized in artificial recharge informa-
tion [38]. In fuzzy logic, the individual class of each factor on the map is defined in a distinct
way from those mentioned before and demonstrates a continuous degree of membership.
Members of a fuzzy set are normally described by a number between the absolute true
(1) and the absolute false (0), which can be viewed as neither true nor false, but varying
in a continuous scale from 0 (non-membership) to 1(full-membership). Compared with
Boolean logic, usually there is no clean-cut certainty occurring in fuzzy logic [39]. Each
class of an individual factor map is defined as per its degree of membership in a range of 0
to 1. Several different operations may be utilized to combine the membership values of
each factor map, such as fuzzy OR, fuzzy algebra, fuzzy gamma, fuzzy AND, and fuzzy
algebra sum [38].

Fuzzy logic normally works on the basis of two basic principles: in the first step maps
are classified by comparing them with each other based on their importance, and in the
second step classes are assigned weights between 0 to 1. As there are not any practical
constraints for the choice of the membership value of fuzzy logic, there are a variety of
operations that can be employed to assign membership value to the classes, such as fuzzy
AND, fuzzy OR, fuzzy algorithm, fuzzy gamma, and fuzzy algebra. In this research, the
fuzzification algorithm is used because of its high sensitivity in appointing natural recharge
areas [38].

Fuzzy logic structure mainly contains in several steps. First, fuzzification of crisp
values is performed in the domain of fuzzy logic and rules are defined. In the next step,
the fuzzy inference engine implements fuzzified inputs as per pre-defined rules, and in
the last step, defuzzification is performed for the fuzzy output values by conversion into
crisp values [40]. There are multiple types of fuzzy membership functions, but we utilized
the s-shaped, j-shaped, linear, and user-defined membership function for our research, as
shown in Figure 6. These membership functions depend on control points like C1 and C2.
Water table C1 equal to zero means unsuitable, while C2 equal to 1 means most suitable for
recharge.



Remote Sens. 2022, 14, 6051 15 of 26Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 27 
 

 

 
Figure 6. Fuzzy membership functions for factor standardization. 

We interpolate values between any two control points in a user-defined function. In 
this study, the value of the user-defined function is established using expert judgement, 
factor influences on recharge, and a thorough literature analysis. The primary character-
istic of fuzzy algorithms is sigmoidal, with big or small, monotonically increasing, or de-
creasing functions that are used to represent values in fuzzy set theories. The example of 
the above-mentioned s—shaped decreasing algorithm is shown in Equation (3). The fuzzy 
membership algorithm for increasing is defined in Equation (4). 𝜇 11 Χ𝑓2 𝑓1 (3)

𝜇 11 𝛸𝑓2 𝑓1 (4)

In the above-mentioned equations μ = fuzzy membership function; x = feature; and 
f1 = spread of the transition from a membership value of 1 to 0 and f2 = midpoint, where 
the membership value is 0.5. 

In a fuzzy logic system, fuzzification is performed by converting crisp values into a 
degree of membership function by using commonly adopted fuzzy membership func-
tions, such as s-shaped, j-shaped, and linear with control points to assign values of suita-
bility. In the case of linear membership type, control point (a) is used to denote the situa-
tions less suitable for recharge, while control point (b) is used to denote the situations 
considered highly suitable. In this study, higher values were assigned to the layers that 
correspond to high recharge and lower values in-between 0 to 1 (Table 8) were assigned 
to sites that were less suitable for recharge. Moreover, in the present study, fuzzy logic 
was applied to construct standardized factors maps (Figure 7). 

Table 8. Fuzzy set memberships function with controls points used for natural aquifer recharge. 

Layers Subcategory Control Points (a) Control Points (b) Fuzzy Membership Value/Type 
LULC Agriculture Land  0.5 
 Water User Define 0 
 Built Up Area  0 
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We interpolate values between any two control points in a user-defined function. In
this study, the value of the user-defined function is established using expert judgement,
factor influences on recharge, and a thorough literature analysis. The primary characteristic
of fuzzy algorithms is sigmoidal, with big or small, monotonically increasing, or decreasing
functions that are used to represent values in fuzzy set theories. The example of the
above-mentioned s—shaped decreasing algorithm is shown in Equation (3). The fuzzy
membership algorithm for increasing is defined in Equation (4).

µ =
1

1 +
[

x
f 2

]
f 1

(3)

µ =
1

1 +
[

x
f 2

]
− f 1

(4)

In the above-mentioned equations µ = fuzzy membership function; x = feature; and
f 1 = spread of the transition from a membership value of 1 to 0 and f 2 = midpoint, where
the membership value is 0.5.

In a fuzzy logic system, fuzzification is performed by converting crisp values into a
degree of membership function by using commonly adopted fuzzy membership functions,
such as s-shaped, j-shaped, and linear with control points to assign values of suitability. In
the case of linear membership type, control point (a) is used to denote the situations less
suitable for recharge, while control point (b) is used to denote the situations considered
highly suitable. In this study, higher values were assigned to the layers that correspond
to high recharge and lower values in-between 0 to 1 (Table 8) were assigned to sites that
were less suitable for recharge. Moreover, in the present study, fuzzy logic was applied to
construct standardized factors maps (Figure 7).
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Table 8. Fuzzy set memberships function with controls points used for natural aquifer recharge.

Layers Subcategory Control Points (a) Control Points (b) Fuzzy Membership
Value/Type

LULC Agriculture Land 0.5
Water User Define 0
Built Up Area 0
Barren Land 0.6
Low Vegetation/Parks 0.6
High Vegetation 0.8
Parks 0.88

Soil Gravelly Clay User Define 0.92
Sandy Clay 0.8
Silty Clay 0.6
Low Plasticity Clay 0.3
Lean Clay 0

Water Table 15 m 150 m Linear (S-Shaped Increasing)
Drainage Density 2 5 Small
Slope 2 deg 90 deg Linear (S-Shaped Decreasing)
Population Density 40,000 500 Linear (S-Shaped Decreasing)
Elevation 360 m 1550 m Linear (J-Shaped Increasing)
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3.3. Weighted Linear Combination Method

WLC is also known as the conventional overlay technique, which is utilized in most
of the previous studies to locate potential sites for groundwater recharge [19]. In weighted
linear combination, the relative relevance of the factors is used to determine appropriateness
in the spatial multi-criteria evaluation. Consequently, once we have completed the job
of assigning weights and the reclassification of the sites on the thematic maps, based on
the methods of the AHP, the WLC method can be used to incorporate all the layers [31].
Each standardized component in this study was multiplied by its corresponding weight
from AHP. WLC is applied on aggregate suitability maps prepared by each factor after the
standardization and assigning of weights to each factor. A weighted linear combination is a
spatial multi-criteria technique in which suitability depends on the importance criterion [20]
as defined in (Equation (5)).

SI = ∑ WiSi (5)

where SI stands for the suitability index, Wi is used to represent the weight of the factors,
and Si indicates the standard suitability score for the factors [20]. In this study, AHP has



Remote Sens. 2022, 14, 6051 19 of 26

been used to assign weights, and WLC was used to combine all layers to identify a suitable
site by overlaying the factor maps.

3.4. Final Suitability Maps

In this study, two suitability index maps have been generated using two different
methods. Figure 8a shows the suitability index map from AHP-WLC integration, and
Figure 8b represents the suitability index map of the fuzzy overlay. There are five classes—
not suitable, less suitable, moderate, suitable, and most suitable—in both suitability index
maps, and the area belonging to each class was calculated with the results shown in (Table 9).
The comparison of the results from the two approaches is shown in (Figure 9). The area of
the ‘not suitable’ class is found to be (144 km2) in the fuzzy suitability index map, whereas
in the case of AHP-WLC it is (176 km2). The ‘less suitable’ area was estimated as (110 km2),
and the AHP technique gave an area of (94 km2) for the same class.
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Table 9. Area of suitability classes from both the methods.

Suitability Classes AHP Area (km2) Fuzzy Logic Area (km2)

Not Suitable 176 144
Less Suitable 94 110

Moderate 248 272
Suitable 339 291

Most Suitable 49 89

Furthermore, through fuzzy overlay, the (272 km2) area was found to belong in the
‘moderate class’, and the AHP area in that class was found to be (248 km2). Similarly, an
area of (291 km2) was obtained from our computation for the ‘suitable classes’ in the fuzzy
overlay, and an area of (339 km2) was obtained by using AHP, which occupies the most area
among all classes. The area for the ‘most suitable’ class was estimated as 89 km2 through
fuzzy overlay, and an area of 49 km2 falls under the ‘suitable classes’ in the AHP analysis,
which holds the least area among all classes.

The sites on the suitability index map constructed from fuzzy overlay were reclassified
through equal interval classification methods, and, consequently, reclassification achieved
more smooth and refined results than those of the AHP method. This may be associated
with the better segregation options of the fuzzy overlay approach as compared with the
AHP-WLC.

3.5. Result Validation

To confirm the accuracy of the selected suitable sites for natural aquifer recharge and
to correlate the locations on both suitability maps, a field validation procedure has also
been carried out. For ground validation, various sites were visited in the study area and
compared with both suitability maps. Furthermore, it was also observed during the field
validation process that the result of fuzzy overlay was more accurate than that of AHP-
WLC and the same when we share with CDA for recharge well construction. Additionally,
the accuracy assessment was also carried out on the final fuzzy logic suitability map by
selecting 101 random points of each suitability class for ground truthing. Then we verified
those random points of each class through reliable data sources, such as Google Earth,
along with field visits. The Accuracy assessment map along with the accuracy assessment
calculation table are shown in Figure 10 and Table 10, along with Kappa values in Table 11.

Overall Accuracy = Total number of correctly classified pixels/Total number of referenced pixels × 100 = 83/101 × 100

Overall Accuracy = 82.2%

Kappa Coefficient (T)= (TS × TCS) −∑(Column Total × Row Total)/TS2 −∑ (Column Total − Row Total) × 100

Kappa Coefficient (T) = 66%
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Table 10. Accuracy Assessment Calculation.

Suitability Classes Not Suitable Less Suitable Moderate Suitable Most Suitable Total (User)

Not Suitable 19 0 3 3 0 25
Less Suitable 0 9 0 0 0 9

Moderate 1 0 18 6 0 25
Suitable 1 2 1 21 0 25

Most Suitable 0 0 0 1 16 17
Total (Producer) 21 11 19 31 16 101

Table 11. Accuracy Assessment Calculation.

Kappa Value Level of Agreement % of Data That Are Reliable

0–0.20 None 0–4%
0.21–0.39 Minimal 4–15%
0.40–0.59 Weak 15–35%
0.60–0.79 Moderate 35–63%
0.80–0.90 Strong 64–81%

Above 0.90 Almost Perfect 82–100%

Our results indicate a moderate level of agreement with the actual field locations,
demonstrating that the results are reliable enough to be shared for further research work or
to be used for the construction of recharge wells on the ground to overcome groundwater
crises in Islamabad City.
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4. Discussion

Each suitability index map was divided into five equal classes. These classes provide
enough options to the water resource engineers and the managers in planning and man-
aging groundwater demand. The suitability maps were developed to divide the area into
qualitatively different regions based on their potential and requirements (most depleted,
highly populated, and less developed), and on the priorities of the individual factors. The
result of both suitability maps shows numerous suitable sites that were validated late
through ground visits. During ground validation, it was found that results from fuzzy
overlay were more accurate, precise, and refined, compared with those of the AHP-WLC.
Several locations of ‘suitable sites’ lie in Islamabad parks. This fact may be associated with
the incorporation of data from 400 parks in our study, and it was natural for our procedure
to assign a high rank to parks as they have open space and smooth slopes. Similarly, a
location classified ‘not suitable’ was also confirmed as one of those located on used land
and paved areas.

Both suitability index maps have identified “suitable” areas outside the urban areas.
Similarly, both suitability maps mark “not suitable” areas in red spots in urban areas. Hence,
both maps consistently show a very small suitability index in the north over Margalla
Hills and its surrounding areas. This fact may be explained by the steep slope and high
altitude in the northern part of Islamabad. Similarly, both the suitability index maps exhibit
a high suitability index in the east and west parts of Islamabad because of the smooth
slope along with low elevations and gravelly soil types. The suitability index maps also
indicate “not suitable” areas in the southern part of Islamabad, which reflects the land
use, the filling of built-up area, and the highly populated (dense) areas where less weights
were assigned as these areas have less capacity for infiltration. Both maps have displayed,
overall, well-spread, Moderate classes areas, which dominate all the other classes.

Based on both suitability maps, it is also predicted that the most suitable class will
count for less area than the suitable and moderate classes (Figure 9) because most of
the study area consists of mountainous rocks and silty clay, which are less suitable for
groundwater recharge. In this study, it has also been observed that fuzzy overlay provides
more refined, smooth, and robust results than those from the AHP-WLC, which, in the
belief of the authors, is because the AHP is unable to capture the subjectivity of expert
judgments as this verbal judgment that has been subsequently converted into crisp values.

Construction of Recharge Wells at Suitable Sites

According to the analysis of this study, suitable sites were recommended and for-
warded for suggestion to Capital Development Authority (CDA) Islamabad for the con-
struction of recharge wells. Based on the fuzzy overlay finding and suggestion of this
study, the recharge well has been constructed by the CDA, Islamabad. In addition, eight
recharge wells were constructed out of 80 in the first phase, while the rest are currently
under construction. The technical design, coral design, and constructed recharge wells are
shown in Figure 11. At a suitable location for natural aquifer recharge, where the surface
runoff is more along the catchment area, small ponds have also been constructed with
recharge wells to fully utilized the rainwater, as small ponds are economical as compared
to recharge wells. It is anticipated that the groundwater level of the study area will not
only be stabilized, but will also increase over time.
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Figure 11. Technical design, coral design, and constructed recharge well on suitable sites.

5. Conclusions

One of the most important steps of water resource management is the selection of
optimal sites for natural aquifer recharge. As the water table of Islamabad is depleting
at a very fast rate, the present study therefore focuses on the identification of potential
sites for natural aquifer recharge by using RS and GIS techniques. To achieve the objective
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mentioned above, in the current approach we have incorporated seven local influencing
factors, including land use land cover (LULC), drainage density, slope, population density,
water table, elevation, and soil types. These factors have been evaluated based on their
significance and potential contribution using the analytical hierarchy process (AHP). Fur-
thermore, these factors have been combined by using two different techniques (AHP-WLC,
fuzzy overlay) to obtain the suitability map. Finally, we have combined both the suitability
index maps (generated from AHP and fuzzy overlay) through the intersection method to
get suitable sites for natural aquifer recharge. From these observations, it is then concluded
that RS, GIS, and MCDM techniques are powerful tools for the identification of suitable
sites for natural aquifer recharge. It is also clear that the utilization of AHP and fuzzy logic
along with the weighted linear combination method is more responsive, cost-effective, less
time-consuming, and resource-friendly. Based on the findings of this study, it is suggested
that special focus should be imposed on sectorial areas where water resources are at high
risk and the demand for water has been exceeded. Prospectively, private tube wells along
with hand pump data may be incorporated for more accurate predictions of water table
depth at various locations of the area. It is also recommended that high-resolution imagery
along with machine learning should be adopted to further enhance the accuracy of the
outcomes. Prospectively, the present study will prove insightful for policymakers for a
better management of the groundwater resources in perspective of distribution, exploration,
and recharge aquifers based on the suitable sites. Additionally, the proposed approach
may be applicable to the identification of suitable sites for natural aquifer recharge sites in
developing as well as developed countries.
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