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Abstract: The antispoofing method using the direction-of-arrival (DOA) feature can effectively
improve the application security of the global navigation satellite system (GNSS) receivers. In this
paper, a sparse reconstruction approach based on a coprime array of antennas is proposed to provide
reliable DOA estimation under a GNSS spoofing attack. Specifically, the self-coherence property of
genuine satellite signals and spoofing was fully exploited to construct a denoised covariance matrix
that enables DOA estimation before receiver despreading. Based on this, an equivalent uniform linear
array (ULA) was generated from the constructed covariance matrix via virtual array interpolation.
By applying the ideal of sparse reconstruction to an equivalent ULA signal, the preliminary DOA
estimation results could be obtained without the need for a number of signals. Considering that
the sparse estimation technique suffers from basis mismatch effects, we designed an optimization
problem with respect to off-grid error to compensate the initial DOA such that the performance loss
of DOA estimation could be reduced. Numerical examples demonstrated the advantages of the
proposed method in terms of degrees-of-freedom (DOFs), resolution and accuracy.

Keywords: GNSS; antispoofing; DOA estimation; coprime array; sparse reconstruction

1. Introduction

A spoofing attack is an intelligent GNSS-like interference that coerces a victim receiver
into providing false position/navigation information, which could lead to disastrous
consequences in civil and military applications [1,2]. As such, several spoofing detection
and mitigation techniques have been proposed to defend against this type of interference [3].
The spatial countermeasure based on antenna arrays is considered one of the most powerful
approaches among them [4]. In particular, the DOA feature provided by antenna arrays
plays an important role in both spoofing detection and suppression [5,6].

The discussions in [7] indicate that the performance of DOA estimation in the spoofing
environment should be improved to reliably detect and suppress spoofing signals. How-
ever, to the best of the authors” knowledge, little has been written about DOA estimation
under a spoofing attack in the open literature. To identify the GNSS signals (including
spoofing and real signals) from raw signal samples, the cyclic music signal classification
(Cyclic-MUSIC) method was utilized in [6] for DOA estimation before the despreading of
receivers. The work of [8] was concerned with DOA estimation for GNSS signals under
a spoofing attack and a multipath environment, where the rank recovery algorithm was
adopted to reduce the strong correlation between incident signals. Considering in the
“underdetermined” case that the number of GNSS signals is more than the number of
sensors in the antenna array, the conventional algorithms in the paper [6,8] are no longer in
force due to the use of the uniform antenna array. In recent years, emerging sparse array
structures, such as the coprime array and the generalized coprime array, have attracted
noticeable attention in DOA estimation because of their superior estimation performance

Remote Sens. 2022, 14, 5944. https:/ /doi.org/10.3390 /1514235944 https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14235944
https://doi.org/10.3390/rs14235944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6237-3123
https://orcid.org/0000-0003-3671-7014
https://orcid.org/0000-0002-4072-0577
https://orcid.org/0000-0003-3831-1843
https://doi.org/10.3390/rs14235944
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14235944?type=check_update&version=1

Remote Sens. 2022, 14, 5944

20f11

to the uniform array [9,10]. In paper [11], an L-shaped sparse array was introduced into the
EMVS-MIMO radar, and a fast, accurate and DOF enhanced two-dimensional parameter
estimation method was designed. Therefore, it seems that a sparse array might also be
beneficial for improving the estimation performance of GNSS signal parameters. Inspired
by this, in earlier works we proposed an underdetermined DOA estimation technology
based on the sparse coprime array for GNSS signals, where the achievable DOFs could
be increased by deriving an extended virtual array [12]. Nevertheless, the scheme in [12]
fails to make full use of all the elements contained in the virtual array, which dramatically
affects the estimation performance under a spoofing attack. In addition, the DOA estima-
tion problems in [6,8,12] were solved by classical subspace-based methods; they required
the number of incident signals to be prespecified or estimated [13]. In this sense, it is of
great importance to achieve better DOA estimation performance in the GNSS spoofing
environment without using the number of signals as a priori information.

To this end, we proposed a novel coprime array-based algorithm that adopts the
sparse recovery technique for DOA estimation under a GNSS spoofing attack. Unlike
previous methods in [6,8,12], our method combines virtual array interpolation and off-grid
error compensation to obtain better estimation performance, and it does not require a
pre-estimation of the number of incident sources. Notably, the proposed method takes
advantage of the raw digital baseband signal, hence it can identify authentic signals and
spoofing before the despreading stage of the receiver, which avoids signal acquisition,
tracking and the position solution. In order to fully exploit all information provided by the
derived virtual array, we constructed an equivalent ULA signal through the array inter-
polation method. Based on this, the suggested algorithm employs sparse reconstruction
technology to the equivalent signal. Since the DOAs of spoofing and authentic satellite
signals are unlikely to lie on the predefined spatial grid, the sparse-based approach is
subject to basis mismatch effects [13,14]. In view of this, we formulated it as an optimiza-
tion problem with respect to off-grid error, thereby the estimation error caused by the
predefined grid could be iteratively compensated.

The main contributions of this paper can be categorized as follows:

*  We suggest a coprime array-based method from a sparse reconstruction perspective
to estimate the DOA of GNSS signals in the spoofing environment.

*  The scheme combines virtual array interpolation with the proposed off-grid error
compensation technology to provide better DOA estimation performance, which is
beneficial to subsequent spoofing detection and suppression.

*  Our approach not only does not need to know the number of incident GNSS sig-
nals in advance, but also can estimate the DOAs of spoofing and real signals before
receiver despreading.

The rest of the paper is organized as follows. In Section 2, we first introduce the
signal model of the coprime array in the GNSS spoofing environment. Then, we elaborate
the designed sparse recovery-based DOA estimation algorithm under a spoofing attack
in Section 3. After that, we provide numerical simulations in Section 4 to validate the
advantages of our method. Finally, the conclusions are given in Section 5.

Notations: lower-case and upper-case boldface characters are used to denote vec-
tors and matrices, respectively; (-)7, (-)* and (-)! stand for the transpose, conjugation
and Hermitian transpose, respectively; ||-|| denotes the Frobenius norm; |- ||, and |[|-||, are,
respectively, the lp norm and /; norm; E{-} and vec(-) represent the expectation operator
and vectorization operator, respectively; the symbol ® means the Kronecker product; Hi,j
denotes the element in the i-th row and the j-th column of a matrix; |S| is the cardinality of a
set S; the functions rank(-) and Tr(+) represent the rank and trace of the matrix, respectively;
> is matrix inequality; and J{-} means the real part of a complex variable.

2. Signal Model

In this paper, we suppose that the spoofing attack contains L® counterfeit PRN signals,
which are transmitted from a single antenna, and there are L authentic signals incident on
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the extended coprime array. The discretized received signal vector x(n) at snapshot n can
be modeled as
x(n) = s%(n) +s°(n) + n(n) (1)

in which s4(n) = Zlel a(6;)s;(n) and s°(n) = EzLil a(6s)s';(n) are the real signal compo-
nent and the spoofing component, respectively, and n(n) is the additive white Gaussian
noise component. The sj(n) and s;(1) denote waveforms of the I-th spoofing and the I-th
real signal, respectively. The variables a(6;) and a(6;) in Equation (1) are the steering
vectors of the spoofing and the I-th authentic signal, respectively, which can be expressed as

. . . . T
a(0) = [1,. .. ,g*JZT’Tdi sinf . ,e_]zTndZMlJer—l Sln@} ?)

where the parameter A is the wavelength of the GNSS signals, 6 = [61,0y, - - - , 0,4, 05] repre-
sents the spatial direction of the incident signals and d;(i =1, - - - ,2M; + M, — 1) denotes
the position of the antenna in the extended coprime array, which are shown in Figure 1. As
Figure 1 shows, the extended coprime array consists of a pair of ULAs with 2M; and M,
elements, whose antennas are respectively located at {0, Myd,2Md, - - -, (Mp — 1)M;d}
and {0, Mpd,2Myd, - - -, (2My — 1)Mpd}. Here, d = A /2, M; and M, are coprime integers.

I M,d i _M,d i
’ Mmident source (2M, -1)M,d
(|5 o ?d) e PS o
l ! (MZ_l)Mld

|
coMd M

Figure 1. Extended coprime array configuration.

3. Proposed DOA Estimation Method under a Spoofing Attack
3.1. Noise Component Suppression

Due to the fact that spoofing signals and real satellite signals are buried under the
noise floor in the raw signal samples, it is a challenge to identify the direction of incoming
signals before receiver despreading. In order to overcome this problem, we employed the
cyclostationary property [15] of the GNSS signals (including genuine and spoofing signals)
to suppress the noise components in the data covariance matrix. We first obtained the
reference data xg(n) corresponding to the data vector x(n) as follows:

x6(n) = " (n— jG) +5°(n — jG) +n(n — jG)

3
= s4(n) +s°(n) +n(n — jG) &

in which jG is the distance between the respective samples in x(n) and xg(n). In this paper,
we take GPS C/ A signal as an example, hence we have the spreading gain G = 1023 and
1 <j < 20[16]. Then, the covariance matrix between x(n) and xg(n) can be given by
R = E{x(n)xGH(n)} =R, +R,
H
= e{ [0 + ][54 + 5]} @
LA LS
- Zl:l a(el)uH(91>Rslsl + Zl:l u<95)aH(95>Rs;sf

where R; = E{ [s4(n) +s°(n)] [s*(n) + ss(n)}H} and R, = E{n(n)n"(n — jG)}. Asare-

sult of Gaussian white noise n(1), we have R, = 0. In Equation (4), Ry;s, = E{sl (n)s (n)H}
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and Ryy = E {s’ 1(n)s'(n)H } We adopted the sampling covariance matrix R to replace
RJ(CG) in practice, and R(G) can be denote as
RO ~ Lx xt )
X N ref

where Xy = [x(n) - - -x(n — (N — 1))] and X,or = [xg(n) - - -xg(n — (N — 1))] are the data
block and the reference data block, respectively. The parameter N denotes the length of
samples in the data/reference data block.

3.2. Array Interpolation and Matrix Recovery

To make full use of the maximum aperture provided by the virtual array, which is
derived from the data covariance matrix, we constructed an equivalent ULA signal in this

subsection via the array interpolation technique. In detail, we first vectorized R,(CG>, that is

z = vec(R,((G)) = Bp (6)
LS !
where p = | Rs;s;, Rsys,, - 'RsLAsLA/lgl Ry and

B=[a*(6h)®a(61),---a*(0;a) @a(0;a), a*(0s) ® a(bs)]. 7)

Then, we removed the repeated elements in B and acquired an equivalent virtual
signal with an increased number of DOFs, which can be denoted as

Zy = BUP 8)

where B, is the steering matrix of the virtual array S,. For the extended coprime array
geometry shown in Figure 1, the position of the virtual sensors in S, can be calculated by

Sy = {i(Mlmz—M2m1)|m1 :O,d,Zd,(ZMl —1)d (9)
myp = 0, d,2d,' c (Mz — 1)d}

Figure 2 adopts the extended coprime array geometry with M; = 3 and M; = 5as an
example to illustrate the concept intuitively. Owing to several missing elements, the derived
virtual array S, shown in Figure 2b is nonuniform. In this situation, the traditional ULA-
based DOA estimation methods are not available. To overcome this challenge, a common
solution is to ditch the discontinuous elements and select only the largest contiguous
virtual sensors in S, for subsequent processing [17]. However, this method suffers from
performance degradation since the elements offered by S, cannot be fully utilized.

Consequently, we employ array interpolation technology in this paper to fill the
discontinuous sensors in Sy. Obviously, the interpolated virtual ULA Sy shown in Figure 2¢
has 2M;(2M;—1) + 1 elements in total, the signal of S; can be initialized as

_ [ [z0); €S,
l21li = { 0 i €51-5, 10)

where [-]; is the virtual element at the i-th position. Considering the signal at each interpo-
lated sensor is assumed to be zero in Equation (10), it is necessary to recover the unknown
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information in z;. According to the relationship established in [18], the Toeplitz covariance
matrix of the interpolated virtual signal zj can be constructed by

<ZI>L, <ZI>L,—1 e ({zih
R, — ‘<ZI>L[+1 '<ZI>LI '<ZI>2 a1
‘<ZI>2L171 '<ZI>2L172 T '<ZI>LI

where (zp); denotes the i-th element in zj, and L; = (|S;| +1)/2.

B Physical Antennas @ Virtual Sensors O Interpolated Sensors
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Figure 2. Various array representations are given with M; = 3 and M, = 5. (a) Extended coprime
array; (b) virtual array Sy; (c) interpolated virtual array Sj.

Taking R, in Equation (11) as the reference, the rank minimization problem of the R,
reconstruction can be formulated as

2 = arg minrank(R(z)) (12)
subject to||Mp(R(z)) — RZ,H%_- <¢&R(z) =0
where ¢ is the predefined threshold-of-fitting error. The elements of Mp(R(z)) can be
obtained by the product of the corresponding elements in R(z) and P. Matrix R(z) has an
Hermitian Toeplitz form, and its first column is the optimization variable z. If P is a binary
matrix, the elements in it can be defined as

{0 Ry =0
[Plij = { 1 elsé (13

Due to the rank function, the optimization problem in (12) is an NP-hard problem.
To solve this problem, we reformulate it by introducing a trace function Tr(-), thus we have

2= argmin%HMp(R(z)) — RUH%—" + uTr(R(z))

14
subject to R(z) =0 (14)

where p denotes the regularization parameter, which is used to balance the trace of R(z)
and the fitting error. Now, the optimization problem (14) is convex, which can be efficiently
solved to obtain the optimum solution 2 and its corresponding T(%) [19].

3.3. Off-Grid DOA Estimation

In this subsection, we first perform sparse reconstruction technology on the interpo-
lated virtual signal 2 to obtain the initial DOA estimation results, which can be formulized as

p= argn;in”p“o subject tol|z — Bp|, < e (15)

where Bj is the steering matrix of the interpolated virtual array Sy with 2M,(2M; — 1) +1
elements and the k-th column of Bj can be given by

—j&d sing |1
a(6) = [1,-- e Fhsimt o oy )0 (16)

7
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The optimization spatial spectrum p in Equation (15) can be acquired by the LASSO
algorithm [20] through a prespecified spatial grid. By searching peaks of p, the initial DOA
results @,l((l =1,2,---,K) can be estimated. Meanwhile, the number of incoming signals K
is revealed as a by-product without additional estimation.

Although we make full use of the maximum aperture provided by the virtual array to
estimate the initial DOAs, the estimation performance is affected by the basis mismatch
effect since the actual DOAs are unlikely to be located at the prespecified grids. In view of
this, an off-grid error compensation approach was devised to overcome the basis mismatch.
Specifically, we perform first-order Taylor expansion on the ideal steering vector a(6y) of
the interpolated virtual array:

a(6y) ~ a(é,i) + b(é,’() . (17)
where 6 and é,l( are the genuine incident direction and initial estimated DOA, respectively.

The values b (GAIZ() =0da (é,l() / Bé,l( and 7’:9,{—9}( are the initial off-grid errors. The eigen-

decomposition of R(%) is given by R(2) = UZU!. Next, define noise subspace E,, which
consists of K columns of U corresponding to the K largest eigenvalues. According to the
orthogonal property between E, and a(6;) [21], we designed an optimization problem to
calculate the off-grid error 9/, which can be formulated as

Ef“@k)”i

4l = arg min, ;h (’Yl) = arg min?l‘

— argmin, || £ [a(8}) +b(8}) ] Hi (18)
The objective function h (’yl) can be simplified as
h(7') = ch(r)? + 617 +¢h (19)

where glz = bH<é]l<>Enﬁ,Ifb(é,’(> = ‘

A\ o ~H /A
gg =al (QIIC)E,IE” a(@,i) = ‘
tion and ¢ > 0, hence the optimal value of 9/ can be achieved by

Eng (é,i) i, gll = 2%{[/1[_1 (é,’()IASnEfbH (9,1{) } and

. A\ (]2
EnHa (9}() Hz It is worth noting that 1 ('yl ) is a quadpratic func-

l
. G
§l=—-1 (20)

2)
Based on this, the DOA after the off-grid error compensation is
0,7 =4"+6; (21)

By repeating steps (20) and (21), the estimated DOA will be closer to the true value,
hence a more accurate estimation result can be obtained.

3.4. Performance Analysis

Through array interpolation technology, the maximum aperture |S;|d and DOF pro-
vided by the virtual array are fully utilized in the proposed framework. For the ex-
tended coprime array shown in Figure 1, the maximum achievable DOF of our method is
2M;M; — My, which means that the proposed algorithm can identify a spatial direction
of 2M1 My — M, GNSS signals. According to [22], our method is able to achieve higher
resolution and accuracy since all elements and the maximum aperture of the derived virtual
array are exploited for parameter estimation. In addition, we further improved the accuracy
of DOA estimation by designing an optimization problem to compensate for the off-grid
error caused by the virtual signal-sparse reconstruction.
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Although better DOA estimation performance can be achieved by combining virtual
array interpolation and error compensation, it comes with an increase in computational
complexity in the algorithm. Compared with existing methods in [6,8,12], the additional
computation introduced in our approach mainly focuses on three operations: virtual
array interpolation, signal-sparse reconstruction and off-grid error compensation. Virtual
array interpolation technology needs to recover the Toeplitz covariance matrix, and its

computational complexity is O ((2M1 My — My + 1)3) . Suppose the number of predefined

spatial discrete grids is G, the computational costs required for signal-sparse reconstruction
is O(G(2M1M; — M, + 1)). The main calculation amount of the error compensation unit
is concentrated on the decomposition of the covariance matrix; thus, the computational

complexity of the main calculation amount is approximately O ((2M1 My — My + 1)3).

4. Simulation Results

In this section, we give numerical examples to verify the performance of the proposed
DOA estimation frame under a spoofing attack. Let the symbols SNRsp and SNRau denote
the signal-to-noise ratio of the spoofing and the authentic signals, respectively. The settings
of the basic simulation parameters are shown in Table 1. It is worth noting that the value of
SNRsp and N are allowed to change in different simulation scenarios.

Table 1. Summary for simulation parameters.

Parameter Setting
Intermediate frequency 4.092 MHz
Sampling frequency 37.851 MHz
Data length 20 ms
Samples in each chip 37
SNRau —20dB
Noise bandwidth 2 MHz
Regularization parameter 1
Predefined grid interval 1°
Maximum iteration number 1000
Extended coprime array My =3,M, =5

Specifically, we compared our method with the ULA-based Cyclic-MUSIC algo-
rithm [6], the ULA-based MMUSIC algorithm [8] and the coprime array-based MMUSIC
algorithm [12]. It can be seen from Table 1 that the extended coprime array consisted of
2M; + My — 1 = 10 sensors in total. For a fair comparison, the number of physical sensors
in ULA was also set to ten. In the following subsections, we indicate the advantages of the
proposed technique from three aspects: DOF enhancement, resolution and accuracy.

4.1. DOF Comparison

In this experiment, we assumed that the pseudo random noise (PRN) code and DOA
of the incident sources were as shown in Table 2. The SNRsp was set to be —17 dB and
the parameter N = 37,000. The DOF comparison results are shown in Figure 3. It can be
seen from Table 2 that the number of incident sources was K = 17, which exceeds the
maximum achievable DOFs of the ULA-based Cyclic-MUSIC algorithm and the ULA-based
MMUSIC algorithm, as well as the coprime array-based MMUSIC algorithm. In this case, all
algorithms used for comparison except the proposed method were invalid. Thus, Figure 3
contains only the results of the proposed algorithm. As Figure 3 shows, our approach
could effectively estimate all of the seventeen sources. Consequently, it is obvious that the
enhanced DOFs could be obtained by the proposed frame.
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Table 2. Simulation parameters of incident sources in Section 4.1.

Satl Sat2 Sat3 Sat4 Sat5 Sat6 Sat7 Sat8 Sat9 Satl0  Satll Satl2 Satl3 Satl4 Satl5 Satlé Spoofing
PRN 2 3 5 6 8 10 12 13 15 16 18 19 21 22 26 29 [2,5,8,19,26]
DOA  —65° —60° —50° —40° —-30° —20° —10° —5° 5° 10° 20° 30° 40° 50° 60° 65° 0°
T T T T T T T T T T T T T T T
60 m ¥
B
401 53] 7
B
_. 20 53] 7
o BK
< o g B ]
o 3]
A 201 £3 ¥
23 % Real DOAs
-40r 53] 7
B 0 coprime-Proposed
—6(@ B ¥
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Index

Figure 3. DOF comparison results.

4.2. Resolution Comparison

In this simulation, we compared the resolution by assuming two closely spaced
sources: a satellite signal and a spoofing source. The parameters of the incident signals are
shown in Table 3. Here, the SNRsp was —18 dB and N = 37,000. The resolution comparison
results are displayed in Figure 4. It can be observed from Figure 4b that the spatial spectrum
of both the ULA-based Cyclic-MUSIC algorithm and the ULA-based MMUSIC algorithm
have only one peak; that is, they failed to identify the two closely spaced sources. Although
the coprime array-based MMUSIC algorithm is capable of forming two peaks, its results
deviated from the actual directions. In contrast, the result in Figure 4a indicates that the
proposed algorithm is able to accurately estimate two closely spaced directions. Therefore,
the proposed algorithm achieved better resolution of DOA estimation. The reason for
this result is that the proposed algorithm could provide larger aperture through its array
interpolation step.

Table 3. Simulation parameters of incident sources in Section 4.2.

Satl Spoofing
PRN 1 [1,2,22,25]
DOA -1° 1°
10
5 - -
5
< %3]
o | =
b i
a
=51 * Real DOAs 1
O cCoprime-Proposed
-10
1 Index 2

(@)
Figure 4. Cont.
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Figure 4. Resolution comparison results. (a) The proposed method; (b) ULA-based Cyclic-MUSIC
algorithm, ULA-based MMUSIC algorithm and coprime-based MMUSIC algorithm.
4.3. Accuracy Comparison

In the last example, we conducted Monte Carlo simulations to compare the accuracy
of three algorithms with root mean square error (RMSE). The RMSE can be expressed as

K
RMSE = Z —6,)° (22)

u Mzo

L
QK

where GAk,q is the DOA estimation result of the k-th source in the g-th Monte Carlo trial
and 6, denotes the real DOA of the k-th source. We assume Q = 1000 in this subsection.

Table 4 shows the relevant parameters of incident sources. The accuracy comparison
results are plotted in Figure 5. In Figure 5a, we fixed SNRsp = —17 dB and varied N from
500 to 5000. We can see from Figure 5a that the RMSE of all the algorithms decreased
with the increase in N, where the proposed method had lower RMSE compared with other
algorithms. This demonstrated that the combination of array interpolation and off-grid
error compensation can produce more accurately estimated results, especially when the
N is finite. In addition, as shown in Figure 5a, when N was greater than 1500, the RMSE
of the proposed algorithm decreased slowly as the theoretical accuracy of the proposed
algorithm was limited by the Cramer-Rao bound (CRB). The CRB of DOA estimation is not
only related to the number of samples N, but it is also affected by various parameters, such
as the number of incident signals, array structure, the number of sensors in array and so
forth [22]. Therefore, under the condition of the same incident signals, the RMSE of our
algorithm and the coprime array-based MMUSIC algorithm had a similar change curve,
owing to the same array configuration. We next fixed N = 37,000 when the SNRsp varied
between —25 dB and —17 dB, this is shown in Figure 5b. We can observe in Figure 5b that
our approach is superior to the other three algorithms in the whole SNRsp range. Moreover,
the RMSE of all algorithms remained almost unchanged with the increase in the power
of spoofing.

Table 4. Simulation parameters of incident sources in Section 4.3.

Satl Sat2 Sat3 Sat4 Spoofing

PRN 2 5 8 19 [2,5,8,19]
DOA —40° —27° —3° 28° 12°
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10 —&— Coprime-MMUSIC
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Figure 5. Accuracy comparison results. (a) RMSE versus N; (b) RMSE versus SNRsp.

5. Conclusions

In this paper, we proposed a novel DOA estimation scheme under a GNSS spoofing
attack using a coprime array of antennas. We first constructed a denoised covariance matrix
to achieve DOA estimation before receiver despreading. Then, we derived the virtual
ULA through the array interpolation technique to fully utilize the maximum aperture
provided by the virtual array. Based on this, the sparse reconstruction method based on
off-grid error compensation was designed to solve the basis mismatch. Finally, simulation
results indicated the superiority of our DOA estimation approach in DOFs, resolution
and accuracy.

Although the proposed DOA estimation method showed performance advantages
under a spoofing attack, it may fail in a multipath environment and small time-offset
spoofing scenarios due to the increased correlation between incident signals. Given this
problem, it is necessary to further explore the de-correlation DOA estimation algorithm to
cope with a multipath environment and small time-offset spoofing. Moreover, we plan to
develop deterministic analysis on the performance of the DOA estimation method based
on a coprime array in GNSS, and we will attempt to give the closed-form solution for
resolution, bias and CRB.
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