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Abstract: This study demonstrates the use of multi-temporal LiDAR data to extract collapsed build-
ings and to monitor their removal process in Minami-Aso village, Kumamoto prefecture, Japan,
after the April 2016 Kumamoto earthquake. By taking the difference in digital surface models
(DSMs) acquired at pre- and post-event times, collapsed buildings were extracted and the results
were compared with damage survey data by the municipal government and aerial optical images.
Approximately 40% of severely damaged buildings showed a reduction in the average height within
a reduced building footprint between the pre- and post-event DSMs. Comparing the removal process
of buildings in the post-event periods with the damage classification result from the municipal
government, the damage level was found to affect judgements by the owners regarding demolition
and removal.

Keywords: the 2016 Kumamoto earthquake; collapsed building; DSM difference; building footprint;
building removal; damage classification; Minami-Aso village

1. Introduction

Remote sensing is a popular tool for extracting various information on damage sit-
uations in urban and rural areas resulting from natural hazards [1,2]. Optical and SAR
satellite sensors have frequently been used, because pre- and post-event images covering
affected areas are often available, and various change detection or classification techniques
have been applied for these images [3,4]. The change detection techniques usually extract
two-dimensional (2D) changes in objects on the Earth’s surface.

However, the damage situations of buildings and landslides can be expressed more
precisely by 3D changes [5]. To carry out 3D change detection, multi-temporal 3D models,
in the form of digital elevation models (DEMs) or CAD models, are necessary. DEMs [6,7]
are typically represented by a digital surface model (DSM), which includes trees and
buildings, and a digital terrain model (DTM), in which those Earth surface objects have
been removed. DSMs with texture are usually produced through the stereo-matching of
optical images [8,9] from satellites or aircraft, or more recently by using Structure-from-
Motion (SfM) techniques [10,11] for optical images [12,13] obtained using unmanned aerial
vehicles (UAVs).

A more direct way of generating DSMs is the use of airborne LiDAR data. The change
detection of urban areas from multi-temporal LiDAR data was demonstrated first for
ordinary (pre-disaster) times [14–16]. Since pre-event LiDAR data do not exist for most
natural disasters, a comparison of the post-event LiDAR data with pre-event DSM was
carried out on the basis of pre-event stereo images [17] or with the use of the local (roof)
surface properties of post-event LiDAR data [18] and other data out for the 2010 Haiti
earthquake [19,20].
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The direct comparison of pre- and post-earthquake LiDAR data was conducted for
the first time after the 2016 Kumamoto, Japan, earthquake with respect to crustal move-
ment [21], building damage [22,23], and landslides [24] in Mashiki town and its surrounding
areas. A direct comparison of pre- and post-event LiDAR data was also performed for the
2012 Hurricane Sandy in New Jersey, USA [25] and the 2016 Amatrice, Italy, earthquake [26].
However, in the case of Hurricane Sandy, the post-event point density was much coarser
(approximately 1/10) than that of the pre-event data. For the Amatrice case, the point
densities of the pre- and post-event LiDAR data were high enough to assess building
damage, both 1.5 points/m2, and thus, the DSM difference could successfully be used to
extract collapsed or heavily damaged buildings.

Remote sensing can also be used to monitor recovery and reconstruction processes
after major disasters [2]. Using very high-resolution optical images, Meslem et al. [27]
observed the damage situation and reconstruction of Boumerdes city after the 2003 Algeria
earthquake. Hoshi et al. [28] conducted urban recovery monitoring of Pisco city after the
2007 Pisco, Peru, earthquake. Hashemi-Parast et al. [29] evaluated the urban reconstruction
process of Bam city, Iran, after the 2003 Bam earthquake. These studies used high-resolution
optical satellite images, because they are easy to understand, and different satellite sensors
can be used for long-term monitoring.

Recently, the authors obtained one pre-event (January 2013) and four post-event
(April 2016 to November 2017) LiDAR data for Minami-Aso village, where surface faulting
appeared, numerous landslides occurred, and a large number of buildings collapsed in the
16 April 2016 Kumamoto earthquake [30,31]. After the earthquake, the restoration works
of slopes and the reconstruction of roads and bridges were carried out intensively [32]. The
point density of the LiDAR data ranges from 5 to 39 point/m2, which is much higher than
other datasets. It is also unique that five datasets were acquired in only a 4.5-year period,
including the pre-event, co-event, and recovery stages of the natural disaster.

In this study, we employ five-temporal LiDAR DSM data to extract buildings collapsed
due to the Kumamoto earthquake and to monitor their removal process. The damage
assessment results for the pre- and post-event DSMs are then compared with damage
survey data obtained from the municipal government and aerial optical images. The four
sets of post-event LiDAR DSMs are also compared within the building footprints. The
obtained removal periods of the buildings are then compared with their damage levels as
reported by the municipal government. The objective of this research is to examine the
usability of multi-temporal high-density LiDAR data in the disaster cycle.

2. The 2016 Kumamoto Earthquake and Minami-Aso Village

An Mw 6.2 earthquake hit the Kumamoto prefecture in Kyushu Island, Japan, on
14 April 2016 at 21:26 (JST), with the epicenter in the Hinagu fault at a shallow depth.
Considerable structural damages and human casualties were reported as a result of this
event [30]. On 16 April 2016 at 01:25 (JST), 28 h after the first event, another earthquake of
Mw 7.0 occurred in the Futagawa fault, located close to the Hinagu fault. Thus, the first
event was called the “foreshock” and the second the “main shock”.

Extensive impacts due to strong shaking and landslides were associated by the Ku-
mamoto earthquake sequence. A total of fifty (50) direct-cause deaths were counted, mostly
due to the collapse of wooden houses in Mashiki town [33] and landslides in Minami-Aso
village [32]. Figure 1 shows the location of the causative faults and Japanese National GNSS
Earth Observation Network System (GEONET) stations, operated by the Geospatial Infor-
mation Authority of Japan (GSI), in the source area and three onsite photos in Minami-Aso
village during our field survey on 16 June 2016.

Minami-Aso village (area: 137.3 km2, population: 11,500) is located in the western
caldera of the Aso volcano. The study area includes two heavily affected districts, Kawayo
and Tateno, in Minami-Aso village, as shown in the aerial photo in Figure 2, taken by the
GSI on 16 April 2016, several hours after the main shock [34]. The largest landslide in the
event, which caused the collapse of the Aso-Ohashi bridge, is seen in Kawayo. The eastern
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edge of the causative fault [31] appeared on the ground surface in Kawayo, and many
wooden houses and apartment buildings collapsed in this area. Tateno district was also
severely affected by strong shaking, and the failure of a water tank on the hill caused water
to flow into the district [35].

1 

 

 

  Figure 1. (a) Locations of the causative faults of the 2016 Kumamoto earthquake sequence, GNSS
stations, and Minami-Aso village on a GSI map [34]. Three ground photos taken in a field survey by
the authors on 16 June 2016; (b) the largest landslide near Kawayo; (c) surface faulting in Kawayo;
(d) GEONET Choyo station, where the largest horizontal movement of 97 cm was recorded.

 

2 

 

  Figure 2. Orthorectified aerial photo of the study area in Minami-Aso village, including Kawayo and
Tateno districts, taken by GSI on 2016/04/16 [34].

After the earthquake, the municipal government conducted damage assessment for
most of the buildings in Minami-Aso village [36] using the Japanese unified loss evaluation
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method [37]. A total of 4733 buildings were classified into five damage classes: Major (L4),
Moderate+ (L3), Moderate- (L2), Minor (L1), and No damage (L0), where L# means the
level of building damage in terms of monetary loss [37,38]. The approximate locations
of building points in the damage survey were also included in the database produced by
the local government. Based on the geo-location data, we manually shifted them to the
building footprints of the GSI’s base map, since in some cases, the building center points in
the database did not fall inside the footprints. Due to this time-consuming work, we must
limit the area of the data matching to only the parts of the village (i.e., the two districts)
in which the damage from the earthquake was most extensive. Since the objective of this
research is the extraction of totally collapsed buildings (a part of L4 buildings), this data
selection is considered not to affect the extraction result too much.

3. Multi-Temporal LiDAR Data and Optical Images for Minami-Aso Village

Pre- and post-event LiDAR data, provided by the GSI and shown in Table 1 and
Figure 3, were used in this study. These datasets cover the north-western part of Minami-
Aso village along the Shirakawa and Kurokawa rivers, and they were acquired by the GSI
and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan, for the
purpose of national land surveying, disaster response, and river management. The datasets
contain original random point data as well as DEMs, in which trees and buildings have
been removed. Since our objective is the assessment of building damage, we processed the
original random point data and produced DSMs with grids of 0.50 m or 0.25 m, including
buildings and trees. Please note that the average point densities of the current datasets
(5–39 points/m2) are much higher than those (1.5–4 points/m2) used in our previous
studies for Mashiki town [21,22].

Table 1. Acquisition time, average point density, and DSM spacing, and corresponding optical images
of the LiDAR datasets used in this study.

LiDAR Dataset No. 1 2 3 4 5

Acquisition time
year/month/date 2013/01/10–02/20 2016/04/19–23 2016/07/01–05 2017/01/31–02/03 2017/10/31–11/02

Average point
density (1/m2) 5 11 28 28 39

DSM spacing (m) 0.50 0.50 0.25 0.25 0.25

Corresponding
optical image

Same time with
LiDAR

2016/4/16
GSI

2016/7/5–25
GSI

2017/3/17
Google Earth

Same time with
LiDAR

Figure 4 shows optical images acquired at similar times from the five LiDAR datasets.
The aerial photos 1 and 5 were acquired at the same time during LiDAR surveying flights.
The aerial photos 2 and 3 were obtained as part of disaster response activities by the GSI
for the Kumamoto earthquake. An aerial image corresponding to LiDAR dataset 4 was not
found; hence, a high-resolution satellite image from Google Earth was used as a reference
optical image (only for Kawayo district).
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  Figure 3. DSMs of the five LiDAR datasets for the study area of Mimami-Aso village.
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  Figure 4. Optical images acquired at similar times from the five LiDAR datasets for the study area of

Mimami-Aso village.

4. Extraction of Collapsed Buildings from LiDAR Data and Their Validation

To evaluate changes in the Earth’s surface in a period of time (time i to time i + 1), the
difference between the DSMs acquired at two different times can be calculated using the
following equation:

∆H = DSMi+1 − DSMi (1)
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The average value of the DSM difference was calculated by introducing the footprints
of buildings in a GIS format. A coarser DSM spacing (Table 1) of i or i + 1 is used if they
have different values.

Figure 5 shows the co-event DSM difference (DSM2 − DSM1) for the common area
of the two datasets. The earthquake-induced landslides are clearly highlighted by the
dark blue color, showing the height reduction in the DSM in the main shock. In the figure,
soil movement boundaries due to the earthquake, detected visually by National Research
Institute for Earth Science and Disaster Resilience (NIED) [39], are also shown.

To extract building damage from the DSM difference, the effect of the crustal move-
ments should be removed. For the entire area of Figure 5, the crustal movements were
considered to be highly complicated [31]. Thus, we co-registered the pre- and post-event
DSMs for each target area in the square.

Figure 6 shows a DSM difference in the co-event period (2013.1–2016.4) for Kawayo
district compared to building footprints in the pre-earthquake period [40]. In the figure,
the black square shows the location at which three wooden apartment buildings totally
collapsed and human casualties were reported.

Figure 7 shows the DTM difference for the co-event period, produced by the GSI,
whereby the trees and buildings were removed from the DSMs. In the figure, the black
square shows the area in which most of the buildings in Kawayo were located. The ground
level (the foundation of buildings) settled by an average of 0.5 m in the square. Hence, we
added 0.5 m to the DSM difference (∆H) for each building in Kawayo when calculating the
building settlement within the footprint.

 

5 

 

 

 

 

  
Figure 5. DSM difference in the co-event period (2013.1–2016.4) with pixel spacing of 0.5 m. Kawayo
and Tateno districts are highlighted by red squares. Pink lines show the soil movement due to the
earthquake detected by NIED [39].
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  Figure 6. DSM difference in the co-event period (2013.1–2016.4) for Kawayo district with building
footprints [40]. In the black square, three apartment buildings had totally collapsed.

 

7 

 

 

 

  Figure 7. DTM difference in the co-event period (2013.1–2016.4) for Kawayo district. The average
value within the black square was −0.5 m.

Figure 8 shows the DSM difference in the co-event period (2013.1–2016.4) for Tateno
district. In the figure, three red-circled buildings exhibited an increase in height during
this period. Compared to the aerial photos in Figure 4, these buildings were confirmed
to be built during the pre-event period. Thus, they were thereafter excluded from height
change analysis.

Figure 9 shows the DTM difference for Tateno district. In the figure, the two black
squares show the area where most of the buildings were located. The ground level settled
0.7 m on average, there. Hence, we added 0.7 m to the DSM difference for each building in
Tateno when calculating the settlements of the buildings.
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  Figure 8. DSM difference in the co-event period (2013.1–2016.4) for Tateno district with building
footprints [40]. The three red-circled buildings were newly built during this period.
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Figure 9. DTM difference in the co-event period (2013.1–2016.4) for Tateno district. The average value
within the black squares was −0.7 m.

The aerial photo on the day of the main shock (Figure 2) was enlarged for Kawayo
district and is shown in Figure 10 with building footprints [40] and the damage levels
supplied by the local government [36].

Table 2 shows the approximate relationships among the Japanese unified damage
levels (L#) by the Cabinet Office of Japan [37,41], European Macroseismic Scale 1998
(EMS-98) [42], and the Okada and Takai method [43]. The monetary loss percentage is a
basic index for the Japanese unified method. The first-stage assessment, viewing from
outside, is conducted first. This result is shown to the residents, and in cases where they
do not accept it, the second stage assessment, viewing the damage status of the inside
of the building, is carried out. Conversely, EMS-98 and Okada and Takai determine the
damage grade only by means of visual inspection from outside in the field [44] or from
high-resolution optical images [20].
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Figure 10. Orthorectified aerial photo of Kawayo district, taken by GSI on 2016/04/16, with building
footprints and damage classification provided by the local government. The triangular damage level
symbols indicate residential buildings, while the circular symbols indicate non-residential buildings.

Table 2. Earthquake loss evaluation classes of buildings used by local governments in Japan and
schematic images of other damage classification methods [38].

Damage Level by
Cabinet Office

of Japan

Loss Ratio (r),
Damage Index * EMS-98 Okada & Takai (2000)

Major (L4)
r ≥ 60%

G4
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The DSM difference between the pre- and post-event LiDAR data can be used to
extract the 3D changes in a building, such as story collapse, inclination, rotation, and lateral
displacement from the foundation. Hence, the damage patterns in the ESM-98 and Okada
and Takai are considered to represent the DSM difference better than the monetary loss
assessment [37]. Another problem with using the Japanese unified damage level is that the



Remote Sens. 2022, 14, 5970 10 of 20

“Major damage (L4)” level covers such a wide range, such as from G3 to G5 (in EMS-98) and
from D3 to D5 (Okada and Takai). It is considered that the DSM difference is only able to
detect the damage status of apparent changes in the building shape equal to or higher than
G4 or D4. In our previous study on LiDAR data for Mashiki town [22], the damage survey
result [44] based on Okada and Takai was used as reference data. However, such extensive
damage survey data covering a wide area do not exist for Minami-Aso village. Hence, we
used the loss assessment data provided by the municipal government as reference data in
this study.

Figure 11 compares the close-up of the aerial image acquired on 2016/04/29 by the
GSI (Figure 11a) and the co-event DSM difference (Figure 11b) for the black square in
Figures 6 and 10. The damage levels are shown using color symbols in the footprints. A
reduction of more than 2.0 m in the average DSM can be observed within the footprints
of the collapsed apartment buildings (A–C). These three buildings were labeled as L4
(major). However, note that the major damage level also includes laterally displaced (or
inclined) but still-standing buildings (such as D) and buildings with no apparent change
in shape (such as E), because the definition is “more than 50% loss of the building value.”
For buildings with a lower damage level (L0–L3), the change in 3D shape was difficult to
recognize within their footprints.

Figure 12 shows a 3D plot of the LiDAR random point data for the eight buildings
(A–H) in Figure 11. Clear settlements of the red points for Dataset 2 (2016.4) compared with
the blue points for Dataset 1 (2013.1) can be observed for buildings A, B, C. For building D,
the heights of the two datasets look almost the same, but some shift can be seen around the
footprints and roof edges. Compared with Figure 11b, building D might be shifted to the
north-west from the foundation or inclined to the south-east. For the other four buildings
(E–H), no clear difference can be seen between the two sets of random point data. Some
differences can be seen near the outer edges of the buildings, but these might be caused by
the co-registration error of the DSMs or trees or poles close to the buildings.

Matching of the building footprints and the building point data with damage levels
was carried out for a total of 429 buildings in the Kawayo and Tateno districts. To extract
buildings suffering major damage (L4) from the LiDAR DSM difference, we introduced a
buffer to reduce the footprint area when taking the average of ∆H, because of the effects
of trees and point density when they are close to the footprint boundary. We selected a
buffer of 1.0 m, the same value as used in the previous study [22], after comparing buffer
values of 0.5 and 1.0 m. Buildings with a reduced footprint area of less than 16 m2 were
also excluded, because small buildings might present larger errors. A total of 396 (L0: 51,
L1: 124, L2: 90, L3: 25, and L4: 106) buildings remained after performing data selection for
the two districts.
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Figure 11. Close-up of the aerial image on 2016/04/29 by the GSI [34] (a) and the co-event DSM differ-
ence (b) for the black square in Figures 6 and 10. The damage levels are shown using color symbols.
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  Figure 12. A 3D plot of the random point data for eight buildings (A–H) in Figure 11. Blue points for
Dataset 1 (2013.1) and red points for Dataset 2 (2016.4).

Figure 13a shows the scatter plot for the 396 buildings. The average height difference
within the reduced footprint (= ∆Hav) and their standard deviation (σ) are plotted for the
five damage levels. Please note that in our previous study [22], we also considered the
correlation coefficient to be the third explanatory variable. However, it was found to be
insignificant after some trials, and hence only two parameters, the average and standard
deviation of ∆H within the reduced footprint, were used in this study. We expected that
only a part of the L4 class would be able to be extracted from the LiDAR data, because
significant height changes occur only for part of the L4 damage [45].
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  Figure 13. The relationship between the average height difference within the reduced (−1.0 m)
footprint and the standard deviation of the difference for 396 buildings with five damage levels. The
division line (p = 0.5) between L4 and L0–L3 was obtained by means of logistic regression.

Logistic regression [46–49], which is suitable for representing qualitative (such as
the damage level) dependent variables, was introduced in order to model the probability
(p = 0.0–1.0) to fall in the major damage level (L4). Consider a two-class problem, L4 or
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other (i.e., L0–L3), for a given set of building damage data with m explanatory variables
and the sample size N. The linear discriminant f (·) is represented as a linear combination:

f (x) =
m

∑
i=1

bixi + b0 = bTx (2)

where bT = (b0, b1, b2, · · · , bm) and xT = (1, x1, x2, · · · , xm) are the vectors of the coef-
ficients and the explanatory variables, respectively, and T denotes the transpose. The
decision boundary is defined by f (x) = 0. Introducing the logistic function, the threshold
classifier is determined by

hb(x) =
1

1 + exp
{
−bTx

} (3)

where x belongs to L4 if hb(x) ≥ 0.5 and to L0–L3 otherwise. The unknown coefficient
vector b is obtained by solving the following equations:

min
b

(J(b)) (4)

J(b) = − 1
N

N

∑
i=1

(pi ln hb(xi) + (1 − pi) ln(1 − hb(xi)) ) (5)

where pi is the probability that the i-th sample xi belongs to the L4 class. The set of
Equations (4) and (5) can be solved iteratively using the maximum likelihood method to
obtain the coefficient vector b.

In this study, the two explanatory variables, x1 (= ∆Hav) and x2 (σ), were considered to
obtain b0, b1, b2 as the regression coefficients, and they were obtained as −1.492, −1.516,
1.063 for the 396 buildings. The division line (p = 0.5) between L4 and L0–L3 was obtained
as also shown in Figure 13. On the basis of this analysis, the standard deviation was found
to be less influential than ∆Hav when classifying L4 and the other damage levels.

Thus, we also tried a simple thresholding method using only the average difference
∆Hav for extracting the L4 class. Figure 14 shows the kappa coefficient (which takes into
account the possibility of the agreement occurring by chance) and the overall accuracy
(simple percent agreement) using only one explanatory variable (∆Hav) and changing its
threshold value in 0.1 m intervals. For the current dataset, −0.3 m gave the highest kappa
value (0.44). The maximum value of the overall accuracy (0.82) was obtained for the range
between −0.8 and −0.6 m.
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Figure 14. The kappa coefficient and overall accuracy using only ∆Hav and by changing its threshold
value in 0.1 m intervals.
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A similar threshold value (−0.5 m) was obtained when extracting collapsed (D5 in
Okada and Takai) buildings in our previous study [22] on Mashiki town, where the damage
survey results reported by Yamada et al. [44] were used as reference data. For the Amatrice
earthquake [25], a settlement of −1.5 m was determined as for the upper boundary of G5
damage in the EMS-98 scale, with −0.4 m being that G4. Although there are differences
with respect to the damage classification methods and the building types among the three
cases, the results are in quite good agreement.

Table 3 shows the confusion matrix for the two cases: the logistic regression using the
two variables, and the thresholding of ∆Hav. Exactly the same results were obtained for the
two cases. This fact means that the division line in Figure 13 gave the same result for the
vertical line passing ∆Hav = −0.3 m. Out of 396 buildings, 106 were L4 and 293 were L0–L3
in the survey data. However, only 40 L4 buildings (recall: 38%) were extracted from the
LiDAR DSM difference, because only those with a settlement greater than 0.3 m met the
selection criteria. Conversely, the precision was as high as 89% (40 out of 45 buildings were
correctly extracted as L4). This result indicates that buildings with collapsed stories, which
may result in human casualties, can be extracted accurately using pre- and post-earthquake
high-density LiDAR DSM data.

Table 3. Confusion matrix for the extraction of building suffering major (L4) damage using logistic
regression and thresholding the DSM difference.

Damage Survey by the Local Government

Damage Level L0–L3 L4 Total User’s Accuracy

Logistic regres-
sion/Thresholding the

DSM difference

L0–L3 285 66 351 0.81

L4 5 40 45 0.89

Total 293 106 396

Producer’s Accuracy 0.98 0.38 Overall Accuracy 0.82

Kappa Coefficient 0.44

5. Monitoring of Removal Process of Damaged Buildings

Since we have the four post-event LiDAR datasets shown in Table 1, they were used
to monitor the recovery process, notably the removal of damaged buildings after the main
shock on 16 April 2016. The DSM differences in the three post-event periods are shown in
Figure 15a–c for Kawayo district. Please note that straight lines in the figure are electric
power lines used for recovery activities. It can be observed that there was almost no
demolition of buildings for the three months after the earthquake. In the period from July
2016 to January 2017, many buildings shown in blue color (height reduction more than 2 m)
were demolished and removed. In the next period, from January 2017 to October 2017, the
demolition and removal of buildings continued. Only one footprint exhibits an increased
height (red color) in this period, indicating new construction.

These observations on the basis of the DSM differences can also be confirmed from the
optical image shown in Figure 15d–f, which is a close-up of Figure 4 (images 3–5). In the
aerial images, the blue-colored footprint buildings in the DSM difference can be seen to be
removed at the end of the corresponding period.

Similar plots of DSM differences and aerial images for Tateno district are shown in
Figure 16. In the figure, the DSM difference and the aerial image (corresponding to either
starting or ending year/month) are shown side by side for easy comparison. In the aerial
photo (Figure 16b) taken on 2016/04/16, building footprints and damage levels by the
local government are also shown. The removal process of buildings in Tateno took place
at a similar speed to that in Kawayo. Almost no activity can be observed in the first three
months until July 2016. Demolition and removal activities were accelerated in the periods
until January 2017 and October 2017.
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Figure 15. DSM difference for Kawayo district in the three periods after the earthquake (a–c), and the
optical images (the close-ups of Figure 4) on three corresponding dates (d–f). The color chart of the
DSM differences is the same as that in Figure 6.

We assumed that a building had been removed during the corresponding period if
the average height reduction in the DSM difference within the 1 m-reduced footprint was
equal to or greater than 1 m. This threshold value may be sufficient, considering the fact
that a single story in ordinary Japanese houses is approximately 3 m high, and that even if
a one-story building collapses, it will still have an average height greater than 1 m.

Based on this height reduction criterion, we extracted removed buildings from 396
buildings in Kawayo and Tateno district. Figure 17a shows the number of buildings
removed at the end of the three periods (year/month) and the total number of buildings for
the five damage levels. For example, out of 106 buildings suffering from major (L4) damage,
only 6 buildings (5.7%) had been removed by July 2016, 60 (56.6%) had been removed by
January 2017, and 88 (83.0%) had been removed by October 2017.

The ratios of removed buildings for the five damage levels are plotted in Figure 17b.
It can be seen that more than 80% of L3 and L4 buildings had been removed by 1.5 years
after the earthquake. It can also be noted that 58.9% of L2 buildings were also removed
in 1.5 years. This fact is related to the financial support provided by local governments in
Japan to cover removal costs for damaged buildings. In Minami-Aso village, the municipal-
ity supported 100% of the removal costs if houses or commercial buildings owned by small
businesses were judged to be equal to or higher than L2-level damage [50].

Conversely, the removal ratios were lower for less damaged buildings (L1: 14.5%,
L0: 7.8%). All these values are higher than those in Nishinomiya city (L4: 67.0%; L3 and
L2: 21.5%; L1 and L0: 5.5%) after the 1995 Kobe earthquake [51]. In the municipalities
affected by the Kobe earthquake, similar financial support was given to their residents.
Thus, the damage classification results provided by the municipal governments can be
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considered to affect the judgments of owners regarding the demolition and removal of
damaged buildings.
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  Figure 16. DSM difference for Tateno district in the three periods after the earthquake (a,c,e), and the
optical images (the close-ups of Figure 4) on three corresponding dates (b,d,f). The color chart of the
DSM differences is the same as that in Figure 8. In the aerial photo (b), taken by GSI on 2016/04/16,
building footprints and damage levels are also shown in the same manner as in Figure 10 for Kawayo.
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Figure 17. (a) The number of removed buildings at the end of the period (year/month) and the
total number for each damage level. (b) The ratios of removed buildings at the end of the period
(year/month) for each damage level.

6. Discussion on the Use of LiDAR Data in Disaster Management

LiDAR data are considered to be very useful for acquiring 3D models of various objects
on the surface of the Earth. However, it is still costly to acquire observations covering a
wide area at ordinary (i.e., pre-disaster) times. Hence, the direct comparison of pre- and
post-event LiDAR data often encounters difficulties due to the lack of pre-event data. Even
if pre-event data exist, they are sometimes old or have a low point density. However, high-
density and frequent LiDAR observations are often carried out by geospatial data agencies,
such as the GSI in Japan. They perform LiDAR surveying flights regularly, at intervals of
several (5 to 10) years, especially for developing DTMs for national land maps and building
footprint data. It was fortunate that we were able to use very valuable LiDAR data covering
one of the most severely affected areas, Minami-Aso village, with high density and high
frequency. We also searched for post-event LiDAR data for Mashiki town, but could not
find them in the recovery stage.

To perform the damage assessment of buildings from LiDAR DSMs, building footprint
data are also necessary. Otherwise, the effects of seasonal changes in trees/agricultural
fields and parking/moving vehicles are significant for the extraction of changes due to
disasters. These days, building footprint data are available from open sources, such as
OpenStreetMap, and their use is also possible in some cases, but they are not so accurate
in Japan, nor do they have wide coverage. Fortunately, the GSI recently developed the
fundamental GIS map [40] with building footprints for most urban areas in Japan, and thus
we were able to use it in this study.

If the pre-event LiDAR data are not available, the use of other remote sensing data,
such as high-resolution optical and SAR satellite images, airborne optical and SAR images,
and UAV images, is possible either for developing a pre-event building 3D model or for
extracting damage status through their combined use [52]. To validate the results from pre-
and post-event LiDAR data, those remote sensing data are highly useful. Of course, if we
use the pre- and post-event LiDAR data and other remote sensing or GIS data together, the
accuracy of change (change) detection will increase.

As already discussed in the previous chapters, damage classification data obtained as
a result of field investigations are quite important for validating the extraction results from
LiDAR data. Damage classification methods depend on the objectives of surveys, and thus,
suitable validation data are not always available. Local governments in Japan issue disaster
victim certificates [37] to all citizens if their houses have been affected by natural disasters.
Such survey data cover severely affected areas, and they are thus suitable for developing
building fragility curves [38,49]. However, as the validation data of remote sensing imagery,
they include minor damage status, which is difficult to observe from external views; hence,
simple field investigation data from outside [42–44] are a better reference if they exist.

Multi-temporal LiDAR data can also be used for landslide mapping or ground failure
monitoring [24]. We will show such results for the Minami-Aso region in the near future.
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Finally, we should insist on the necessity of continuous monitoring of stricken areas from
natural disasters. Disaster resilience [53] is becoming an important concept for coping with
natural hazards in the world.

7. Conclusions

The use of multi-temporal LiDAR data was explored for extracting collapsed buildings
and monitoring their removal process in Minami-Aso village, Kumamoto prefecture, Japan,
after the 2016 Kumamoto earthquake. The difference in the digital surface models (DSMs)
acquired at pre- and post-event times within the building footprints was employed to
identify collapsed buildings, and the results were compared with damage survey data
provided by the municipal government and aerial optical images. Approximately 40%
of severely damaged (L4) buildings showed a reduction in their average height within
a 1 m-reduced building footprint for the co-event DSM difference. The reason for the
low extraction rate is that the major damage level (L4) used in the field survey includes a
wide range of damage patterns, from totally collapsed to damaged but still standing. The
demolition and removal process of the affected buildings was also monitored using the
differences in DSM at three post-event time points. More than 80% of L4 and L3 (moderate+)
buildings were removed by 1.5 years after the earthquake, approximately 60% of buildings
at the L2 (moderate−) level, and less than 15% for the lower damage levels (L1 and L0). The
high removal ratio of L2 damage (20% to 40% monetary loss ratio) buildings was probably
partially a result of the full support for removal costs provided by the local government.
Thus, the official damage classification result was found to influence judgements by the
owners regarding the demolition and removal of damaged buildings. As shown in this
research, multi-temporal LiDAR data are quite useful for observing three-dimensional
changes in buildings in all phases of the disaster cycle.
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Abbreviation

A list of the used abbreviations:
CAD Computer-Aided Design
DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
ESM-98 European Macroseismic Scale 1998
GEONET The Japanese National GNSS Earth Observation Network System
GIS Geographic Information System
GNSS Global Navigation Satellite System
GSI Geospatial Information Authority of Japan
JST The Japan Standard Time
LiDAR Light Detection and Ranging
NIED National Research Institute for Earth Science and Disaster Resilience
SfM Structure-from-Motion
UAV Unmanned Aerial Vehicle
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