
Citation: Velichko, A.; Belyaev, M.;

Wagner, M.P.; Taravat, A. Entropy

Approximation by Machine Learning

Regression: Application for

Irregularity Evaluation of Images in

Remote Sensing. Remote Sens. 2022,

14, 5983. https://doi.org/10.3390/

rs14235983

Academic Editor: Gang Chen

Received: 14 October 2022

Accepted: 23 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Entropy Approximation by Machine Learning Regression:
Application for Irregularity Evaluation of Images
in Remote Sensing
Andrei Velichko 1,* , Maksim Belyaev 1, Matthias P. Wagner 2 and Alireza Taravat 3

1 Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia
2 Panopterra, 64293 Darmstadt, Germany
3 Deimos Space, Oxford OX110QR, UK
* Correspondence: velichko@petrsu.ru; Tel.: +7-911-400-5773

Abstract: Approximation of entropies of various types using machine learning (ML) regression
methods are shown for the first time. The ML models presented in this study define the complexity
of the short time series by approximating dissimilar entropy techniques such as Singular value
decomposition entropy (SvdEn), Permutation entropy (PermEn), Sample entropy (SampEn) and
Neural Network entropy (NNetEn) and their 2D analogies. A new method for calculating SvdEn2D,
PermEn2D and SampEn2D for 2D images was tested using the technique of circular kernels. Training
and testing datasets on the basis of Sentinel-2 images are presented (two training images and one
hundred and ninety-eight testing images). The results of entropy approximation are demonstrated
using the example of calculating the 2D entropy of Sentinel-2 images and R2 metric evaluation. The
applicability of the method for the short time series with a length from N = 5 to N = 113 elements is
shown. A tendency for the R2 metric to decrease with an increase in the length of the time series was
found. For SvdEn entropy, the regression accuracy is R2 > 0.99 for N = 5 and R2 > 0.82 for N = 113.
The best metrics were observed for the ML_SvdEn2D and ML_NNetEn2D models. The results of the
study can be used for fundamental research of entropy approximations of various types using ML
regression, as well as for accelerating entropy calculations in remote sensing. The versatility of the
model is shown on a synthetic chaotic time series using Planck map and logistic map.

Keywords: machine learning; 2D entropy; entropy approximation; singular value decomposition
entropy; permutation entropy; sample entropy; neural network entropy; image features; remote
sensing; logistic map

1. Introduction

Entropy is a measure of chaos or irregularity. It is also a measure of the structural
organization of systems since order and chaos are not only opposite but also complementary
concepts. Entropy as a measure of chaos or order was described for systems of a different
nature: the Clausius entropy in thermodynamics [1], the Boltzmann entropy [2] in statistical
physics, the Shannon entropy [3] in information theory, the Kolmogorov entropy [4] in
the theory of dynamical systems, the von Neumann entropy in quantum mechanics [5].
Understanding the universality of entropy as a measure of chaos, regardless of the nature
of the system, came gradually, starting with the works of Kolmogorov [4], Renyi [6],
Shannon [3] and others, and it continues in the present day [7]. In this paper, an attempt
was made to develop a methodology for a universal approach to estimate entropy using
machine learning (ML) technologies. The results of the approximation of the entropies of
various types using ML regression are presented.

In real-world systems, not only spatial, but also temporal structures are found. Tem-
poral structures are usually studied by analyzing the time series of observational data;
spatial structures, as a rule, are usually studied by analyzing two-dimensional images.

Remote Sens. 2022, 14, 5983. https://doi.org/10.3390/rs14235983 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14235983
https://doi.org/10.3390/rs14235983
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9341-1831
https://doi.org/10.3390/rs14235983
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14235983?type=check_update&version=2


Remote Sens. 2022, 14, 5983 2 of 25

Along with time series, images are the most important sources of information in remote
sensing (RS) imagery [8] and geophysical mapping [9]. Different versions of entropies
have been used for remote sensing applications. For example, Shannon’s entropy has
been used for measuring urban sprawl [10,11], and exponential entropy has been used for
image segmentation [12]. The most common entropy way of obtaining entropy, however, is
still the use of first- and second-order texture metrics based on quantized Gray-Level Co-
occurrence Matrices (GLCM) [13]. Entropy is also used in image quality assessments [14,15]
and change detection [16]. Two-dimensional dispersion entropy (DispEn2D) [17], sam-
ple entropy (SampEn2D) [18], permutation entropy (PerEn2D) [19], approximate entropy
(ApEn2D) [20] and Neural Network entropy (NNetEn2D) [21] have been proposed for image
processing applications, and they can be considered as an irregularity measure for images.
To calculate 2D entropy, the approach of transforming a 2D kernel into a 1D time series is
often used. For example, a square kernel with alternating row and column readouts could
be used [18]; in addition, the transformation method using the Hilbert–Peano curve is pop-
ular due to its low computational cost and its ability to preserve the relevant properties of
pixel spatial correlation [22–24]. In this work, we applied our own method of transforming
a 2D image area into a 1D time series using a circular kernel; the advantage of this is the
stability of the result after image rotation [21].

Regression is a method of investigating the relationship between the independent
variables or features and an outcome. It is used as a predictive modeling technique in
machine learning in which an algorithm is used to predict continuous results. There
are many ML algorithms for regression analysis: gradient boosting (GB), support vector
regression (SVR), k-nearest neighbors (KNN), multi-layer perceptron (MLP), stochastic
gradient descent (SGD), decision tree (DT), automatic relevance determination (ARD),
adaptive boosting (AB), etc.

In this paper, we have developed a technique for approximating several types of
entropy using ML regression: Singular value decomposition entropy, Permutation entropy,
Sample entropy and Neural Network entropy. The block diagram of the two approaches to
calculating the entropy is shown in Figure 1. The input data are the time series, and the
output is the value of the entropy of the time series. In the first approach, the entropy can
be calculated by the use of standard techniques, for example, using well-known algorithms
for calculating SvdEn, SampEn, PermEn and NNetEn. In this work, we have shown the
existence of another approach in which each type of entropy can be approximated by ML
regression which is trained on the training dataset. Each regression model was trained
on time series of a certain length and for a certain type of entropy. The entropies that
were calculated using ML regression are denoted by the prefix ‘ML’. The paper presents
training and testing datasets. The application to remote sensing is shown by calculating
the 2D entropy distribution of Sentinel-2 images, and R2 estimates of the approximation
error were made. It is shown that the best model of ML regression is the gradient boosting
algorithm, in which the standard entropy practically coincides with the result of ML
regression. The performance of the entropy approximation model on short time series up
to N = 113 elements is shown. The versatility of the model is shown on a synthetic chaotic
time series using Planck map and logistic map.

In addition, the use of circular kernels for transforming images into a series of time
series and calculating the 2D distribution of SvdEn (SvdEn2D), SampEn (SampEn2D) and
PermEn (PermEn2D) is introduced. We used a similar approach earlier in [21] to calculate
the 2D distribution of NNetEn (NNetEn2D).

The paper has the following structure. Section 2 describes the methods, dataset
preparation and the training process. Section 3 presents the results of the entropy estimation,
which are followed by a discussion in Section 4. Section 5 summarizes the main conclusions.



Remote Sens. 2022, 14, 5983 3 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 25 
 

 

 

Figure 1. Block diagram of two approaches to entropy calculation: the standard methods and the 

method of entropy approximation via ML regression models (‘ML_’). The 2D kernel (visualized in red 

color in the top left image) is transformed to a 1D time series for entropy approximation. 

2. Methods and Datasets 

2.1. Time Series Normalization Method 

The main idea of normalization is to bring the time series to a standard form before the 

calculation or passing it to the ML model for a subsequent entropy approximation. 

Let us denote the set of elements of the time series as Z = [z1, z2, … zi, … zN], where zi is 

the element of the set (i = 1…N), and N is the number of elements of the time series. The 

maximum and minimum values of the series are denoted as: 

min

max

min( )

max( )

z Z

z Z




 

(1)

Let us denote as Tupp—the upper threshold of normalization; Tlow—the lower threshold 

of normalization; these were calculated using the formulas. 

min max  then 0,  0                             low uppif z z T T    (2)

min max min max min max  then  , ( )low uppif z z T z T z EN z z      
 

(3)

min max min max min max  then ( ),  low uppif z z T z EN z z T z     
 

(4)

The EN value is called the normalization parameter, and it varies from 0 to 1. 

0 1EN   (5)

The final step is the normalization of the time series Z to the series X = [x1, x2, … xi, … 

xN], according to the formula: 

( )
 ( ) 0 then 2 1

 ( ) 0 then 0

i low
upp low i

upp low

upp low i

z T
if T T x

T T

if T T x


    


   

 (6)

The normalization parameter EN allows us to smoothly change the degree of filtering 

of the constant component of the time series. An example of the effect of EN is shown in 

Figure 2, where the initial time series Z containing N = 49 elements (Figure 2a) is normalized 

into time series X (Figure 2b). If EN = 1, then normalization does not remove the constant 

component of the time series. When EN = 0, normalization translates the value range of the 

Figure 1. Block diagram of two approaches to entropy calculation: the standard methods and the
method of entropy approximation via ML regression models (‘ML_’). The 2D kernel (visualized in
red color in the top left image) is transformed to a 1D time series for entropy approximation.

2. Methods and Datasets
2.1. Time Series Normalization Method

The main idea of normalization is to bring the time series to a standard form before
the calculation or passing it to the ML model for a subsequent entropy approximation.

Let us denote the set of elements of the time series as Z = [z1, z2, . . . zi, . . . zN], where
zi is the element of the set (I = 1 . . . N), and N is the number of elements of the time series.
The maximum and minimum values of the series are denoted as:

zmin = min(S)
zmax = max(S)

(1)

Let us denote as Tupp—the upper threshold of normalization; Tlow—the lower threshold
of normalization; these were calculated using the formulas.

if zmin = zmax then Tlow = 0, Tupp = 0 (2)

i f |zmin| ≥ |zmax| then Tlow = −|zmin|, Tupp = zmax + EN · (|zmin| − zmax) (3)

i f |zmin| < |zmax| then Tlow = zmin − EN · (|zmax|+ zmin), Tupp = |zmax| (4)

The EN value is called the normalization parameter, and it varies from 0 to 1.

0 ≤ EN ≤ 1 (5)

The final step is the normalization of the time series Z to the series X = [x1, x2, . . . xi,
. . . xN], according to the formula: i f

(
Tupp − Tlow

)
6= 0 then xi =

(zi−Tlow)
Tupp−Tlow

· 2− 1

i f
(
Tupp − Tlow

)
= 0 then xi = 0

(6)

The normalization parameter EN allows us to smoothly change the degree of filtering
of the constant component of the time series. An example of the effect of EN is shown in
Figure 2, where the initial time series Z containing N = 49 elements (Figure 2a) is normalized
into time series X (Figure 2b). If EN = 1, then normalization does not remove the constant
component of the time series. When EN = 0, normalization translates the value range of
the time series into an interval from −1 to 1, and the constant component is suppressed
(Figure 2b). A value of EN = 0.5 results in a partial suppression of the DC component.



Remote Sens. 2022, 14, 5983 4 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 25 
 

 

time series into an interval from −1 to 1, and the constant component is suppressed (Figure 

2b). A value of EN = 0.5 results in a partial suppression of the DC component. 

Thus, the choice of the parameter EN allows, in the course of normalization, us to filter 

the variable component of the time series at EN = 0. The EN parameter is of great importance 

when the entropy depends on the DC component, in which case the EN value significantly 

affects the result of the 2D entropy calculation. 

   
(a) (b) 

Figure 2. An example of the time series Z (N = 49) (a) and the result of its normalization to the X series 

for EN = 0, EN = 0.5 and EN = 1 (b). 

2.2. Methods for Entropy Evaluation with Standard Methods 

In this article, several types of entropies were calculated: Singular value decomposition 

entropy, Permutation entropy, Sample entropy and Neural Network entropy, the basic prin-

ciples of which are disclosed below. For the calculations, the open-source python library 

‘antropy’ was used [25]. 

2.2.1. Singular Value Decomposition Entropy 

Singular value decomposition (SVD) is an analogue of the spectral decomposition of 

the signals, which is applicable to arbitrary matrices. This transformation was first proposed 

by E. Beltrami in 1873 [26]. SVD is the factorization of a matrix A into the product. 

TA USV  (7)

The matrix U contains the left singular vectors of A, and the matrix V contains the right 

singular vectors. The matrix S is always diagonal, its coefficients are non-negative real num-

bers �1, …, �k, which are located on the main diagonal of the matrix, and they are called 

singular values. 

For a time series X = [x1, x2, … xi, … xN], d dimension phase space can be reconstructed 

by means of sliding with window a(i). The procedure is as follows. 

( 1)( ) [ , ,..., ]

[ (1), (2),..., ( ( 1) )]

i i delay i d delay

T

a i x x x

A a a a N d delay

   

   
 (8)

where d—the length of the embedding dimension; delay—the time series sample bias. 

The dispersion of the singular values λk also provides an indication of the complexity 

of the signal dynamics [27]. Singular values can be normalized as: 

k
k

k






  

(9)

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

z i

i

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

x i

i

 EN = 0
 EN = 0.5
 EN = 1

0

Figure 2. An example of the time series Z (N = 49) (a) and the result of its normalization to the X
series for EN = 0, EN = 0.5 and EN = 1 (b).

Thus, the choice of the parameter EN allows, in the course of normalization, us to
filter the variable component of the time series at EN = 0. The EN parameter is of great
importance when the entropy depends on the DC component, in which case the EN value
significantly affects the result of the 2D entropy calculation.

2.2. Methods for Entropy Evaluation with Standard Methods

In this article, several types of entropies were calculated: Singular value decomposition
entropy, Permutation entropy, Sample entropy and Neural Network entropy, the basic
principles of which are disclosed below. For the calculations, the open-source python
library ‘antropy’ was used [25].

2.2.1. Singular Value Decomposition Entropy

Singular value decomposition (SVD) is an analogue of the spectral decomposition
of the signals, which is applicable to arbitrary matrices. This transformation was first
proposed by E. Beltrami in 1873 [26]. SVD is the factorization of a matrix A into the product.

A = USVT (7)

The matrix U contains the left singular vectors of A, and the matrix V contains the
right singular vectors. The matrix S is always diagonal, its coefficients are non-negative
real numbers λ1, . . . , λk, which are located on the main diagonal of the matrix, and they
are called singular values.

For a time series X = [x1, x2, . . . xi, . . . xN], d dimension phase space can be recon-
structed by means of sliding with window a(i). The procedure is as follows.

a(i) = [xi, xi+delay, . . . , xi+(d−1)·delay]

A = [a(1), a(2), . . . , a(N − (d− 1) · delay)]T
(8)

where d—the length of the embedding dimension; delay—the time series sample bias.
The dispersion of the singular values λk also provides an indication of the complexity

of the signal dynamics [27]. Singular values can be normalized as:

λk =
λk

∑ λk
(9)

Singular value decomposition entropy is defined with the Shannon formula which
was applied to the elements of singular values of the matrix, and this was calculated as
follows [27]:

SvdEn = −∑ λk · ln λk (10)



Remote Sens. 2022, 14, 5983 5 of 25

After that, the SvdEn values were normalized in the range from 0 to 1:

SvdEn =
SvdEn
log2 d

(11)

SvdEn is used in a number of works: to analyze the heart rate variability [27], to
analyze effect of taping on ankle joint dynamics [28], as an indicator of the state of finan-
cial markets [29,30], for a quantification of ecological complexity [31] and in computer
graphics [32].

Image processing was carried out with the length of the embedding dimension d = 3
and delay = 1.

2.2.2. Permutation Entropy

The permutation entropy is a complexity measure for the time series based on the
comparison of neighboring values. The permutation entropy PermEn of a one-dimensional
data series X is:

PermEn = −∑ pi · log2 pi (12)

where pi is the frequency of the occurrence of the i-th permutation in the embedded matrix
A, which is defined in the same way as in (8).

After that, the PermEn values were normalized in the range from 0 to 1:

PermEn =
PermEn
log2 d!

(13)

Image processing was carried out with the length of the embedding dimension d = 5
and delay = 5.

2.2.3. Sample Entropy

The Sample entropy calculation of the time series X = [x1, x2, . . . xN] of the length
contains several stages. First, the series was divided into template vector Xm(i) = [xi, xi+1,
. . . xi+m−1] of length m (m < N). Then, the number of template vectors Xm were counted,
and the Chebyshev distance between them d[Xm(i), Xm(j)] (i 6= j) does not exceed r. The
sample entropy is a variant of the Approximation Entropy.

The sample entropy for the one-dimensional data series X is defined as:

SampEn = − ln(
C(m + 1, r)

C(m, r)
) (14)

where C(m,r) is the number of pairs of vectors of length m, the distance between which
does not exceed r.

In this work, the image processing was carried out at m = 2 and r = 0.2σ, where σ—is
the standard deviation within the time series X.

2.2.4. Neural Network Entropy

Neural network entropy is the first entropy measure that is based on artificial intel-
ligence methods, and it was introduced in [33] for 1D time series (NNetEn1D), and then,
it was extended to calculate the entropy of 2D images (NNetEn2D) [21]. It computes en-
tropy directly, without considering or approximating probability distributions. NNetEn is
computed using the LogNNet neural network. The LogNNet model [34] was originally
designed for recognizing handwritten digits in the MNIST dataset [35] with 60,000 images
for training and 10,000 images for testing. It comprises three parts (see Figure 3): the input
layer, a model reservoir of matrix W1 to transform the input vector Y into an interme-
diate vector, and a single layer feedforward neural network transforming vector Sh into
digits 0–9 in the output layer Sout.



Remote Sens. 2022, 14, 5983 6 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

rectly, without considering or approximating probability distributions. NNetEn is com-

puted using the LogNNet neural network. The LogNNet model [34] was originally de-

signed for recognizing handwritten digits in the MNIST dataset [35] with 60,000 images for 

training and 10,000 images for testing. It comprises three parts (see Figure 3): the input layer, 

a model reservoir of matrix W1 to transform the input vector Y into an intermediate vector, 

and a single layer feedforward neural network transforming vector Sh into digits 0–9 in the 

output layer Sout. 

 

Figure 3. The LogNNet model structure for NNetEn calculation [33]. 

To determine NNetEn, the LogNNet reservoir matrix was filled with elements of the 

studied data X = [x1, x2, … xN]. The network was then trained and tested on MNIST-10 da-

tasets to obtain classification accuracy. This accuracy is considered as the entropy measure, 

and it is denoted as NNetEn1D. 

lassification accurC
NNet

acy
En=

100%  

(15)

The procedure for calculating NNetEn1D is described in more detail in [33]. 

LogNNet can be used for estimating the entropy of the time series as the transfor-

mation of inputs is carried out by the time series, and this affects the classification accu-

racy. A more complex transformation of the input information, which is performed by the 

time series in the reservoir part, results in a higher classification accuracy in LogNNet. 

The maximum length of the time series that can be fed to the model is determined by 

the number of elements in matrix W1 (N0 = 19,625). The main technique used in this work 

for filling the matrix was the W1M_1 method (filling by rows as in Figure 3 with copying 

of the series) and the epoch number Ep = 4 [21]. 

2.2.5. Method for 2D Entropy Calculation with Circular Kernels 

The method of using circular kernels to calculate 2D entropy was developed in [21]. 

Its essence lies in the transformation of a 2D image area using circular kernels of a radius 

R into a one-dimensional series. Figure 4a shows the principle of covering the entire image 

with circular kernels using a step S and an initial offset DL. Areas that are outside the 

image boundaries are not defined, so the pixel values in these areas are filled by the sym-

metrical mirroring of the pixels in the image. To calculate NNetEn2D, the set of pixels in-

side the local kernel was converted into a one-dimensional data series (Figure 4b), and 

then, it was calculated in the same way as in the one-dimensional case. In Figure 4b, the 

sequence of the formation of the elements of the series can be traced along the connecting 

red line, starting from the center of the kernel n = 1 and ending with element n = 49. The 

number of pixels N in a circular kernel has a quadratic dependence on the radius, and the 

evaluation of the sample values is given in Table 1. Example kernels for R = 6 and R = 1 

are shown in Figure 5a,b. In this research, we used DL = 0 and step S = 1. 

  

1 2

1 1 2

1 1 2

1

. .
. .

. .

. . .

n

N N

N N

n N N

x x x
x x x x

x x x x
x x x







 
 
 
  
 

W  1

Y[ ]784

Y[1]
0

9

Y[ ]i

S [1]h

S [0]=1h

(W )2 np

S [0]out

S [9]out

S [n]out

Reservoir

S [p]h

T pattern-

Output

S [P]h

Input

Y[0] = 1 

Data series xn

Figure 3. The LogNNet model structure for NNetEn calculation [33].

To determine NNetEn, the LogNNet reservoir matrix was filled with elements of the
studied data X = [x1, x2, . . . xN]. The network was then trained and tested on MNIST-
10 datasets to obtain classification accuracy. This accuracy is considered as the entropy
measure, and it is denoted as NNetEn1D.

NNetEn =
Classification accuracy

100%
(15)

The procedure for calculating NNetEn1D is described in more detail in [33].
LogNNet can be used for estimating the entropy of the time series as the transformation

of inputs is carried out by the time series, and this affects the classification accuracy.
A more complex transformation of the input information, which is performed by the time
series in the reservoir part, results in a higher classification accuracy in LogNNet.

The maximum length of the time series that can be fed to the model is determined by
the number of elements in matrix W1 (N0 = 19,625). The main technique used in this work
for filling the matrix was the W1M_1 method (filling by rows as in Figure 3 with copying
of the series) and the epoch number Ep = 4 [21].

2.2.5. Method for 2D Entropy Calculation with Circular Kernels

The method of using circular kernels to calculate 2D entropy was developed in [21].
Its essence lies in the transformation of a 2D image area using circular kernels of a radius R
into a one-dimensional series. Figure 4a shows the principle of covering the entire image
with circular kernels using a step S and an initial offset DL. Areas that are outside the image
boundaries are not defined, so the pixel values in these areas are filled by the symmetrical
mirroring of the pixels in the image. To calculate NNetEn2D, the set of pixels inside the
local kernel was converted into a one-dimensional data series (Figure 4b), and then, it was
calculated in the same way as in the one-dimensional case. In Figure 4b, the sequence
of the formation of the elements of the series can be traced along the connecting red line,
starting from the center of the kernel n = 1 and ending with element n = 49. The number of
pixels N in a circular kernel has a quadratic dependence on the radius, and the evaluation
of the sample values is given in Table 1. Example kernels for R = 6 and R = 1 are shown in
Figure 5a,b. In this research, we used DL = 0 and step S = 1.

Table 1. Number of pixels N in a circular kernel versus radius R.

R 1 2 3 4 5 6

N 5 13 29 49 81 113

The entropy distribution on a 2D image is denoted as: SvdEn2D, SampEn2D, PermEn2D
and NNetEn2D.



Remote Sens. 2022, 14, 5983 7 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

Table 1. Number of pixels N in a circular kernel versus radius R. 

R 1 2 3 4 5 6 

N 5 13 29 49 81 113 

The entropy distribution on a 2D image is denoted as: SvdEn2D, SampEn2D, PermEn2D 

and NNetEn2D. 

 

  

(a) (b) 

Figure 4. (a) Scheme of filling the image with circular kernels for 2D entropy calculation. (b) Scheme 

for converting a two-dimensional pixel distribution into a one-dimensional data series zi (R = 4). 

  
(a) (b) 

Figure 5. Scheme for converting a two-dimensional pixel distribution into a one-dimensional data 

series with different radius of circular kernel (a) R = 6; (b) R = 1. 

2.3. Entropy Approximation by ML Regression Models 

To approximate the entropy, a regression method based on machine learning was 

used. We will denote the approximation of the entropies which were calculated using the 

ML method as ML_“Entropy method”. 

The overall plan for training and testing consisted of the following main steps: 

1. Setting the entropy type. We used 4 types of entropy: SvdEn, SampEn, PermEn and 

NNetEn. We denoted their approximations using ML regression as ML_SvdEn, 

ML_SampEn, ML_PermEn and ML_NNetEn, respectively. 

2. Setting the ML algorithm for regression: a gradient boosting algorithm was used as the 

main method. 

3. Setting the length of the time series N. In this research, we tested several lengths of 

short time series N = 5, 13, 29, 49, 81 and 113 (see Table 1). 

4. Generation of training dataset using two images. Each element of the training set con-

sisted of a time series of length N and an output entropy value. 

5. Hyperparameter optimization and training of the regression model using training da-

taset. 

S

R

S

DLj
  i

Bi,j

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

49
1

|R|=4

ki

kj

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

z i

i

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

113

1

|R|=6

ki

kj

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

5
1

|R|=1

ki

kj

Figure 4. (a) Scheme of filling the image with circular kernels for 2D entropy calculation. (b) Scheme
for converting a two-dimensional pixel distribution into a one-dimensional data series zi (R = 4).

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

Table 1. Number of pixels N in a circular kernel versus radius R. 

R 1 2 3 4 5 6 
N 5 13 29 49 81 113 

The entropy distribution on a 2D image is denoted as: SvdEn2D, SampEn2D, PermEn2D 
and NNetEn2D. 

 
  

(a) (b) 

Figure 4. (a) Scheme of filling the image with circular kernels for 2D entropy calculation. (b) Scheme 
for converting a two-dimensional pixel distribution into a one-dimensional data series zi (R = 4). 

  
(a) (b) 

Figure 5. Scheme for converting a two-dimensional pixel distribution into a one-dimensional data 
series with different radius of circular kernel (a) R = 6; (b) R = 1. 

2.3. Entropy Approximation by ML Regression Models 
To approximate the entropy, a regression method based on machine learning was 

used. We will denote the approximation of the entropies which were calculated using the 
ML method as ML_“Entropy method”. 

The overall plan for training and testing consisted of the following main steps: 
1. Setting the entropy type. We used 4 types of entropy: SvdEn, SampEn, PermEn and 

NNetEn. We denoted their approximations using ML regression as ML_SvdEn, 
ML_SampEn, ML_PermEn and ML_NNetEn, respectively. 

2. Setting the ML algorithm for regression: a gradient boosting algorithm was used as the 
main method. 

3. Setting the length of the time series N. In this research, we tested several lengths of 
short time series N = 5, 13, 29, 49, 81 and 113 (see Table 1). 

4. Generation of training dataset using two images. Each element of the training set con-
sisted of a time series of length N and an output entropy value. 

5. Hyperparameter optimization and training of the regression model using training da-
taset. 

S
R

S

DLj
i

Bi,j

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

49
1

|R|=4

ki

kj

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

z i

i

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

113
1

|R|=6

ki

kj
-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

5
1

|R|=1

ki

kj

Figure 5. Scheme for converting a two-dimensional pixel distribution into a one-dimensional data
series with different radius of circular kernel (a) R = 6; (b) R = 1.

2.3. Entropy Approximation by ML Regression Models

To approximate the entropy, a regression method based on machine learning was used.
We will denote the approximation of the entropies which were calculated using the ML
method as ML_“Entropy method”.

The overall plan for training and testing consisted of the following main steps:

1. Setting the entropy type. We used 4 types of entropy: SvdEn, SampEn, PermEn
and NNetEn. We denoted their approximations using ML regression as ML_SvdEn,
ML_SampEn, ML_PermEn and ML_NNetEn, respectively.

2. Setting the ML algorithm for regression: a gradient boosting algorithm was used as
the main method.

3. Setting the length of the time series N. In this research, we tested several lengths of
short time series N = 5, 13, 29, 49, 81 and 113 (see Table 1).

4. Generation of training dataset using two images. Each element of the training set
consisted of a time series of length N and an output entropy value.

5. Hyperparameter optimization and training of the regression model using training
dataset.



Remote Sens. 2022, 14, 5983 8 of 25

6. Generation of a test dataset based on 198 sample images from Sentinel-2. One element
of the test set consisted of a time series of length N and the output entropy value.

7. Testing the regression model on a test dataset and determining the error using R2

metric. At the input of the ML algorithm, it is necessary to supply a vector of a time
series of a certain length on which the algorithm was trained.

8. Calculation of 2D entropies using circular kernels: SvdEn2D, SampEn2D, PermEn2D
and NNetEn2D.

Below is a more detailed description of some of these steps.

2.3.1. Dataset Description

To train and test the entropy approximation models, we used a dataset of 200 Sentinel-
2 sample images (see Supplementary Materials). Each image was of size 256 × 256, and
they contained four bands (blue, green, red and near-infrared). To identify the images, we
used the number n in the dataset from n = No. 1 to No. 200.

Example images for the near-infrared band are shown in Figure 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 25 
 

 

6. Generation of a test dataset based on 198 sample images from Sentinel-2. One element 

of the test set consisted of a time series of length N and the output entropy value. 

7. Testing the regression model on a test dataset and determining the error using R2 met-

ric. At the input of the ML algorithm, it is necessary to supply a vector of a time series 

of a certain length on which the algorithm was trained. 

8. Calculation of 2D entropies using circular kernels: SvdEn2D, SampEn2D, PermEn2D and 

NNetEn2D. 

Below is a more detailed description of some of these steps. 

2.3.1. Dataset Description 

To train and test the entropy approximation models, we used a dataset of 200 Senti-

nel-2 sample images (see Supplementary Materials). Each image was of size 256 × 256, and 

they contained four bands (blue, green, red and near-infrared). To identify the images, we 

used the number n in the dataset from n = No. 1 to No. 200. 

Example images for the near-infrared band are shown in Figure 6. 

 
No. 13 No. 17 No. 21 No. 78 

 
No. 100 No. 120 No. 146 No. 200 

Figure 6. Sample images from the Sentinel-2 images database (near-infrared band). 

2.3.2. Training Dataset 

For each type of entropy ML_SvdEn, ML_PermEn, ML_SampEn and NNetEn, as well 

as a given length of the time series N, a separate training set was generated. 

To generate the training set, we used two images numbered No. 1 and No. 2, which are 

shown in Figure 7 (near-infrared band). One element of the set consisted of a time series of 

length N and the entropy value. Time series were generated at each pixel using a circular 

kernel as shown in Section 2.2.5. For two images, the number of pixels 256 × 256 × 2 = 131,072. 

Before calculating the entropy, each time series was normalized according to the method in 

Section 2.1. In addition, the entropy was calculated for two normalization options for EN = 

0 and EN = 1. As a result, the total number of elements in the training dataset was 131,072 × 

2 = 262,144. 

Figure 6. Sample images from the Sentinel-2 images database (near-infrared band).

2.3.2. Training Dataset

For each type of entropy ML_SvdEn, ML_PermEn, ML_SampEn and NNetEn, as well
as a given length of the time series N, a separate training set was generated.

To generate the training set, we used two images numbered No. 1 and No. 2, which
are shown in Figure 7 (near-infrared band). One element of the set consisted of a time
series of length N and the entropy value. Time series were generated at each pixel us-
ing a circular kernel as shown in Section 2.2.5. For two images, the number of pixels
256 × 256 × 2 = 131,072. Before calculating the entropy, each time series was normalized
according to the method in Section 2.1. In addition, the entropy was calculated for two
normalization options for EN = 0 and EN = 1. As a result, the total number of elements in
the training dataset was 131,072 × 2 = 262,144.



Remote Sens. 2022, 14, 5983 9 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 25 
 

 

 
No. 1 No. 2 

Figure 7. Images No. 1 and No. 2 from the database that were used to train ML regression models 

(near-infrared band). 

2.3.3. Hyperparameter Optimization and Training the Regression Model 

The package “auto-sklearn” library [36] was used for hyperparameter optimizations 

and training of the regression models. This library allows you to select the most accurate 

models that are obtained with different values of hyperparameters. 

The regression models were trained using K-fold cross-validation. In this case, the 

training set was divided into K parts, and the model was trained K times. Moreover, at 

each iteration of training, various combinations of K-1 parts of the training dataset were 

used. After the training, the model was validated on the part of the dataset that was not 

used during training, and the model error metric R2 was calculated (see Section 2.3.5). 

After performing K validations, the obtained R2 values were averaged, and this average 

R2(1,2) value was used to assess the accuracy of the model (indices in brackets mean that 

the metric was calculated on the set of two images No. 1 and No. 2). This approach made 

it possible to obtain an adequate assessment of the accuracy of the model and minimize 

the effects of random sampling for testing and validation. 

2.3.4. Test Dataset Generation 

The test dataset for ML_SvdEn, ML_PermEn and ML_SampEn was generated based 

on 198 images in the database (n = 3–200). Each pixel of each image represents one row of 

the dataset (time series and entropy), so there were 256 × 256 = 65,536 rows per picture 

and 65,536 × 198 = 12,976,128 rows in total. The test dataset for ML_NNetEn was generated 

in a similar way, except that a smaller number of pixels per image (1936) was used since 

NNetEn calculations take a long time. Before calculating the entropy, each time series was 

normalized according to the method described in Section 2.1. 

For ML_SvdEn, the test datasets were separately generated for four bands (blue, green, 

red and near-infrared) with EN values from 0 to 1 with a step of 0.1. For ML_NNetEn, the 

test sets were generated for near-infrared band with three values of EN = 0, 0.5 and 1. For 

ML_PermEn and ML_SampEn, the test sets were generated only for EN = 1 since these en-

tropies do not depend on EN. 

The test sets ML_SvdEn and ML_NNetEn contained elements with variable EN that 

are not included in the training set (for example, EN = 0.5). This was conducted to assess the 

universality of the approximation technique. One of the tasks pursued in the work is the 

creation of a universal method for entropy approximation for the entire range of EN values 

(Equation (5)). 

In addition, testing in some cases was also carried out on red, green and blue bands, 

which also tests the versatility of the technique. 

Figure 7. Images No. 1 and No. 2 from the database that were used to train ML regression models
(near-infrared band).

2.3.3. Hyperparameter Optimization and Training the Regression Model

The package “auto-sklearn” library [36] was used for hyperparameter optimizations
and training of the regression models. This library allows you to select the most accurate
models that are obtained with different values of hyperparameters.

The regression models were trained using K-fold cross-validation. In this case, the
training set was divided into K parts, and the model was trained K times. Moreover, at each
iteration of training, various combinations of K-1 parts of the training dataset were used.
After the training, the model was validated on the part of the dataset that was not used
during training, and the model error metric R2 was calculated (see Section 2.3.5). After
performing K validations, the obtained R2 values were averaged, and this average R2(1,2)
value was used to assess the accuracy of the model (indices in brackets mean that the metric
was calculated on the set of two images No. 1 and No. 2). This approach made it possible
to obtain an adequate assessment of the accuracy of the model and minimize the effects of
random sampling for testing and validation.

2.3.4. Test Dataset Generation

The test dataset for ML_SvdEn, ML_PermEn and ML_SampEn was generated based
on 198 images in the database (n = 3–200). Each pixel of each image represents one row of
the dataset (time series and entropy), so there were 256 × 256 = 65,536 rows per picture and
65,536 × 198 = 12,976,128 rows in total. The test dataset for ML_NNetEn was generated
in a similar way, except that a smaller number of pixels per image (1936) was used since
NNetEn calculations take a long time. Before calculating the entropy, each time series was
normalized according to the method described in Section 2.1.

For ML_SvdEn, the test datasets were separately generated for four bands (blue, green,
red and near-infrared) with EN values from 0 to 1 with a step of 0.1. For ML_NNetEn, the
test sets were generated for near-infrared band with three values of EN = 0, 0.5 and 1. For
ML_PermEn and ML_SampEn, the test sets were generated only for EN = 1 since these
entropies do not depend on EN.

The test sets ML_SvdEn and ML_NNetEn contained elements with variable EN that
are not included in the training set (for example, EN = 0.5). This was conducted to assess
the universality of the approximation technique. One of the tasks pursued in the work is
the creation of a universal method for entropy approximation for the entire range of EN
values (Equation (5)).

In addition, testing in some cases was also carried out on red, green and blue bands,
which also tests the versatility of the technique.



Remote Sens. 2022, 14, 5983 10 of 25

It can be seen that the test dataset significantly exceeds the training set in terms of the
number of elements since it was tested on a larger number of images (2 vs. 198), a wider
range of EN, as well as on red, green and blue bands.

2.3.5. Estimation the Accuracy of the ML Model

To assess the accuracy of the regression models, we used the coefficient of determina-
tion (or R2 metric), which was determined for each picture from the test set, separately. To
calculate R2, the values of the entropies Y = [y1, y2, . . . , yNN] and the approximations of
the entropies MLY = [MLy1, MLy2, . . . , MLyNN] which were calculated by the regression
models on time series which was obtained within the same picture were used. The NN
value is the size of the set within one picture, which is equivalent to the number of pixels
(NN = 256 × 256 = 65,536). First, the average value y’ was calculated for a set of entropy
values y:

y′ =
1

NN

NN

∑
i=1

yi (16)

Then, sum of squares of residuals SSres and total sum of squares SStot were calculated:

SSres =
NN

∑
i=1

(yi −MLyi)
2 (17)

SSres =
NN

∑
i=1

(yi − y′)2 (18)

Using SSres and SStot, R2 was calculated as follows:

R2 = 1− SSres

SStot
(19)

If all of the pairs of values yi and MLyi match, the value of SSres will be equal to 0 and
R2 will be equal to 1, in other cases R2 < 1. Thus, the closer R2 is to 1, the more accurately
the regression model describes the test data.

The number of the image n for which the calculation is being performed is indicated
in brackets R2(n). R2(1,2) means that the metric was calculated on the set of two images
No. 1 and No. 2 from the training dataset.

The Pearson correlation coefficient was used to assess the accuracy of the synthetic data.

2.3.6. Synthetic Time Series Approximation Method

To show the versatility, efficiency and robustness of the proposed method of entropy
approximation, we apply the method to synthetic time series x1 . . . xN with a length N = 29.
The time series generated by the chaotic Planck map (Equation (20), Figure 8) was chosen
as a training sample. Because of the transient period, the first 1000 elements were ignored.

Planck map:
xn+1 =

r · x3
n

1 + exp(xn)
, 3 ≤ r ≤ 7, x−999 = 4. (20)

The training synthetic dataset consisted of 100,000 time series, each of a length N = 29,
which were generated over the entire range of r. Figure 8a shows the bifurcation diagrams
for the Planck map and the corresponding SvdEn values in Figure 8b.

The synthetic testing datasets were a set of 3000 time series which were generated by
logistic mapping (Equation (21)).

Logistic map:
xn+1 = r · xn · (1− xn), 1 ≤ r ≤ 4, x−999 = 0.1. (21)

Thus, the training and testing synthetic datasets had different time series
generation algorithms.

The calculation of SvdEn for the synthetic data was carried out with the length of the
embedding dimension d = 20 and delay = 1. The normalization was preliminarily performed
according to Equations (1)–(6) with the parameter EN = 0.



Remote Sens. 2022, 14, 5983 11 of 25
Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 25 
 

 

 

Figure 8. Bifurcation diagrams for Planck map (Equation (20)) (a); the dependence of SvdEn on the 

parameter r (N = 29, EN = 0, d = 20 and delay = 1) (b). 

The training synthetic dataset consisted of 100,000 time series, each of a length N = 29, 

which were generated over the entire range of r. Figure 8a shows the bifurcation diagrams 

for the Planck map and the corresponding SvdEn values in Figure 8b. 

The synthetic testing datasets were a set of 3000 time series which were generated by 

logistic mapping (Equation (21)). 

Logistic map: 

1 (1 )n n nx r x x    
, 1 ≤ r ≤ 4, x−999 = 0.1. (21) 

Thus, the training and testing synthetic datasets had different time series generation 

algorithms. 

The calculation of SvdEn for the synthetic data was carried out with the length of the 

embedding dimension d = 20 and delay = 1. The normalization was preliminarily performed 

according to Equations (1)–(6) with the parameter EN = 0. 

3. Results 

3.1. Calculation of 2D Entropy with Variation of the Normalization Parameter EN 

Let us take image No. 172 (Figure 9) as an example for calculating 2D entropy. The 

kernel radius was R = 4, and its shape and size are visualized in red. The 2D entropy dis-

tributions (SvdEn2D and NNetEn2D) for the normalization parameters EN = 0, EN = 0.5 and 

EN = 1 are shown in Figure 10. It can be seen that for SvdEn2D and NNetEn2D, the entropy 

value depends on the parameter EN. 

The 2D entropy distributions (SampEn2D and PermEn2D) for the normalization param-

eters EN = 0, EN = 0.5 and EN = 1 are shown in Figure 11. It can be seen that for SampEn2D 

and PermEn2D, the entropy value does not depend on the parameter EN. These entropies 

are sensitive only to the variable component of the time series and do not depend on the 

constant component. 

Figure 8. Bifurcation diagrams for Planck map (Equation (20)) (a); the dependence of SvdEn on the
parameter r (N = 29, EN = 0, d = 20 and delay = 1) (b).

3. Results
3.1. Calculation of 2D Entropy with Variation of the Normalization Parameter EN

Let us take image No. 172 (Figure 9) as an example for calculating 2D entropy. The
kernel radius was R = 4, and its shape and size are visualized in red. The 2D entropy
distributions (SvdEn2D and NNetEn2D) for the normalization parameters EN = 0, EN = 0.5
and EN = 1 are shown in Figure 10. It can be seen that for SvdEn2D and NNetEn2D, the
entropy value depends on the parameter EN.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 9. Image No. 172, with 2D kernel visualization in red color (R = 4). 

SvdEn2D 

EN = 0 

SvdEn 2D, 

EN = 0.5 

SvdEn 2D 

EN = 1 

   
NNetEn2D  

EN = 0 

NNetEn2D  

EN = 0.5 

NNetEn2D, 

EN = 1 

   

Figure 10. Examples of the distribution of SvdEn2D and NNetEn2D for the normalization parameters 

EN = 0, EN = 0.5 and EN = 1 (R = 4). 

SampEn2D 

EN = 0, EN = 0.5 EN = 1 

PermEn2D  

EN = 0, EN = 0.5 EN = 1 

  

Figure 11. Examples of the distribution of SampEn2D and PermEn2D for the normalization parame-

ters EN = 0, EN = 0.5 and EN = 1 (R = 4). 

  

Figure 9. Image No. 172, with 2D kernel visualization in red color (R = 4).



Remote Sens. 2022, 14, 5983 12 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 9. Image No. 172, with 2D kernel visualization in red color (R = 4). 

SvdEn2D 

EN = 0 

SvdEn 2D, 

EN = 0.5 

SvdEn 2D 

EN = 1 

   
NNetEn2D  

EN = 0 

NNetEn2D  

EN = 0.5 

NNetEn2D, 

EN = 1 

   

Figure 10. Examples of the distribution of SvdEn2D and NNetEn2D for the normalization parameters 

EN = 0, EN = 0.5 and EN = 1 (R = 4). 

SampEn2D 

EN = 0, EN = 0.5 EN = 1 

PermEn2D  

EN = 0, EN = 0.5 EN = 1 

  

Figure 11. Examples of the distribution of SampEn2D and PermEn2D for the normalization parame-

ters EN = 0, EN = 0.5 and EN = 1 (R = 4). 

  

Figure 10. Examples of the distribution of SvdEn2D and NNetEn2D for the normalization parameters
EN = 0, EN = 0.5 and EN = 1 (R = 4).

The 2D entropy distributions (SampEn2D and PermEn2D) for the normalization param-
eters EN = 0, EN = 0.5 and EN = 1 are shown in Figure 11. It can be seen that for SampEn2D
and PermEn2D, the entropy value does not depend on the parameter EN. These entropies
are sensitive only to the variable component of the time series and do not depend on the
constant component.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 9. Image No. 172, with 2D kernel visualization in red color (R = 4). 

SvdEn2D 

EN = 0 

SvdEn 2D, 

EN = 0.5 

SvdEn 2D 

EN = 1 

   
NNetEn2D  

EN = 0 

NNetEn2D  

EN = 0.5 

NNetEn2D, 

EN = 1 

   

Figure 10. Examples of the distribution of SvdEn2D and NNetEn2D for the normalization parameters 

EN = 0, EN = 0.5 and EN = 1 (R = 4). 

SampEn2D 

EN = 0, EN = 0.5 EN = 1 

PermEn2D  

EN = 0, EN = 0.5 EN = 1 

  

Figure 11. Examples of the distribution of SampEn2D and PermEn2D for the normalization parame-

ters EN = 0, EN = 0.5 and EN = 1 (R = 4). 

  

Figure 11. Examples of the distribution of SampEn2D and PermEn2D for the normalization parameters
EN = 0, EN = 0.5 and EN = 1 (R = 4).

3.2. Comparison of Regression Algorithms Using Training Set

Comparison of R2(1,2) metrics for ML regression algorithms using the training set in
the SvdEn2D approximation is shown in Table 2. The time for optimizing hyperparameters
and training models for each algorithm was fixed at 2 h. Additionally, the table shows the
R2(172) value for image No. 172, which was not present in the training set.

The best performance (the highest R2(1,2) and R2(172)) for the SvdEn2D approximation
was found for the gradient boosting algorithm. The worst performance for the SvdEn2D
approximation was found for the adaptive boosting algorithm. Thus, the R2 metric in
Table 2 for training data R2(1,2) and testing data R2(172) showed a similar trend across the
ML algorithms.



Remote Sens. 2022, 14, 5983 13 of 25

Table 2. R2 metrics for ML regression algorithms using training set in SvdEn2D approximation, and
R2(172) values.

Algorithm R2(1,2) R2(172)

gradient boosting 0.996 0.984
support vector regression 0.982 0.891
k-nearest neighbors 0.982 0.889
multi-layer perceptron 0.972 0.864
stochastic gradient descent 0.970 0.848
decision tree 0.968 0.908
automatic relevance determination 0.872 0.840
adaptive boosting 0.836 0.596

As an example, we present the SvdEn2D profile and the ML_SvdEn2D profiles for the
GB and AB algorithms which were calculated from image No. 172 (Figure 12). For the
convenience of perceiving the results, we circled all of the 2D entropy distributions that
were obtained using ML regression in a brown frame, and we also give the values of EN
and R2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 25 
 

 

3.2. Comparison of Regression Algorithms Using Training Set 

Comparison of R2(1,2) metrics for ML regression algorithms using the training set in 

the SvdEn2D approximation is shown in Table 2. The time for optimizing hyperparameters 

and training models for each algorithm was fixed at 2 h. Additionally, the table shows the 

R2(172) value for image No. 172, which was not present in the training set. 

Table 2. R2 metrics for ML regression algorithms using training set in SvdEn2D approximation, and 

R2(172) values. 

Algorithm R2(1,2) R2(172) 

gradient boosting 0.996 0.984 

support vector regression 0.982 0.891 

k-nearest neighbors 0.982 0.889 

multi-layer perceptron 0.972 0.864 

stochastic gradient descent 0.970 0.848 

decision tree 0.968 0.908 

automatic relevance determination 0.872 0.840 

adaptive boosting 0.836 0.596 

The best performance (the highest R2(1,2) and R2(172)) for the SvdEn2D approximation 

was found for the gradient boosting algorithm. The worst performance for the SvdEn2D ap-

proximation was found for the adaptive boosting algorithm. Thus, the R2 metric in Table 2 

for training data R2(1,2) and testing data R2(172) showed a similar trend across the ML algo-

rithms. 

As an example, we present the SvdEn2D profile and the ML_SvdEn2D profiles for the GB 

and AB algorithms which were calculated from image No. 172 (Figure 12). For the conven-

ience of perceiving the results, we circled all of the 2D entropy distributions that were ob-

tained using ML regression in a brown frame, and we also give the values of EN and R2. 

SvdEn2D 

EN = 1 

ML_SvdEn 2D, 

EN = 1 

gradient boosting  

R2(172) = 0.984 

ML_SvdEn 2D  

EN = 1 

adaptive boosting  

R2(172) = 0.596 

   

Figure 12. SvdEn2D of image No. 172 and ML_SvdEn2D distributions obtained by gradient boosting 

and adaptive boosting algorithms. Brown frames indicate 2D entropy distributions obtained using 

ML regression. 

It can be seen from the distributions of ML_SvdEn2D in Figure 12 that the gradient 

boosting algorithm gives a very similar distribution to SvdEn2D, in the same range of en-

tropy values from 0.04 to 0.97, while the adaptive boosting algorithm gives a narrower 

interval from 0.26 to 0.79. 

Figure 13 shows a comparison of the profiles for i = 50 and the entropies SvdEn2D and 

ML_SvdEn2D which were obtained by the GB and AB algorithms. It can be seen that the 

ML_SvdEn2D profile for GB almost coincides with the SvdEn2D profile (red and black lines), 

Figure 12. SvdEn2D of image No. 172 and ML_SvdEn2D distributions obtained by gradient boosting
and adaptive boosting algorithms. Brown frames indicate 2D entropy distributions obtained using
ML regression.

It can be seen from the distributions of ML_SvdEn2D in Figure 12 that the gradient
boosting algorithm gives a very similar distribution to SvdEn2D, in the same range of
entropy values from 0.04 to 0.97, while the adaptive boosting algorithm gives a narrower
interval from 0.26 to 0.79.

Figure 13 shows a comparison of the profiles for i = 50 and the entropies SvdEn2D
and ML_SvdEn2D which were obtained by the GB and AB algorithms. It can be seen that
the ML_SvdEn2D profile for GB almost coincides with the SvdEn2D profile (red and black
lines), while the AB algorithm (blue line) gives significant deviations, especially at low
entropy values.

All of the subsequent results are given for the GB algorithm, which showed the best
R2 metric.



Remote Sens. 2022, 14, 5983 14 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 25 
 

 

while the AB algorithm (blue line) gives significant deviations, especially at low entropy 

values. 

 

Figure 13. Horizontal profile at i = 50 for SvdEn2D and ML_SvdEn2D obtained by gradient boosting 

and adaptive boosting algorithms for Figure 12. 

All of the subsequent results are given for the GB algorithm, which showed the best R2 

metric. 

3.3. Results of Approximation SvdEn2D Using GB Regression and Test Set 

The value of the R2 metrics (ML_SvdEn2D) for all of the 200 Sentinel-2 images (near-

infrared band) from the database is shown in Figure 14, where n is the number of the 

image in the database, and the database includes both training n = 1, 2 and testing n = 

3…200 images. Figure 14 also shows the average levels of R2mean for two values of the nor-

malization parameters EN = 0 and EN = 1. The R2mean values have rather high values R2mean 

> 0.9, which indicates a good approximation of the GB entropy by regression for all of the 

images from the database. At the same time, the entropy approximation for EN = 1 is, on 

average, better than it is for EN = 0. The standard deviation of R2 for all of the 200 images 

for EN = 0 is σ = 0.021 and for EN = 1, σ = 0.018. 

 

Figure 14. The value of the R2 metrics for the Sentinel-2 images database (near-infrared band), for 

two values of the normalization parameters EN = 0 and EN = 1 (ML_SvdEn2D). 

The dependency of R2 metrics on the value of EN for individual images is shown in 

Figure 15a. In most of the cases, these dependencies have a minimum in the region of EN 

from 0.1 to 0.3. This is also noticeable in the dependence of the average value of R2mean on 

50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y

j

 SvdEn
2D

 ML_SvdEn
2D

(GB)

 ML_SvdEn
2D

(AB)

0 50 100 150 200
0.7

0.8

0.9

1.0 n = 200

n = 120

n = 2

R
2

n

 EN = 0
 EN = 1

0.9295

0.96617

n = 1 n = 172

Figure 13. Horizontal profile at i = 50 for SvdEn2D and ML_SvdEn2D obtained by gradient boosting
and adaptive boosting algorithms for Figure 12.

3.3. Results of Approximation SvdEn2D Using GB Regression and Test Set

The value of the R2 metrics (ML_SvdEn2D) for all of the 200 Sentinel-2 images (near-
infrared band) from the database is shown in Figure 14, where n is the number of the
image in the database, and the database includes both training n = 1, 2 and testing n = 3
. . . 200 images. Figure 14 also shows the average levels of R2

mean for two values of the
normalization parameters EN = 0 and EN = 1. The R2

mean values have rather high values
R2

mean > 0.9, which indicates a good approximation of the GB entropy by regression for
all of the images from the database. At the same time, the entropy approximation for
EN = 1 is, on average, better than it is for EN = 0. The standard deviation of R2 for all of the
200 images for EN = 0 is σ = 0.021 and for EN = 1, σ = 0.018.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 25 
 

 

while the AB algorithm (blue line) gives significant deviations, especially at low entropy 
values. 

 
Figure 13. Horizontal profile at i = 50 for SvdEn2D and ML_SvdEn2D obtained by gradient boosting 
and adaptive boosting algorithms for Figure 12. 

All of the subsequent results are given for the GB algorithm, which showed the best R2 
metric. 

3.3. Results of Approximation SvdEn2D Using GB Regression and Test Set 
The value of the R2 metrics (ML_SvdEn2D) for all of the 200 Sentinel-2 images (near-

infrared band) from the database is shown in Figure 14, where n is the number of the 
image in the database, and the database includes both training n = 1, 2 and testing n = 
3…200 images. Figure 14 also shows the average levels of R2mean for two values of the nor-
malization parameters EN = 0 and EN = 1. The R2mean values have rather high values R2mean 
> 0.9, which indicates a good approximation of the GB entropy by regression for all of the 
images from the database. At the same time, the entropy approximation for EN = 1 is, on 
average, better than it is for EN = 0. The standard deviation of R2 for all of the 200 images 
for EN = 0 is σ = 0.021 and for EN = 1, σ = 0.018. 

 
Figure 14. The value of the R2 metrics for the Sentinel-2 images database (near-infrared band), for 
two values of the normalization parameters EN = 0 and EN = 1 (ML_SvdEn2D). 

The dependency of R2 metrics on the value of EN for individual images is shown in 
Figure 15a. In most of the cases, these dependencies have a minimum in the region of EN 
from 0.1 to 0.3. This is also noticeable in the dependence of the average value of R2mean on 

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

En
tro

py

j

 SvdEn2D

 ML_SvdEn2D(GB)
 ML_SvdEn2D(AB)

0 50 100 150 200
0.7

0.8

0.9

1.0 n = 200

n = 120

n = 2

R
2

n

 EN = 0
 EN = 1

0.9295

0.96617

n = 1 n = 172

Figure 14. The value of the R2 metrics for the Sentinel-2 images database (near-infrared band), for
two values of the normalization parameters EN = 0 and EN = 1 (ML_SvdEn2D).

The dependency of R2 metrics on the value of EN for individual images is shown in
Figure 15a. In most of the cases, these dependencies have a minimum in the region of EN
from 0.1 to 0.3. This is also noticeable in the dependence of the average value of R2

mean
on EN, which has a minimum of R2

mean ~ 0.9 at EN = 0.1. The dependence of standard
deviation on EN has a maximum value at EN = 0.2 (Figure 15b) and a minimum value at
EN = 0.7.



Remote Sens. 2022, 14, 5983 15 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

EN, which has a minimum of R2mean ~ 0.9 at EN = 0.1. The dependence of standard devia-
tion on EN has a maximum value at EN = 0.2 (Figure 15b) and a minimum value at EN = 
0.7. 

    
(a) (b) 

Figure 15. (a) Dependence of the R2 metric on the EN value for individual images from the database 
(No. 1, 2, 172, 120, 200), as well as the dependence of R2mean on EN. (b) Dependence of the standard 
deviation of R2 on the normalization parameter EN (ML_SvdEn2D). 

The test results for red, green and blue bands compared to near-infrared bands are 
shown in Figure 16. 

 
Figure 16. R2mean versus EN for red, green and blue bands versus near-infrared bands 
(ML_SvdEn2D). 

Thus, the trained model approximates the SvdEn value with high accuracy over the 
entire EN range for the entire set of images in the database for the red, green, blue and 
near-infrared bands. This indicates a good versatility of the model, which was trained on 
only two images from the database. 

A comparison of the distribution of SvdEn2D and ML_SvdEn2D entropies for image 
No. 172 is shown in Figure 17, which also shows a comparison of the horizontal profiles 
of SvdEn2D and ML_SvdEn2D for i = 50. 

It can be seen that for all of the EN values, the SvdEn2D and ML_SvdEn2D profiles have 
a similar behavior, with EN = 1 being the best profile match that was observed, and the worst 
match was for EN = 0.1, which correlates with the R2(172) value. 

  

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

0.90

0.95

1.00

R
2

EN

 n = 1
 n = 2
 n = 172
 n = 120
 n = 200
 R2

mean

0.0 0.2 0.4 0.6 0.8 1.0

0.015

0.020

0.025

0.030

0.035

0.040

σ

EN

Standard deviation

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

0.90

0.95

1.00

R
2 m

ea
n

EN

 near-infrared band
 red band
 green band
 blue band

Figure 15. (a) Dependence of the R2 metric on the EN value for individual images from the database
(No. 1, 2, 172, 120, 200), as well as the dependence of R2

mean on EN. (b) Dependence of the standard
deviation of R2 on the normalization parameter EN (ML_SvdEn2D).

The test results for red, green and blue bands compared to near-infrared bands are
shown in Figure 16.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

EN, which has a minimum of R2mean ~ 0.9 at EN = 0.1. The dependence of standard devia-

tion on EN has a maximum value at EN = 0.2 (Figure 15b) and a minimum value at EN = 

0.7. 

    

(a) (b) 

Figure 15. (a) Dependence of the R2 metric on the EN value for individual images from the database 

(No. 1, 2, 172, 120, 200), as well as the dependence of R2mean on EN. (b) Dependence of the standard 

deviation of R2 on the normalization parameter EN (ML_SvdEn2D). 

The test results for red, green and blue bands compared to near-infrared bands are 

shown in Figure 16. 

 

Figure 16. R2mean versus EN for red, green and blue bands versus near-infrared bands 

(ML_SvdEn2D). 

Thus, the trained model approximates the SvdEn value with high accuracy over the 

entire EN range for the entire set of images in the database for the red, green, blue and 

near-infrared bands. This indicates a good versatility of the model, which was trained on 

only two images from the database. 

A comparison of the distribution of SvdEn2D and ML_SvdEn2D entropies for image 

No. 172 is shown in Figure 17, which also shows a comparison of the horizontal profiles 

of SvdEn2D and ML_SvdEn2D for i = 50. 

It can be seen that for all of the EN values, the SvdEn2D and ML_SvdEn2D profiles have 

a similar behavior, with EN = 1 being the best profile match that was observed, and the worst 

match was for EN = 0.1, which correlates with the R2(172) value. 

  

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

0.90

0.95

1.00

R
2

EN

 n = 1
 n = 2
 n = 172
 n = 120
 n = 200

 R2

mean

0.0 0.2 0.4 0.6 0.8 1.0

0.015

0.020

0.025

0.030

0.035

0.040



EN

Standard deviation

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

0.90

0.95

1.00

R
2

m
e
a
n

EN

 near-infrared band
 red band
 green band
 blue band

Figure 16. R2
mean versus EN for red, green and blue bands versus near-infrared bands (ML_SvdEn2D).

Thus, the trained model approximates the SvdEn value with high accuracy over the
entire EN range for the entire set of images in the database for the red, green, blue and
near-infrared bands. This indicates a good versatility of the model, which was trained on
only two images from the database.

A comparison of the distribution of SvdEn2D and ML_SvdEn2D entropies for image
No. 172 is shown in Figure 17, which also shows a comparison of the horizontal profiles of
SvdEn2D and ML_SvdEn2D for i = 50.

It can be seen that for all of the EN values, the SvdEn2D and ML_SvdEn2D profiles
have a similar behavior, with EN = 1 being the best profile match that was observed, and
the worst match was for EN = 0.1, which correlates with the R2(172) value.



Remote Sens. 2022, 14, 5983 16 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

SvdEn2D 

EN = 0 

ML_SvdEn2D 

EN = 0 

R2(172) = 0.917  

 

   

SvdEn2D 

EN = 0.1 

ML_SvdEn2D 

EN = 0.1 

R2(172) = 0.898  

 

   

SvdEn2D 

EN = 1 

ML_SvdEn2D 

EN = 1 

R2(172) = 0.985 

 

   

Figure 17. Examples of the distribution of SvdEn2D (left column) and ML_SvdEn2D (middle column) 

for the normalization parameter EN = 0, EN = 0.5 and EN = 1 (R = 4). Comparison of horizontal 

profiles at i = 50 (right column). 

3.4. Results of Fitting SampEn2D, PermEn2D and NNetEn2D Entropy Using GB Regression and 

Test Set 

The R2 values of ML_SvdEn2D, ML_SampEn2D, ML_PermEn2D and ML_NNetEn2D for 

the normalization parameter EN = 1 are shown in Figure 18. The figure also shows the 

average levels of R2mean. R2mean have high values of R2mean > 0.9 for ML_SvdEn2D and 

ML_NNetEn2D, and low values for ML_SampEn2D and ML_PermEn2D. 

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n

tr
o

p
y

j

 SvdEn
2D

 ML_SvdEn
2D

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n
tr

o
p

y

j

 SvdEn
2D

 ML_SvdEn
2D

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n

tr
o

p
y

j

 SvdEn
2D

 ML_SvdEn
2D

Figure 17. Examples of the distribution of SvdEn2D (left column) and ML_SvdEn2D (middle column)
for the normalization parameter EN = 0, EN = 0.5 and EN = 1 (R = 4). Comparison of horizontal
profiles at i = 50 (right column).

3.4. Results of Fitting SampEn2D, PermEn2D and NNetEn2D Entropy Using GB Regression and
Test Set

The R2 values of ML_SvdEn2D, ML_SampEn2D, ML_PermEn2D and ML_NNetEn2D
for the normalization parameter EN = 1 are shown in Figure 18. The figure also shows the
average levels of R2

mean. R2
mean have high values of R2

mean > 0.9 for ML_SvdEn2D and
ML_NNetEn2D, and low values for ML_SampEn2D and ML_PermEn2D.

A comparison of the distributions of SampEn2D and ML_SampEn2D, as well as
PermEn2D and ML_PermEn2D for image No. 172, is shown in Figure 19, which also
shows the entropy profiles for i = 50.



Remote Sens. 2022, 14, 5983 17 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 25 
 

 

 

Figure 18. The value of the R2 metrics for all images from the database for ML_SvdEn2D, 

ML_SampEn2D, ML_PermEn2D and ML_NNetEn2D for the normalization parameter EN = 1. The fig-

ure also shows the average levels of R2mean (horizontal lines). 

A comparison of the distributions of SampEn2D and ML_SampEn2D, as well as Per-

mEn2D and ML_PermEn2D for image No. 172, is shown in Figure 19, which also shows the 

entropy profiles for i = 50. 

A comparison of the distributions of NNetEn2D and ML_NNetEn2D for image No. 172 

is shown in Figure 20, which also shows the entropy profiles for i = 50. 

SampEn2D 
ML_SampEn2D 

R2(172) = 0.628 
 

   

PermEn2D 
ML_PermEn2D 

R2(172) = 0.535 
 

   

Figure 19. Examples of the distribution of SampEn2D, PermEn2D and their ML models for the nor-

malization parameter EN = 1 (R = 4). Comparison of horizontal profiles at i = 50 (on the right). 

0 20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

1.0

1.2

 ML_SampEn
2D

 ML_PermEn
2D

R
2

n

 ML_SvdEn
2D

 ML_NNetEn
2D

0.966

0.472
0.553

n = 172

0.941

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n

tr
o
p
y

j

 SampEn
2D

 ML_SampEn
2D

0 50 100 150 200 250
0.0

0.5

1.0

E
n

tr
o
p
y

j

 PermEn
2D

 ML_PermEn
2D

Figure 18. The value of the R2 metrics for all images from the database for ML_SvdEn2D,
ML_SampEn2D, ML_PermEn2D and ML_NNetEn2D for the normalization parameter EN = 1. The
figure also shows the average levels of R2

mean (horizontal lines).

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 18. The value of the R2 metrics for all images from the database for ML_SvdEn2D, 
ML_SampEn2D, ML_PermEn2D and ML_NNetEn2D for the normalization parameter EN = 1. The fig-
ure also shows the average levels of R2mean (horizontal lines). 

A comparison of the distributions of SampEn2D and ML_SampEn2D, as well as Per-
mEn2D and ML_PermEn2D for image No. 172, is shown in Figure 19, which also shows the 
entropy profiles for i = 50. 

A comparison of the distributions of NNetEn2D and ML_NNetEn2D for image No. 172 
is shown in Figure 20, which also shows the entropy profiles for i = 50. 

SampEn2D ML_SampEn2D 

R2(172) = 0.628 
 

   

PermEn2D 
ML_PermEn2D 

R2(172) = 0.535  

   
Figure 19. Examples of the distribution of SampEn2D, PermEn2D and their ML models for the nor-
malization parameter EN = 1 (R = 4). Comparison of horizontal profiles at i = 50 (on the right). 

0 20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

1.0

1.2

 ML_SampEn2D

 ML_PermEn2D

R
2

n

 ML_SvdEn2D

 ML_NNetEn2D

0.966

0.472
0.553

n = 172

0.941

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
tro

py

j

 SampEn2D

 ML_SampEn2D

0 50 100 150 200 250
0.0

0.5

1.0

En
tro

py

j

 PermEn2D

 ML_PermEn2D

Figure 19. Examples of the distribution of SampEn2D, PermEn2D and their ML models for the
normalization parameter EN = 1 (R = 4). Comparison of horizontal profiles at i = 50 (on the right).

A comparison of the distributions of NNetEn2D and ML_NNetEn2D for image No. 172
is shown in Figure 20, which also shows the entropy profiles for i = 50.

It can be seen that the approximation of SampEn2D and PermEn2D is significantly
inferior to the approximation of SvdEn2D and NNetEn2D. The distributions and profiles



Remote Sens. 2022, 14, 5983 18 of 25

for NNetEn2D practically coincide, which indicates the applicability of the ML regres-
sion entropy approximation model. The best distribution contrast of NNetEn2D and
ML_NNetEn2D is observed for EN ≥ 0.5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 25 
 

 

It can be seen that the approximation of SampEn2D and PermEn2D is significantly in-
ferior to the approximation of SvdEn2D and NNetEn2D. The distributions and profiles for 
NNetEn2D practically coincide, which indicates the applicability of the ML regression en-
tropy approximation model. The best distribution contrast of NNetEn2D and 
ML_NNetEn2D is observed for EN ≥ 0.5. 

 
NNetEn2D  

EN = 0 

ML_NNetEn2D  
EN = 0  

R2(172) = 0.814 
 

   
 

NNetEn2D  
EN = 0.5 

ML_NNetEn2D  
EN = 0.5 

R2(172) = 0.954 
 

   
 

NNetEn2D, 
EN = 1 

ML_NNetEn2D, 
EN = 1 

R2(172) = 0.976 
 

   
Figure 20. Examples of the distribution of NNetEn2D and its ML model (ML_NNetEn2D) for the nor-
malization parameter EN = 1 (R = 4). Comparison of horizontal profiles at i = 50 (on the right). 

3.5. Comparative Characteristics of GB Regression for Approximating Entropies of Various 
Types and Lengths of the Time Series 

Comparative characteristics of the GB regression for the SvdEn2D, SampEn2D, Per-
mEn2D and NNetEn2D approximation for a spherical kernel with radius R = 4 are shown in 
Table 3. The table shows the R2 metric parameters and time costs when we were calculat-
ing one image using one processor thread. 

The value of R2mean has a high value close to 1 for ML_SvdEn and ML_NNetEn, which 
indicates a good approximation of these types of entropies by the ML model. In addition, 

0 50 100 150 200 250
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

En
tro

py

j

 NNetEn2D

 ML_NNetEn2D

0 50 100 150 200 250
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 NNetEn2D

 ML_NNetEn2D
En

tro
py

j

0 50 100 150 200 250
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 NNetEn2D

 ML_NNetEn2D

En
tro

py

j

Figure 20. Examples of the distribution of NNetEn2D and its ML model (ML_NNetEn2D) for the
normalization parameter EN = 1 (R = 4). Comparison of horizontal profiles at i = 50 (on the right).

3.5. Comparative Characteristics of GB Regression for Approximating Entropies of Various Types
and Lengths of the Time Series

Comparative characteristics of the GB regression for the SvdEn2D, SampEn2D,
PermEn2D and NNetEn2D approximation for a spherical kernel with radius R = 4 are
shown in Table 3. The table shows the R2 metric parameters and time costs when we were
calculating one image using one processor thread.

The value of R2
mean has a high value close to 1 for ML_SvdEn and ML_NNetEn, which

indicates a good approximation of these types of entropies by the ML model. In addition,
the standard deviation values for ML_SvdEn2D and ML_NNetEn2D are low, indicating a
good approximation of all of the 200 images from the Sentinel-2 database.



Remote Sens. 2022, 14, 5983 19 of 25

The entropy distribution calculation times for one image with 256 × 256 pixels for
SvdEn2D, SampEn2D and PermEn2D were calculated in seconds, and they practically coin-
cide with the calculation of their models. There is a slight acceleration of the calculation
when we were applying the ML regression for SampEn2D and PermEn2D.

The estimated calculation time for one image for NNetEn2D is very long; it is about
8 days, therefore, the calculations were carried out in parallel on 30 processors. At the
same time, the ML regression allowed us to calculate ML_NNetEn2D in a couple of seconds,
therefore, for this type of entropy, there is an acceleration of the calculation by more than
3 × 105 times. This acceleration allows ML_NNetEn2D to be widely used in Sentinel-2
image processing.

Table 3. Comparative characteristics of GB regression for ML models (R = 4, N = 49).

Entropy ML
Model R2

mean σ R2(172)
Entropy

Calculation Time, s
ML Model

Calculation Time, s
Calculation
Acceleration

SvdEn2D
ML_SvdEn2D

(EN = 1) 0.966 0.018 0.985 2.14 3.31 0.64

SampEn2D ML_SampEn2D 0.472 0.113 0.628 2.35 1.26 1.86
PermEn2D ML_PermEn2D 0.553 0.075 0.535 3.68 1.51 2.44

NNetEn2D
ML_NNetEn2D

(EN = 1) 0.942 0.02 0.976 684195 2.01 340395

Comparative characteristics of the approximation for ML_SvdEn2D at different lengths
of time series N using spherical kernels with a radius in the range R = 1 . . . 6 are shown in
Table 4. The best approximation corresponds to the shortest time series N = 5 for which
R2

mean = 0.997, and it comes close to the maximum value of one. In addition, the standard
deviation σ for N = 5 is abnormally low; it is two orders of magnitude smaller than it is for
N = 113.

The dependence of R2
mean on the length of the time series N is shown in Figure 21.

It can be seen that R2
mean decreases with an increasing N value. Table 4 also shows that the

standard deviation for ML_SvdEn2D increases with increasing N, and this is reflected in
the increase in the difference between the minimum and maximum values of R2

mean.
In general, for both N = 5 and N = 113, there is a good approximation of SvdEn ML by

regression with a high value of the metric R2
mean > 0.9.

Examples of the distribution of ML_SvdEn2D for spherical kernels R = 1, 3 and 6 are
shown in Figure 22. ML_SvdEn2D for R = 1 (N = 5) has the sharp boundaries of the regions,
while for R = 6 (N = 113) the entropy distribution pattern looks blurry. A discussion of the
advantages of kernels of different radii is given in the discussion.

Table 4. Comparative characteristics of approximation for ML_SvdEn2D for different lengths of time
series N (EN = 1).

R N R2
mean σ

R2

Minimum
R2

Maximum R2(172)

1 5 0.997 0.00094 0.99452 0.99764 0.99881
2 13 0.991 0.0051 0.97063 0.99836 0.99641
3 29 0.977 0.012 0.92733 0.99258 0.99129
4 49 0.966 0.018 0.89146 0.97029 0.98559
5 81 0.955 0.023 0.85312 0.99005 0.9793
6 113 0.947 0.026 0.82805 0.99004 0.97186



Remote Sens. 2022, 14, 5983 20 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 21. Dependence of R2mean on the length of the time series N for ML_SvdEn2D (EN = 1). 

Examples of the distribution of ML_SvdEn2D for spherical kernels R = 1, 3 and 6 are 

shown in Figure 22. ML_SvdEn2D for R = 1 (N = 5) has the sharp boundaries of the regions, 

while for R = 6 (N = 113) the entropy distribution pattern looks blurry. A discussion of the 

advantages of kernels of different radii is given in the discussion. 

ML_SvdEn2D 

R2(172) = 0.998 

R = 1 

ML_SvdEn2D 

R2(172) = 0.991 

R = 3 

ML_SvdEn2D 

R2(172) = 0.971 

R = 6 

   

Figure 22. Examples of ML_SvdEn2D distribution for spherical kernels R = 1, 3, 6 (EN = 1). 

3.6. Results of Approximation of Synthetic Time Series 

A bifurcation diagram for logistic map is shown in Figure 23a, and the dependence of 

SvdEn on the control parameter r in the chaotic time series (Equation (21)) is presented in 

Figure 23b (black color line). The ML_SvdEn model trained on Plank map is shown in Figure 

23b (red color line). It can be noted that ML_SvdEn (r) repeated the features of the SvdEn (r) 

dependence, and in the range of r = 3.628, 3.742 and 3.838, it also has a minimum value as 

the original entropy. The largest deviations are observed for the region 3.448 < r < 3.582, 

where the bifurcation diagram shows the presence of a repeated pattern of several values in 

the time series. This model has a high Pearson correlation coefficient ~0.968. A model trained 

on Sentinel images No. 1 and No. 2 is shown in Figure 23c (blue color line), and it has a 

lower Pearson correlation coefficient ~0.706. The model repeats some of the patterns of the 

original dependence, and there is a linear shift in the values. 

0 20 40 60 80 100 120

0.7

0.8

0.9

1.0

R
2 m

ea
n

N

Figure 21. Dependence of R2
mean on the length of the time series N for ML_SvdEn2D (EN = 1).

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 21. Dependence of R2mean on the length of the time series N for ML_SvdEn2D (EN = 1). 

Examples of the distribution of ML_SvdEn2D for spherical kernels R = 1, 3 and 6 are 
shown in Figure 22. ML_SvdEn2D for R = 1 (N = 5) has the sharp boundaries of the regions, 
while for R = 6 (N = 113) the entropy distribution pattern looks blurry. A discussion of the 
advantages of kernels of different radii is given in the discussion. 

ML_SvdEn2D 

R2(172) = 0.998 
R = 1 

ML_SvdEn2D 

R2(172) = 0.991 
R = 3 

ML_SvdEn2D 

R2(172) = 0.971 
R = 6 

   
Figure 22. Examples of ML_SvdEn2D distribution for spherical kernels R = 1, 3, 6 (EN = 1). 

3.6. Results of Approximation of Synthetic Time Series 
A bifurcation diagram for logistic map is shown in Figure 23a, and the dependence of 

SvdEn on the control parameter r in the chaotic time series (Equation (21)) is presented in 
Figure 23b (black color line). The ML_SvdEn model trained on Plank map is shown in Figure 
23b (red color line). It can be noted that ML_SvdEn (r) repeated the features of the SvdEn (r) 
dependence, and in the range of r = 3.628, 3.742 and 3.838, it also has a minimum value as 
the original entropy. The largest deviations are observed for the region 3.448 < r < 3.582, 
where the bifurcation diagram shows the presence of a repeated pattern of several values in 
the time series. This model has a high Pearson correlation coefficient ~0.968. A model trained 
on Sentinel images No. 1 and No. 2 is shown in Figure 23c (blue color line), and it has a 
lower Pearson correlation coefficient ~0.706. The model repeats some of the patterns of the 
original dependence, and there is a linear shift in the values. 

0 20 40 60 80 100 120
0.7

0.8

0.9

1.0

R
2 m

ea
n

N

Figure 22. Examples of ML_SvdEn2D distribution for spherical kernels R = 1, 3, 6 (EN = 1).

3.6. Results of Approximation of Synthetic Time Series

A bifurcation diagram for logistic map is shown in Figure 23a, and the dependence
of SvdEn on the control parameter r in the chaotic time series (Equation (21)) is presented
in Figure 23b (black color line). The ML_SvdEn model trained on Plank map is shown
in Figure 23b (red color line). It can be noted that ML_SvdEn (r) repeated the features
of the SvdEn (r) dependence, and in the range of r = 3.628, 3.742 and 3.838, it also has
a minimum value as the original entropy. The largest deviations are observed for the
region 3.448 < r < 3.582, where the bifurcation diagram shows the presence of a repeated
pattern of several values in the time series. This model has a high Pearson correlation
coefficient ~0.968. A model trained on Sentinel images No. 1 and No. 2 is shown in
Figure 23c (blue color line), and it has a lower Pearson correlation coefficient ~0.706. The
model repeats some of the patterns of the original dependence, and there is a linear shift in
the values.



Remote Sens. 2022, 14, 5983 21 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 23. Bifurcation diagrams for logistic map (Equation (21)) (a); the dependence of SvdEn and 

ML_SvdEn on the parameter r (N = 29, EN = 0, d = 20 and delay = 1) (b) the dependence of ML_SvdEn 

trained on Sentinel images (c). 

4. Discussion 

According to the data presented in Figure 18, the ML_SvdEn2D and ML_NNetEn2D 

regression models approximate the original entropy functions much better than the 

ML_SampEn2D and ML_PermEn2D ones do. There are three possible reasons for this. Firstly, 

ML_SvdEn2D and ML_NNetEn2D depend on the EN parameter (see Figure 10); while 

ML_SampEn2D and ML_PermEn2D are independent of EN (see Figure 11). This leads to the 

effective size of the training dataset for ML_SampEn2D and ML_PermEn2D being only half 

the size since it is formed with two images and two values of EN = 0 and EN = 1. Secondly, 

it may be related to the discrete nature of the SampEn and PermEn functions. The 

discreteness of the PermEn values is related to the finite number of permutations (Equation 

(12)), while SampEn is related to a finite number of template vectors (Equation (14)). In 

contrast, the calculated SvdEn values are continuous (Equation (10)). Taking into account 

Equation (15), the NNetEn values can also be considered to be continuous. Regression 

models are much better at approximating continuous functions, and discrete ones can cause 

prediction errors. Thirdly, the entropy function is highly nonlinear. For example, Figure 19 

shows a section of SampEn2D and ML_SampEn2D, which shows a sharp change in the values 

of SampEn2D. In the case of an insufficient number of training samples corresponding to the 

extremes on the curve (Figure 19), the regression model will produce some intermediate 

values, thereby smoothing the curve and reducing the approximation accuracy. All of the 

three possible reasons need to be studied in future work. 

The obtained results indicate that the ML regression approximates SvdEn2D and 

NNetEn2D the best (R2mean > 0.9). 

Figure 23. Bifurcation diagrams for logistic map (Equation (21)) (a); the dependence of SvdEn and
ML_SvdEn on the parameter r (N = 29, EN = 0, d = 20 and delay = 1) (b) the dependence of ML_SvdEn
trained on Sentinel images (c).

4. Discussion

According to the data presented in Figure 18, the ML_SvdEn2D and ML_NNetEn2D re-
gression models approximate the original entropy functions much better than the
ML_SampEn2D and ML_PermEn2D ones do. There are three possible reasons for this.
Firstly, ML_SvdEn2D and ML_NNetEn2D depend on the EN parameter (see Figure 10);
while ML_SampEn2D and ML_PermEn2D are independent of EN (see Figure 11). This
leads to the effective size of the training dataset for ML_SampEn2D and ML_PermEn2D
being only half the size since it is formed with two images and two values of EN = 0 and
EN = 1. Secondly, it may be related to the discrete nature of the SampEn and PermEn
functions. The discreteness of the PermEn values is related to the finite number of per-
mutations (Equation (12)), while SampEn is related to a finite number of template vectors
(Equation (14)). In contrast, the calculated SvdEn values are continuous (Equation (10)).
Taking into account Equation (15), the NNetEn values can also be considered to be con-
tinuous. Regression models are much better at approximating continuous functions, and
discrete ones can cause prediction errors. Thirdly, the entropy function is highly nonlinear.
For example, Figure 19 shows a section of SampEn2D and ML_SampEn2D, which shows a
sharp change in the values of SampEn2D. In the case of an insufficient number of training
samples corresponding to the extremes on the curve (Figure 19), the regression model
will produce some intermediate values, thereby smoothing the curve and reducing the
approximation accuracy. All of the three possible reasons need to be studied in future work.

The obtained results indicate that the ML regression approximates SvdEn2D and
NNetEn2D the best (R2

mean > 0.9).



Remote Sens. 2022, 14, 5983 22 of 25

A comparison of the sections ML_SvdEn2D and ML_NNetEn2D in the area of the image
No. 172 is shown in Figure 24. ML_NNetEn2D more confidently identifies the areas with
increased entropy, and it does it a little better than ML_SvdEn2D. The entropy peaks under
labels 2, 3 and 4, which are characteristic of the edges of rivers and reservoirs and are more
clearly distinguished in ML_NNetEn2D. Between labels 2 and 3, the entropy fluctuations
are smaller for ML_NNetEn2D, and this frequency corresponds to cultivated fields, with a
relatively smooth texture. The buildings in the region of label 1 has an increased entropy
value for both types of entropy. The road labeled 5 also has a sharper entropy peak profile
for ML_NNetEn2D.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 25 
 

 

A comparison of the sections ML_SvdEn2D and ML_NNetEn2D in the area of the im-
age No. 172 is shown in Figure 24. ML_NNetEn2D more confidently identifies the areas 
with increased entropy, and it does it a little better than ML_SvdEn2D. The entropy peaks 
under labels 2, 3 and 4, which are characteristic of the edges of rivers and reservoirs and 
are more clearly distinguished in ML_NNetEn2D. Between labels 2 and 3, the entropy fluc-
tuations are smaller for ML_NNetEn2D, and this frequency corresponds to cultivated 
fields, with a relatively smooth texture. The buildings in the region of label 1 has an in-
creased entropy value for both types of entropy. The road labeled 5 also has a sharper 
entropy peak profile for ML_NNetEn2D. 

The results presented in this paper are of a fundamental nature, as they show the uni-
versality of approaches for calculating entropies of various nature, and the possibility of 
their approximation by the ML regression method. 

 
Figure 24. Comparison of the sections ML_SvdEn2D and ML_NNetEn2D (EN = 1, R = 4). 

From a practical point of view, the entropy calculation using ML models can be con-
ducted faster than the calculation using the original formulas, which is important when one 
is working with big data. As shown in Table 3, the calculation time can be significantly re-
duced and an acceleration of several times for PermEn2D and more than 105 times for 
NNetEn2D can be achieved. Due to the fact that NNetEn2D gives a more informative picture 
of the entropy distribution than other the entropies can, the acceleration of its calculations 
is an important achievement. 

The paper shows a decrease in the accuracy of the entropy approximation with an in-
crease in the length of the time series (see Figure 21). This trend is understandable, since an 
increase in the number of elements in the input vector of the regression model leads to a 
decrease in the accuracy of the regression. Longer time series have more combinations for 
which the entropy varies significantly. For the short time series with a number of elements 

Figure 24. Comparison of the sections ML_SvdEn2D and ML_NNetEn2D (EN = 1, R = 4).

The results presented in this paper are of a fundamental nature, as they show the
universality of approaches for calculating entropies of various nature, and the possibility
of their approximation by the ML regression method.

From a practical point of view, the entropy calculation using ML models can be
conducted faster than the calculation using the original formulas, which is important when
one is working with big data. As shown in Table 3, the calculation time can be significantly
reduced and an acceleration of several times for PermEn2D and more than 105 times for
NNetEn2D can be achieved. Due to the fact that NNetEn2D gives a more informative picture
of the entropy distribution than other the entropies can, the acceleration of its calculations
is an important achievement.



Remote Sens. 2022, 14, 5983 23 of 25

The paper shows a decrease in the accuracy of the entropy approximation with an
increase in the length of the time series (see Figure 21). This trend is understandable, since
an increase in the number of elements in the input vector of the regression model leads to a
decrease in the accuracy of the regression. Longer time series have more combinations for
which the entropy varies significantly. For the short time series with a number of elements
of N = 5, the regression accuracy reaches R2 > 0.99 and higher, which indicates a very good
approximation. An example of an ML_SvdEn2D distribution with a kernel radius value of
R = 1 (N = 5) is shown in Figure 22. The image is distinguished by increased clarity, but it
loses its generalizing ability for the cases R = 3 and R = 6 since entropy is a characteristic
of a set of elements. The regression model calculating the entropy for longer time series
N = 113 had an R2 > 0.82 for ML_SvdEn2D, which is also a good result.

In the study, the SvdEn2D, PermEn2D and SampEn2D entropies were calculated for the
first time using the circular kernel approach. The presented results indicate the applicability
of such an approach, and the obtained distributions in Figures 10 and 11 are reflecting
the real distribution of the irregularity of the image. The use of circular kernels and ML
regression can be applied to other types of entropies in the future.

The results of the approximation of synthetic time series trained on the Planck map
showed a high Pearson correlation coefficient of ~0.968 for the logistic map. This experiment
showed the versatility of the model, when a model that was trained on one type of data
approximates the data of another type well. The most widely used one in the scientific
community is the logistic map, for which the regions with high and low entropy which
are calculated by different methods are known [33]. The original method SvdEn and
its approximation model ML_SvdEn also correctly identify the areas of chaos and order
depending on the control parameter r. ML_SvdEn (r) repeated the features of the SvdEn (r)
dependence, and in the ranges of r = 3.628, 3.742 and 3.838, it also has a minimum value
as the original entropy (Figure 23b, red line). The largest differences in ML_SvdEn are
observed at lower values of SvdEn, where the time series are periodical. We believe that the
accuracy of the ML_SvdEn approximation can be increased by improving the time series
normalization procedure in further studies. The model trained on Sentinel-2 images has a
lower Pearson correlation coefficient of ~ 0.702 for the synthetic time series. However, the
values of the high-entropy chaotic series and the local minimum in the range of r = 3.628
and 3.838 were repeated (Figure 23c, blue line). This shows the importance of choosing a
training base for the ML entropy approximations. The completeness of the training base
plays a decisive role. The model trained on Sentinel images perfectly approximates entropy
of the Sentinel images, but it works less well with the synthetic series. The issues related to
the optimization of the training base will be considered in subsequent studies.

5. Conclusions

The results presented in this paper are of a fundamental nature as they show the
universality of the approaches for calculating entropies of various natures (SvdEn, PermEn,
SampEn, NNetEn) and the possibility of their approximation by the ML regression method.
The high accuracy of the ML models for certain types of entropies are shown: SvdEn2D
(R2

mean = 0.966) and NNetEn2D (R2
mean = 0.941). The applicability of the method for short

time series with a length from N = 5 to N = 113 elements is shown. The calculation of
the entropy time series with a length of N ≤ 113 by using the ML regression method can
be of great practical use in many scientific and technical fields. A tendency for the R2

metric to decrease with an increase in the length of the time series was found. It is shown
that an entropy calculation using ML models can be completed faster than a calculation
using the original formulas can, which is important when one is working with big data.
The application to remote sensing is shown by calculating the 2D entropy distribution of
Sentinel-2 images, and R2 estimates of the approximation error were made. The versatility
of the model on a synthetic time series is shown.



Remote Sens. 2022, 14, 5983 24 of 25

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14235983/s1, Sentinel-2 images dataset.

Author Contributions: Conceptualization, A.V.; methodology A.V., M.B., M.P.W. and A.T.; software,
M.B.; validation, A.V., M.B., M.P.W. and A.T.; formal analysis, M.P.W.; investigation, A.V. and M.B.;
resources, M.P.W. and A.T.; data curation, M.B. and M.P.W.; writing—original draft preparation,
A.V., M.B., M.P.W. and A.T.; writing—review and editing, A.V., M.B., M.P.W. and A.T.; visualization,
A.V. and M.B.; supervision, A.V.; project administration, A.V.; funding acquisition, A.V. and A.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Russian Science Foundation (grant no. 22-11-00055,
https://rscf.ru/en/project/22-11-00055/, accessed on 22 June 2022)).

Data Availability Statement: The data used in this study can be shared with the parties, provided
that the article is cited.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. History of Entropy—Wikipedia. Available online: https://en.wikipedia.org/wiki/History_of_entropy (accessed on 6 September 2022).
2. Boltzmann’s Entropy Formula—Wikipedia. Available online: https://en.wikipedia.org/wiki/Boltzmann%27s_entropy_formula#

cite_note-2 (accessed on 6 September 2022).
3. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
4. Kolmogorov, A.N. On Tables of Random Numbers. Theor. Comput. Sci. 1998, 207, 387–395. [CrossRef]
5. Von Neumann Entropy—Wikipedia. Available online: https://en.wikipedia.org/wiki/Von_Neumann_entropy (accessed on

6 September 2022).
6. Baez, J.C. Rényi Entropy and Free Energy. Entropy 2022, 24, 706. [CrossRef] [PubMed]
7. Koutsoyiannis, D.; Sargentis, G.-F. Entropy and Wealth. Entropy 2021, 23, 1356. [CrossRef]
8. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive

Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]
9. Yu, S.; Ma, J. Deep Learning for Geophysics: Current and Future Trends. Rev. Geophys. 2021, 59, e2021RG000742. [CrossRef]
10. Yulianto, F.; Fitriana, H.L.; Sukowati, K.A.D. Integration of Remote Sensing, GIS, and Shannon’s Entropy Approach to Conduct

Trend Analysis of the Dynamics Change in Urban/Built-up Areas in the Upper Citarum River Basin, West Java, Indonesia.
Model. Earth Syst. Environ. 2020, 6, 383–395. [CrossRef]

11. Al Mashagbah, A.F. The Use of GIS, Remote Sensing and Shannon’s Entropy Statistical Techniques to Analyze and Monitor the
Spatial and Temporal Patterns of Urbanization and Sprawl in Zarqa City, Jordan. J. Geogr. Inf. Syst. 2016, 8, 293–300. [CrossRef]

12. Qi, C. Maximum Entropy for Image Segmentation Based on an Adaptive Particle Swarm Optimization. Appl. Math. Inf. Sci.
2014, 8, 3129–3135. [CrossRef]

13. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern.
1973, SMC-3, 610–621. [CrossRef]

14. Gao, T.; Zheng, L.; Xu, W.; Piao, Y.; Feng, R.; Chen, X.; Zhou, T. An Automatic Exposure Method of Plane Array Remote Sensing
Image Based on Two-Dimensional Entropy. Sensors 2021, 21, 3306. [CrossRef] [PubMed]

15. Rahman, M.T.; Kehtarnavaz, N.; Razlighi, Q.R. Using Image Entropy Maximum for Auto Exposure. J. Electron. Imaging 2011, 20,
1–10. [CrossRef]

16. Sun, W.; Chen, H.; Tang, H.; Liu, Y. Unsupervised Image Change Detection Means Based on 2-D Entropy. In Proceedings of the
the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010; pp. 4199–4202.

17. Azami, H.; da Silva, L.E.V.; Omoto, A.C.M.; Humeau-Heurtier, A. Two-Dimensional Dispersion Entropy: An Information-
Theoretic Method for Irregularity Analysis of Images. Signal Process. Image Commun. 2019, 75, 178–187. [CrossRef]

18. Silva, L.E.V.; Filho, A.C.S.S.; Fazan, V.P.S.; Felipe, J.C.; Junior, L.O.M. Two-Dimensional Sample Entropy: Assessing Image Texture
through Irregularity. Biomed. Phys. Eng. Express 2016, 2, 45002. [CrossRef]

19. Ribeiro, H.V.; Zunino, L.; Lenzi, E.K.; Santoro, P.A.; Mendes, R.S. Complexity-Entropy Causality Plane as a Complexity Measure
for Two-Dimensional Patterns. PLoS ONE 2012, 7, e40689. [CrossRef]

20. Moore, C.; Marchant, T. The Approximate Entropy Concept Extended to Three Dimensions for Calibrated, Single Parameter
Structural Complexity Interrogation of Volumetric Images. Phys. Med. Biol. 2017, 62, 6092–6107. [CrossRef]

21. Velichko, A.; Wagner, M.P.; Taravat, A.; Hobbs, B.; Ord, A. NNetEn2D: Two-Dimensional Neural Network Entropy in Remote
Sensing Imagery and Geophysical Mapping. Remote Sens. 2022, 14, 2166. [CrossRef]

22. Chagas, E.T.C.; Frery, A.C.; Rosso, O.A.; Ramos, H.S. Analysis and Classification of SAR Textures Using Information Theory.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 663–675. [CrossRef]

23. Carincotte, C.; Derrode, S.; Bourennane, S. Unsupervised Change Detection on SAR Images Using Fuzzy Hidden Markov Chains.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14235983/s1
https://www.mdpi.com/article/10.3390/rs14235983/s1
https://rscf.ru/en/project/22-11-00055/
https://en.wikipedia.org/wiki/History_of_entropy
https://en.wikipedia.org/wiki/Boltzmann%27s_entropy_formula#cite_note-2
https://en.wikipedia.org/wiki/Boltzmann%27s_entropy_formula#cite_note-2
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1016/S0304-3975(98)00075-9
https://en.wikipedia.org/wiki/Von_Neumann_entropy
http://doi.org/10.3390/e24050706
http://www.ncbi.nlm.nih.gov/pubmed/35626588
http://doi.org/10.3390/e23101356
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1029/2021RG000742
http://doi.org/10.1007/s40808-019-00686-9
http://doi.org/10.4236/JGIS.2016.82025
http://doi.org/10.12785/amis/080654
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.3390/s21103306
http://www.ncbi.nlm.nih.gov/pubmed/34064545
http://doi.org/10.1117/1.3534855
http://doi.org/10.1016/j.image.2019.04.013
http://doi.org/10.1088/2057-1976/2/4/045002
http://doi.org/10.1371/journal.pone.0040689
http://doi.org/10.1088/1361-6560/aa75b0
http://doi.org/10.3390/rs14092166
http://doi.org/10.1109/JSTARS.2020.3031918
http://doi.org/10.1109/TGRS.2005.861007


Remote Sens. 2022, 14, 5983 25 of 25

24. Bouyahia, Z.; Benyoussef, L.; Derrode, S. Change Detection in Synthetic Aperture Radar Images with a Sliding Hidden Markov
Chain Model. J. Appl. Remote Sens. 2008, 2, 23526. [CrossRef]

25. Vallat, R. AntroPy: Entropy and Complexity of (EEG) Time-Series in Python. Available online: https://github.com/raphaelvallat/
antropy (accessed on 20 November 2022).

26. Stewart, G.W. On the Early History of the Singular Value Decomposition. SIAM Rev. 1993, 35, 551–566. [CrossRef]
27. Li, S.; Yang, M.; Li, C.; Cai, P. Analysis of Heart Rate Variability Based on Singular Value Decomposition Entropy. J. Shanghai Univ.

Engl. Ed. 2008, 12, 433–437. [CrossRef]
28. Jelinek, H.F.; Donnan, L.; Khandoker, A.H. Singular Value Decomposition Entropy as a Measure of Ankle Dynamics Efficacy in a

Y-Balance Test Following Supportive Lower Limb Taping. In Proceedings of the 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Berlin, Germany, 23–27 July 2019; pp. 2439–2442.

29. Anagnoste, S.; Caraiani, P. The Impact of Financial and Macroeconomic Shocks on the Entropy of Financial Markets. Entropy
2019, 21, 316. [CrossRef] [PubMed]

30. Alvarez-Ramirez, J.; Rodriguez, E. A Singular Value Decomposition Entropy Approach for Testing Stock Market Efficiency.
Phys. A Stat. Mech. Its Appl. 2021, 583, 126337. [CrossRef]

31. Strydom, T.; Dalla Riva, G.V.; Poisot, T. SVD Entropy Reveals the High Complexity of Ecological Networks. Front. Ecol. Evol.
2021, 9, 623141. [CrossRef]

32. Buisine, J.; Bigand, A.; Synave, R.; Delepoulle, S.; Renaud, C. Stopping Criterion during Rendering of Computer-Generated
Images Based on SVD-Entropy. Entropy 2021, 23, 75. [CrossRef]

33. Velichko, A.; Heidari, H. A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks. Entropy
2021, 23, 1432. [CrossRef]

34. Velichko, A. Neural Network for Low-Memory IoT Devices and MNIST Image Recognition Using Kernels Based on Logistic Map.
Electronics 2020, 9, 1432. [CrossRef]

35. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. Available online: http://yann.lecun.com/exdb/mnist/
(accessed on 9 November 2018).

36. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-Free AutoML via Meta-Learning.
arXiv 2020, arXiv:2007.04074.

http://doi.org/10.1117/1.2957968
https://github.com/raphaelvallat/antropy
https://github.com/raphaelvallat/antropy
http://doi.org/10.1137/1035134
http://doi.org/10.1007/s11741-008-0511-3
http://doi.org/10.3390/e21030316
http://www.ncbi.nlm.nih.gov/pubmed/33267030
http://doi.org/10.1016/j.physa.2021.126337
http://doi.org/10.3389/fevo.2021.623141
http://doi.org/10.3390/e23010075
http://doi.org/10.3390/e23111432
http://doi.org/10.3390/electronics9091432
http://yann.lecun.com/exdb/mnist/

	Introduction 
	Methods and Datasets 
	Time Series Normalization Method 
	Methods for Entropy Evaluation with Standard Methods 
	Singular Value Decomposition Entropy 
	Permutation Entropy 
	Sample Entropy 
	Neural Network Entropy 
	Method for 2D Entropy Calculation with Circular Kernels 

	Entropy Approximation by ML Regression Models 
	Dataset Description 
	Training Dataset 
	Hyperparameter Optimization and Training the Regression Model 
	Test Dataset Generation 
	Estimation the Accuracy of the ML Model 
	Synthetic Time Series Approximation Method 


	Results 
	Calculation of 2D Entropy with Variation of the Normalization Parameter EN 
	Comparison of Regression Algorithms Using Training Set 
	Results of Approximation SvdEn2D Using GB Regression and Test Set 
	Results of Fitting SampEn2D, PermEn2D and NNetEn2D Entropy Using GB Regression and Test Set 
	Comparative Characteristics of GB Regression for Approximating Entropies of Various Types and Lengths of the Time Series 
	Results of Approximation of Synthetic Time Series 

	Discussion 
	Conclusions 
	References

