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Abstract: Recent advancements in remote sensing have led to the development of several useful
technologies that would significantly improve our understanding of atmospheric sciences. The
ability to identify atmospheric conditions and determine the possibility and intensity of rainfall
over a specific location represents one of the most important advantages. However, the use of
remote sensing to measure precipitation in arid regions has revealed significant disparities due to a
mixture of climatic and terrestrial factors. The objective of this study is to assess the precipitation
consistency, variability, and concentration over the UAE using four multi-satellite remote sensing
products, namely CHIRPS, CMORPH, GPM-IMERG, and the PERSIANN-CDR, considering daily
rainfall data from 50 rain gauges for the period from 2004 through 2020. The study area is divided
into various geomorphological regions to assess the accuracy of the products in different regions.
Results reveal that the products with a finer spatial resolution such as CHIRPS and CMORPH are
better in terms of annual and daily average values. CHIRPS and GPM-IMERG demonstrated better
POD values of 0.80 and 0.78, respectively, while CMORPH and the PERSIANN-CDR showed POD
values of 0.72 and 0.44, respectively. The correlation and error estimate analysis showed that the
performance of different products varies in each region. The PERSIANN-CDR registered the highest
correlation of 0.8 for the East Coast, while for other regions it could not correlate well. IMERG
and CHIRPS were able to exhibit a good correlation value (up to 0.8) with the gauge observations.
Precipitation concentration and variability analysis revealed that GPM-IMERG represents a better
alternative to gauge data. It is concluded that multiple hydro-climatological measures should be
utilized to assess the effectiveness of satellite products and select the best product for specific studies.

Keywords: precipitation consistency; precipitation concentration; satellite precipitation products;
rainfall variability; UAE

1. Introduction

Accurate assessment of precipitation is vital to manage water resources and under-
stand hydrological processes. Precipitation is one of the fundamental elements of the
planetary energy cycle [1,2] and a key input for all climatological models that are used
to forecast natural calamities including floods, landslides, and droughts [3,4]. Moreover,
hydrological cycles and energy distributions are significantly influenced by spatial distri-
bution, duration, and precipitation concentration [5,6]. Therefore, almost all hydrological
investigations primarily require precipitation information with high spatio-temporal resolu-
tion. The most imperative task for carrying out any hydrological analysis is the collection of
precipitation data and the quality check of rainfall products [7–9]. Rain gauges (in situ mea-
surements) and remote sensing techniques, including commercial microwave links, satellite
sensors, and ground-based weather radars, are the most frequently used approaches to esti-
mate precipitation [10–13]. Comparing their accuracy with other sensors and rain gauges
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offer direct rainfall readings and can be considered ground truths for most hydrological
and climatological studies. The under-estimation of heavy precipitation, owing to splash-
ing, is one of the many measurement issues that affect all types of gauges. Other issues
include instrument errors and external influences such as wind, precipitation, evaporation,
and observer mistakes. Additionally, gauge readings are point values rather than aerial
readings, so they are incapable of characterizing the spatial variations in precipitation.
Ground-based weather radars monitor a broad area in real time while estimating precipita-
tion at high spatio-temporal resolutions as compared to rain gauges [14–17]. Radars are
essentially available over land, in areas where rain gauges are typically widely distributed.
Additionally, it might be challenging to translate the radar reflectance at a particular height
and distance from the radar into a precise precipitation estimation. Drop size distribution,
melting precipitation, low-level precipitation, attenuation, surface impacts, beam blockage,
or beam-filling issues are only a few of the concerns [18]. Furthermore, due to cost and
lack of technological expertise, radar networks are not available in many areas. Contrary
to weather radars, satellite precipitation products offer an alternative to quickly estimate
near-global precipitation. Recent satellite-based precipitation products have high geograph-
ical and temporal resolutions for measuring precipitation [19–21]. They blend IR pictures
with passive microwave data to create precipitation estimates at high resolutions. Many re-
searchers have carried out extensive investigations to evaluate and validate satellite-based
precipitation products because of their enormous potential [1–3,7,8,22–25]. However, lim-
ited research was conducted to confirm their effectiveness in semi-arid and arid regions and
in areas with challenging topography [26–28]. With advancements in spatial and temporal
resolution, the performance of space-born precipitation products has enhanced substan-
tially. High-quality rainfall estimates have been obtained over the past two decades by
NASA’s Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis
(TMPA) [19]. TRMM data were used to build many cutting-edge products, including sev-
eral iterations of TRMM and Artificial Neural Networks-based (PERSIANN) products [24].
Ashouri et al. (2015) developed and distributed the PERSIANN-Climate Data Record
(PERSIANN-CDR) for long-term hydro-climatic change studies, with approximately 40
years (1983 to current) of daily precipitation data coverage. The 60◦N–60◦S latitude range
is covered by the 0.25◦ spatial resolution of the PERSIANN-CDR. The gauge-adjusted
Global Satellite Mapping of Precipitation (GSMaP), developed by the Japan Exploration
Agency’s Earth Observation Research Center (EORC), is another global product [29–31].
The Integrated Multi-Satellite Retrievals (IMERG) for the Global Precipitation Mission
(GPM) and the Climate Prediction Center (CPC) MORPHing (CMORPH) approach are
two of the most widely used multi-satellite sensor precipitation products [2,23,25]. With
information from geostationary satellite IR data combined with estimates of precipitation
generated from microwave observations, the CMORPH employs morphing algorithms to
retrieve the areal precipitation. The CMORPH, which has an 8 × 8-km grid resolution and
spans the years 1998 to present, includes the whole combined periods of the TRMM and
GPM. Global precipitation estimates are provided by the GPM in almost real time; however,
periodically, the data stream is interrupted. Operating in low Earth orbit (LEO), the GPM
Core Observatory satellite carries two instruments for measuring worldwide precipitation
and serves as a reference for other GPM satellites in the constellation. The primary goal of
the mission is to improve available precipitation products by extending the visit period
and improving the algorithms to retrieve the precipitation. From raw data to precipitation
rates, the GPM offers a range of outputs at different levels. It was put into operation in 2014
and it offers IMERG rainfall products with a temporal resolution of 30 min and a spatial
precision of 0.1◦ × 0.1◦.

According to validation and verification assessments, the correctness of recent satellite
rainfall products differs spatially and is influenced by the hydro-climatic parameters of
the area. For instance, Shen et al. [32] found that CMORPH performed better than both
TRMM 3B42 and PERSIANN in capturing the spatial and temporal precipitation patterns
in China. CMORPH was demonstrated to depict the spatial distribution of rainfall across
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Indonesia with the least accuracy when compared to other satellite-based products [33].
The results of a study by Ghajarnia [34] across the Urmia Basin in Iran were in agreement
with those of Wehbe et al. [21]. They asserted that a previous edition of CMORPH (v0.1)
was not very successful in creating a meaningful connection with rain gauges in the United
Arab Emirates (UAE). It was further discovered that near the Yangtze River in China,
CMORPH showed the highest correlation with the rain gauge network among all the
precipitation products [35]. Additionally, CMORPH provided the highest accuracy among
other products over Italy’s Adige Basin [36].

To achieve advancements in satellite precipitation products’ algorithms, a preliminary
validation of these products for a particular region is necessary. To advance the standards
in operational analysis and validation methods for satellite precipitation products, the Inter-
national Precipitation Working Group (IPWG) was founded in 2006 [37]. Since then, efforts
have been made to validate satellite precipitation products in several regions of the world,
including Africa [38], Asia [39,40], Australia [41], Europe [42], North America [43], South
America [44], and the Middle East [21,22,45,46]. These investigations demonstrated that
there are regional variations in the performance of these products. The understanding of the
performance of satellite-based precipitation products in a given region is, therefore, crucial.
Moreover, since water resources are directly influenced by changes in rainfall regimes,
spatio-temporal analysis of rainfall becomes vital, as argued by many researchers [47–53].

The UAE is situated in an arid region with rare precipitation events. Water man-
agement and surface water harvesting plans in the UAE need to be based on accurate
measurements and assessment of precipitation. Due to the country’s substantial temporal
and spatial variability, as well as the randomness and scarcity of precipitation events,
the assessment of rainfall across the UAE is challenging [54]. It is vital to have a better
understanding of rainfall variability and pattern to improve rainwater harvesting and
develop plans for flash flood risk mitigation. Remotely sensed precipitation data in arid
regions have not been extensively studied. Adeyewa and Nakamura [55] attempted to
correlate rainfall data from the TRMM with rain gauge observations in five climate zones
in Africa: savanna, tropical wet, semiarid, arid, and the South Atlantic Ocean. They found
that during dry seasons when rainfall is low, satellite bias was higher across drier regions.
Four remote sensing satellite products were studied by [38] in African dry regions. It
was concluded that sub-cloud evaporation was the main reason for the over-estimation of
satellite data. Sultana and Nasrollahi [56] used information from 29 rain gauges to evaluate
high-resolution global rainfall products, including PERSIANN, TRMM, and CMORPH,
for the eastern and western regions of Saudi Arabia. They performed daily and monthly
assessments of the satellite data using a spatial resolution of 0.25◦ and found that the
projected rainfalls were not accurate during dry seasons. However, better results were
achieved during wet seasons. Similarly, the PERSIANN-CDR and CHIRPS were analyzed
in a semi-arid subtropical climatic region by Anjum et al. [57]. They deduced that on all
seasonal scales, CHIRPS was better than the PERSIANN-CDR.

More recently, several researchers have utilized satellite-based precipitation products
to assess rainfall regimes over the UAE. For instance, Wehbe et al. [21] calibrated four
products (GPCC, TRMM, WM, CMORPH) over the UAE using rainfall data from 2000 to
2010. They performed spatial analysis of the products’ consistency in comparison with land
use and topography of the country. Mahmoud et al. [45] compared early, late, and final run
products of GPM-IMERG over the UAE for a period of 3 years (2015–2017) and reported that
the final run product outperformed its counterparts in statistical and qualitative analysis.
CMORPH and GPM-IMERG products were further analyzed by [22], who found that both
products are equally good at filling spatial gaps in rainfall observation over the UAE. They
utilized the gauge rainfall observations from 2010–2018 to perform analysis at various
temporal scales. A similar study was conducted by [58] while exploiting three satellite
precipitation products over 18 gauge stations across the UAE. The study included a variety
of statistical analyses and concluded that these products can significantly complement
station-based data to develop intensity duration frequency curves in dry regions.
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All the available studies either used limited data for the rainfall analysis or considered
few gauge stations for spatial comparison. Moreover, the main focus of previous studies
was devoted to the statistical comparison between gauge records and satellite products and
to check the consistency of the products. However, the UAE encompasses different geomor-
phological regions. These regions have not been adequately investigated for precipitation
extreme indices, concentration, and variability.

Unlike others, this study considers four distinct regions in the UAE based on geomor-
phological characteristics. The precipitation concentration and diversity analysis for the
satellite precipitation products are performed for the different regions. The UAE usually
receives intense rainfall with a shorter duration. Therefore, the knowledge of precipita-
tion extremes becomes substantial to adequately understand precipitation regimes in the
country. To recognize precipitation extremes, multiple extreme precipitation indices were
calculated for the gauge data and the results were compared with satellite data. In addition,
precipitation concentration and variability analysis for the selected satellite products were
conducted. Long-term daily rainfall data (2004–2020) from 50 rain gauges covering the
UAE were used to perform a comparison with the daily measurements of four satellite pre-
cipitation products, namely, GPM-IMERG, CMORPH, CHIRPS, and the PERSIANN-CDR.
Apart from the statistical analysis, and to judge the accuracy and consistency of remote
sensing products, various qualitative and quantitative analyses were conducted including
precipitation extreme indices, concentration, and variability using well-known indices.

2. Materials and Methods
2.1. Study Area

The United Arab Emirates (UAE) is considered to conduct the comparison of satellite
precipitation products and rain gauge observations (Figure 1). The country occupies the
southeastern part of the Arabian Peninsula (51◦–57◦E, 22◦–26◦N) and is classified as a
semi-arid to arid country. It has a 740 km long coastal stretch along the Arabian Gulf and
Gulf of Oman [21]. The country consists of seven emirates and has boundaries with other
Gulf Cooperation Council (GCC) Counties that include Saudi Arabia and Oman to the
southwest and northeast of the UAE, respectively, in addition to Bahrain, Kuwait, and Qatar.
The country experiences moderate winters and extreme summers with a maximum average
monthly temperature of 40.3 ◦C. Humid southeasterly winds prevail during summer which
results in humidity levels as high as 95%. The western parts of the country are mostly
flat, while the northeast area has a mountainous terrain with a maximum height of 1800 m
above mean sea level (alms). According to the geomorphology of the area, the UAE is
broadly classified into East Coast (EC) which lies along the Gulf of Oman, Mountains
(M), Gravel Plains (GP), and Desert Foreland (DF) (Figure 1). The water year spans from
October to September, while the rainy season is from late November to early April. Several
researchers [54,59,60] reported that the country faced a plunging shift in annual rainfall
in 1999. The average annual rainfall ranges from 80 mm in the Desert Foreland areas to
140 mm on the East Coast and Mountains.

2.2. In Situ Data

Daily precipitation data from 50 rain gauges covering the study area were collected
for the period 2004–2020 (Figure 1). The data were provided by the National Center of
Meteorology (NCM), UAE. The gauges electronically report rainfall observations which are
automatically logged into a central database. The NCM verifies the accuracy of the datasets
and daily and monthly gauge accumulations are the typical distribution formats for rain
gauges. All the stations used in this study are inland and none of the marine stations were
utilized. Station-based statistical metrics based on monthly and annual rainfall data are
presented in Tables A1 and A2 respectively.



Remote Sens. 2022, 14, 5827 5 of 27

Figure 1. The study area including the geomorphological regions and locations of rain gauges.

2.3. GPM-IMERG

The Global Precipitation Measurement (GPM) is a multinational satellite mission. It
offers 3-hourly global measurements of snow and precipitation. The Integrated Multi-
satellite Retrievals for GPM (IMERG) algorithm, which combines information from all
passive-microwave devices in the GPM constellation, provides rainfall estimates in multiple
runs. The Late run product has a 14-h delay, while the Early run product offers data that
are practically real-time with a 4-h latency. Since the Final run product utilizes gauge
information and has a latency period of two months post-observation, it is considered the
most accurate version. The spatio-temporal resolutions of the IMERG Final run product
are 0.1◦ × 0.1◦ and 30 min. To produce rainfall data, IMERG calibrates, combines, and
appends satellite-based microwave estimates with infrared (IR) satellite estimations [23].
In this study, IMERG Final run is used. Additional details of the IMERG and other GPM
products can be found in [5,23,25].

2.4. CMORPH

The two products offered by CMORPH are CMORPH (V0.x) and CMORPH (V1.0).
CMORPH (V1.0) reduces the significant inhomogeneity generated by the changing algo-
rithm in CMORPH-V0.x. The most recent edition of the product contains data from 1998 to
present, while the earlier version covers the years 2002 to 2018. Bias-corrected precipitation
products are also included in CMPORPH-V1.0 along with the raw, satellite-only precipi-
tation estimates. The CMORPH precipitation data used in this study was acquired from
the National Oceanic and Atmospheric Administration (NASA) Climate Prediction Center
(CPC) [61]. The downloaded data have a spatial resolution of 8 × 8 km and a temporal
resolution of 30 min.

2.5. PERSIANN-CDR

The PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Climate Data Record) product, was developed by the
Center for Hydrometeorology and Remote Sensing (CHRS) at the University of Califor-
nia, Irvine (UCI). It computes rainfall estimates at every 0.25◦ × 0.25◦ pixel using neural
network function classifier techniques. When independent rainfall estimates are available,
the updating of the network parameters is made by an adaptive training function. Based
on geostationary infrared imagery, the PERSIANN system was eventually expanded to
make use of both infrared and daytime visible information. To provide worldwide rain-
fall, the PERSIANN algorithm is based on geostationary longwave infrared images. The
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global range of the rainfall product is 60◦S to 60◦N. The PERSIANN-CDR belongs to the
PERSIANN family. Detailed information about the product can be found in [24]. In this
study, the PERSIANN-CDR product is used to analyze the changes and trends in daily
precipitation, particularly extreme precipitation events.

2.6. CHIRPS

An extensive 35+ year quasi-global precipitation record is available from the Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS). For trend analysis and
seasonal drought monitoring, CHIRPS creates a gridded rainfall time series utilizing in-
house climatology, CHPclim, 0.05◦ resolution satellite imagery, and in situ station data. The
data span 50◦S–50◦N (and all longitudes) and are available from 1981 to present. CHIRPS
has shown promising results in terms of low bias and operational monitoring in various
studies [62,63]. In this study, 5 × 5 km daily data were obtained from the Climate Hazard
Center of UC Santa Barbara. Table 1 briefly lists the satellite precipitation data sets utilized
in this study.

Table 1. Details of the utilized remotely sensed satellite precipitation products with their spatial and
temporal resolutions and source.

GPM-IMERG CMORPH CHIRPS PERSIANN-CDR

Source NASA NOAA CHC, UCB CHRS, UCI
Spatial Distribution 10 × 10 km 8 × 8 km 5 × 5 km 25 × 25 km
Temporal Distribution Daily Half-Hourly Daily Daily
Data Availability 2000-Present 1998-Present 1981-Present 2000-Present
Span 60◦S–60◦N 60◦S–60◦N 50◦S–50◦N 60◦S–60◦N

2.7. Methodology

The current study involves several steps to accurately estimate the consistency of the
selected satellite precipitation products and analyze rainfall characteristics in the UAE. The
process starts with the acquisition of daily ground observations from the National Center
of Meteorology (NCM) of the UAE. The matching time series of the satellite precipitation
products were then downloaded through various sources (Table 1) and extracted at the
gauge locations. The methodological framework is represented in Figure 2.

2.8. Data Acquisition

Rainfall data were acquired from NCM from 2004–2020 on daily basis. For coordinates-
based analysis, the exact coordinates of the gauge stations were acquired from NCM [64]. A
total of 50 stations covering the four geomorphological regions of the UAE were considered.
The EC region has the least number of gauge stations (4), while DF region has the maximum
number of stations (28) due to its larger area (Figure 1). The GP and M regions have 12 and
6 gauge stations, respectively. The data from the satellite products are usually available
in NetCDF (Network Common Data Form), HDF (Hierarchical Data Format), OpeNDAP
(Open-source Project for a Network Data Access Protocol), or GeoTIFF (Georeferenced
Tagged Image File Format). The data were downloaded in NetCDF format for all the
selected precipitation products based on the respective grids. The data were downloaded
using the MATLAB program.
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Figure 2. Flow chart of the implemented methodology.

2.9. Selection of the Grid Coordinates

The selection of grid coordinates, based on locations of gauges, is considered the most
vital step to ensure reliable results. The process was programmed in MATLAB to precisely
select the neighboring grid coordinates containing the gauge location. The code performs
the following operations: (1) selecting the grid containing the gauge and recording the
rainfall measurements for the four surrounding grid points; (2) taking the weighted average
of the four nearest neighboring grid points and comparing it with the gauge rainfall data;
(3) alternatively, selecting the single grid point if the gauge location is within a predefined
threshold distance from the nearest grid. Since the weighted average approach was applied
while selecting four neighboring grid points, the grid point closest to the gauge location
receives the highest weightage for the average calculations. However, if the distance of
any grid point is small enough that it surpasses the pre-defined threshold, that grid point
would receive the full weightage of 1 and the contribution from the rest of the three grid
points becomes practically null. However, the overall percentage of these single-gridded
matched points was not more than 10–20% for all the products. In other related studies, the
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grid points were selected based on the minimum distance from the gauge location only [45].
This would equally under-estimate or over-estimate the actual rainfall. In this study, the
weighted average of four neighboring points was better calculated to acquire more reliable
matching rainfall data.

2.10. Interpolation Technique

To compare point-based rain gauge data with grid-based satellite remote sensing
data, spatial interpolation or simple averaging approaches were used. However, due to
interpolation algorithms, rain gauge densities, systematic errors, and other factors, the
interpolated data may have some uncertainties. Therefore, a rigorous and precise method
was required to compare gauge-based vs. satellite precipitation products. Inverse Distance
Weighting (IDW) is a widely used method in the literature and is recognized as one of
the standard spatial interpolation procedures [65–67]. IDW uses the average of all sample
data points in the neighboring cells to predict the value in a particular cell. More weight
is assigned to the points that are closer to the center of the cell being predicted during
the averaging process. Therefore, the IDW interpolation technique was utilized due to its
robustness and ease of use.

2.11. Performance Measures

The performance of the satellite products to accurately detect rainfall is assessed
through various statistical performance measures. Prior studies categorized these measures
based on contingency estimates, error estimates, and correlation consistency between the
observed and estimated rainfall values [24,27,68–71].

Contingency measures are vital to reveal the correctness of the products in identifying
rainfall events. Prominent contingency measures include, among others, Probability of
Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI). Table 2 provides
the basis for the formulation of the three mentioned measures.

Table 2. Criteria for defining the contingency measures.

Ground Observations

Satellite Estimates

Yes No

Yes A = Hits
(Accurate forecasts)

B = Miss
(Missed/unwarned events)

No C = False Alarm
(Wolf Cry)

D = Correct No
(Usually, we ignore this as rare event)

Based on Table 2, the three contingency measures can be formulated as:

POD =
A

A + B
; (1)

FAR =
C

A + C
; (2)

CSI =
A

A + B + C
; (3)

where POD stands for correctly detected events out of total events; FAR stands for falsely
reported events out of all warnings; and CSI stands for correctly detected events out of
all warned and unwarned events. All the above measures have a value ranging from 0–1.
POD is perfect at value 1 and FAR is perfect at zero value. A value of 1 for CSI also portrays
the best value. Similarly, Root Mean Square Error (RMSE), Pearson Correlation Coefficient
(CC) [72], and Standard Deviation (SD) are used to quantify the accuracy and agreement of
the products with the observed values. These measures are described in Equations (4)–(6).
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RMSE =

√
∑n

i=1(prediction − observed)2

n
(4)

CC =
∑(xi − x)(yi − y)√

∑(xi − x)2Σ(yi − y)2
(5)

σ =

√
∑(xi − µ)2

n
(6)

where xi and yi denote the gauge rainfall and satellite rainfall estimates, respectively, while
x and y are their mean values. Similarly, σ represents the population standard deviation
and xi denotes each value from the population, and n is the size of the whole population.
The Pearson Correlation, which can vary from −1 to 1, illustrates the statistical relationship
between variables. Whereas 0 indicates no linear correlation, −1 implies a full negative
linear correlation, and 1 indicates a total positive linear correlation. RMSE tends to reveal
the average error of the products in assessing the observed precipitation.

2.12. Precipitation Extreme Indices

A determined value that can be used to characterize the status and changes in the
climate system is known as a climate index. It helps understand the precipitation and
temperature extreme patterns over time. Climate indices are also referred to as annual
or monthly statistics of weather and are very helpful for a comprehensive understanding
of regional climatic trends. Moreover, spatial trends in precipitation extreme indices are
imperative to study the changes in rainfall characteristics [47]. The R software package was
utilized to summarize the selected indices over the UAE and to analyze how the satellite
products behave in comparison to gauge data. To check the extremes in precipitation
values, various precipitation indices were calculated to show the maximum one-day and
yearly values along with the number of days when a specific threshold rainfall amount was
surpassed [73,74]. The indices are explained in Table 3 with formulas based on monthly or
yearly statistics of predicted and observed climatic data.

Table 3. Climate indices and their definition (additional details: www.climdex.org (accessed on
3 July 2022)).

Indices Symbology Units

Rx1 day Maximum 1-day precipitation over a given period mm

R10 mm
Yearly days count when days
Rainfall ≥ 10 mm

R20 mm
Yearly days count when days
Rainfall ≥ 20 mm

R30 mm
Yearly days count when days
Rainfall ≥ 30 mm

CWD
The maximum length of the wet spell. days
Max number of continuous days when Rainfall ≥ 1 mm

2.13. Precipitation Concentration Index (PCI)

The uneven spatial and temporal distribution of precipitation, aggravated by climate
change, has recently received significant attention. More extreme weather events, such
as floods and droughts, are likely to occur due to precipitation frequency, concentration,
and variability. Especially, the variation in precipitation concentration has an impact on
ecosystems, human health, and the environment. For instance, floods are likely to occur
when wet days account for a higher percentage of annual precipitation. Similarly, intense
rainstorms may trigger flash floods, landslides, and water accumulation in urban areas.
Statistical indices, including Concentration Index (CI) and Precipitation Concentration

www.climdex.org
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Index (PCI) based on daily and monthly precipitation data, were developed to investi-
gate the concentration of precipitation and demonstrate the changing weight of seasonal
precipitation variations. The Precipitation Concentration Index (PCI) was conceived and
established by [75,76] and was utilized at the annual and seasonal scales by various re-
searchers [49,70]. The precipitation can be considered as regularly distributed (PCI < 10),
moderately concentrated (PCI = 10–15), having irregular distribution (PCI = 16–20), and
exhibiting severe irregular distribution when the PCI value is above 20 [76]. Moreover,
the temporal analysis of the PCI values also demonstrates the decrease or increase in the
temporal trend in precipitation concentration. The PCI was derived for rain gauge and
satellite observations to determine the concentration at the yearly scales. The following
formula was used to compute the seasonal and yearly precipitation concentrations.

PCIannual =
∑12

i=1 p2
i(

∑12
i=1 pi

)2 × 100 (7)

where pi denotes the rainfall amount in ith month.

2.14. Precipitation Variability

To study the variability in precipitation within a year and assess the evenness of total
annual precipitation, various diversity indices are used [77]. The precipitation pattern
and the seasonality in precipitation can be detected through these indices in a decadal
period. The Shannon Diversity Index [78] is one of the most used diversity indices and has
been effectively utilized for rainfall variability analysis [77,79–81]. The Shannon Diversity
Index of any gauge station can be calculated by considering the monthly proportion of
precipitation and multiplying it with the natural log of itself.

D =
−∑n

i=1 xi(lnxi)

ln(12)
(8)

where xi denotes the monthly proportion of precipitation and D is the Shannon Diversity
Index. Generally, the value of Shannon Diversity Index ranges from 1.5 to 3.5. However,
for the rainfall variability analysis, it can be standardized to be within the range of 0–1 by
dividing by the natural log of 12. Moreover, the zero monthly values were replaced by a
small number of 0.01 to refrain from systematic errors as the negative logarithm of zero is
undefined.

3. Results
3.1. Spatial and Temporal Precipitation Distribution

Based on satellite products, the annual average rainfall distribution over the UAE
showed a consistent geographical pattern with the gauge data. (Figure 3). However, the
plots also show over- and under-estimation in the average rainfall. The observed rainfall
or gauge data subplot indicates that the highest average rainfall value lies in the range of
93–110 based on the data of 17 years and 50 gauge stations covering the country (Figure 3a).
Higher values of average annual rainfall occur mostly in the East Coast (EC), Mountains
(M), and some parts of the Al-Ain region. The western part, which largely lies in the Desert
Foreland (DF), receives the least rainfall throughout the year.

Although the spatial distribution of all satellite products follows an analogous pattern
with the gauge data, the number of lower and higher average annual values differs signifi-
cantly. Almost all the products over-estimated the gauge data except the PERSIANN-CDR,
which displayed a substantial under-estimation. The highest value of the average annual
rainfall was shown by the CMORPH product, where it reached up to 146 mm, whereas
IMERG and CHIRPS provided 133 and 123 mm, respectively. The under-estimation of
the PERSIANN-CDR product can be ascribed to its relatively coarse spatial resolution as
compared to other products. This behavior of the PERSIANN-CDR was also reported
by [21].
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Figure 3. Annual average rainfall distribution for gauge (a) and satellite products (b–e).

Figure 4 represents the daily average rainfall comparison between the products and
gauge values. The spatial plots are delineated to further elaborate the over- and under-
estimation of the products. Very low daily averages reflect the maximum number of dry
days in the country. The gauge data (Figure 4a) displays the daily average rainfall in the
range of 0.1–0.48. The western part of the Abu Dhabi emirate shows very low values for
daily average rainfall with an increase in the northern emirates and mountainous regions.
Almost all the products over-estimated the daily average rainfall in the western region
of Abu Dhabi. IMERG and CMORPH (Figure 4b,c) have even shown relatively higher
daily averages in some western coastal regions which could not be captured by the other
two products. CHIRPS showed an average value of less than 0.2 in most of the country’s
stations, except in the northeastern mountains, where it exhibited values ranging between
0.2 and 0.3. The relatively higher values of daily averages in the East Coast and Mountains
areas, depicted by gauge data, were successfully captured by almost all the products.

All the products, including rain gauges, showed a steady pattern in the areal average
monthly rainfall as shown in Figure 5. According to rain gauge data, Jan–March were the
wettest months in the analysis of the previous 17 water years. Summer months are usually
dry and all the products were consistent with the gauge data during the summer months.
CMORPH and GPM-IMERG showed increased monthly averages which were expected as
represented in the annual average rainfall plots. Figure 5 shows the comparison between
rainfall values among rain gauge and four satellite products at mean monthly scales.
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Figure 4. Average daily rainfall distribution for the gauge observation (a), IMERG (b), CMORPH (c),
CHIRPS (d), PERSIANN-CDR (e).

Figure 5. Mean monthly rainfall for gauge and remote sensing products.

3.2. Comparative Analysis of the Products
3.2.1. Statistical Performance

A Taylor diagram [82] provides an effective method for summarizing multiple statis-
tical tools in a single figure to showcase the statistical performance of prediction models.
Figure 6 is developed by calculating CC, RMSE, and Standard Deviation (SD) to assess the
performance of satellite products over different regions of the UAE.
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Figure 6. Taylor diagram depicting the performance of satellite products based on selected statistical
measures over four climatological regions. The hollow circles represent the GPM-IMERG product
while the solid circles represent the CMORPH product. Similarly, plus sign and hollow squares
represent CHIRPS and PERSIANN-CDR, respectively.

Four different plots were developed for the four climatological regions. GPM-IMERG
showed the highest CC in the Gravel Plains, while in the Mountain area, it showed the
lowest value of 0.4. CMORPH showed the best agreement with the gauge data in the Gravel
Plains in line with GPM-IMERG and the least agreement on the East Coast. Similar behavior
was shown by CMORPH in the Desert Foreland and Mountains where the CC values were
above 0.6. However, on the East Coast, the CMORPH product exhibited the lowest CC
value of 0.5. Contrarily, the PERSIANN-CDR was the best among all the products on the
East Coast, although it underperformed in terms of quantitative analysis for those regions.
This might be attributed to the strong post-processing methodological framework in the
development of CDR products.

CHIRPS performed equally well in all regions except the East Coast, where it was slightly
better than CMORPH and GPM. RMSE values were between 1 and 2 mm for all products in
the Desert Foreland and East Coast. For the other two regions, the values were slightly higher
than 2 mm. Overall, GPM-IMERG showed the least error among all products. The statistical
performance measures indicated that GPM-IMERG and CMORPH are comparatively better
in terms of correlation and prediction errors with the gauge observations.

3.2.2. Detection Accuracy

The most common contingency measures were utilized to examine the efficacy of
the products in capturing rainfall events. POD, FAR, and CSI were calculated based on
Equations (1)–(3) and Table 2. POD describes the ability of the model to capture the real
event as recorded by the gauge (Hit), whereas FAR is the probability of detecting a false
event that has not been recorded by the rain gauges. Figure 7 shows the spatial distribution
of the POD, FAR, and CSI across the UAE. The GPM-IMERG product successfully captured
the actual rainfall events; however, the numbers were relatively low as compared to
previous studies, where IMERG exhibited comparatively high values of POD [69,71]. This
might be associated with the averaging effect as the time series data in the current study
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are longer than those of previous studies. The FAR value for GPM-IMERG was generally
similar for most of the stations with an overall good CSI value ranging from 0.5 to 0.7.

Figure 7. Heat map showing the contingency measures for each product. The X-axis shows the
number of stations. POD stands for Probability of Detection, FAR denotes False Alarm Ratio, and CSI
represents Critical Success Index.

CMORPH presented a wider range of POD values, with the best correlation for
northeastern stations. The range of FAR for CMORPH was also wider as compared to
IMERG. Again, CHIRPS provided the best POD values in almost all stations, reaching
a maximum value of 0.9, while FAR values were substantially lower with most stations
having values in the range of 0 to 0.2. Moreover, the PERSIANN-CDR displayed lower
values of POD indicating that the product failed to capture true events as compared to
other products. As a result, FAR values were also high for the PERSIANN-CDR. CSI values
of all products were between 0.4 and 0.6, except the PERSIANN-CDR, which showed a
value of less than 0.3 for most stations.

3.3. Rainfall Analysis Based on Climate Indices

The analysis was carried out based on the four climatological regions. Figure 8 maps
the results of the five precipitation indices for rain gauges and satellite products. The
figure reveals that CMORPH surpasses its counterparts in all five indices, especially on the
East Coast and Mountains. However, IMERG is comparatively consistent with the gauge
results. The results for the gauge rainfall data reveal that all regions have very few days
with rainfall amounts of more than 20–30 mm. The products agreed with the gauges except
for CHIRPS which under-estimated all indices. It should be noted that the spatial and
temporal averaging of rainfall data might reflect relatively lower values for all the indices.
The daily maximum average value in a year was observed in Gravel Plains for the gauge
data, followed by East Coast. IMERG provided comparatively close measurements to the
gauge values for Rx1 day analysis. The mountainous region experienced the maximum
consecutive wet days (7), followed by the East Coast. For this index, the PERSIANN-CDR
over-estimated and recorded CWD as high as 11 on the East Coast and Mountains. CHIRPS
provided almost similar values as of the gauge data for CWD.
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Figure 8. Results of climate indices analysis based on the products and the climatological regions
(DF = Desert Foreland, EC = East Coast, GP = Gravel Plains, M = Mountains). CWD is consecutive wet
days, Rx1day is the maximum one-day precipitation in millimeters in the given period, and R10, R20,
and R30 are the annual count of days when rainfall was greater than 10, 20, and 30 mm, respectively.

3.4. Precipitation Variability

The Shannon Diversity Index was utilized to identify the evenness or precipitation
variability over the UAE for the period 2004–2020. For the months having zero precipitation,
the value was replaced with a small value (0.01) to avoid mathematical errors as the formula
takes the logarithmic of the monthly rainfall values. The range of the Shannon index usually
lies between 1.5 and 3.5. However, after standardization, it ranges between 0 and 1. A high
index value shows a high precipitation variability and vice versa.

Figure 9 shows the spatial distribution of the precipitation variability over the UAE
for gauge rainfall and satellite products. First, the ranges for all the plots reveal that the
UAE experiences high variability of rainfall across the country. The lowest index value
was higher than 0.6 for all products and gauge data. Interestingly, all products were
consistent for the upper value of the index as compared to gauge data. IMERG, CMORPH,
and CHIRPS exhibited spatial evenness in rainfall variability, whereas the PERSIANN-
CDR showed higher variability, approaching a value of 0.9. However, the value of the
index decreases rapidly in the northern mountainous region. CHIRPS showed the highest
variability in the Al-Ain region and for some gauges located in the western area. All
products displayed maximum rainfall variability in the Al-Ain region, most of the western
area, and in some cases, the East Coast as well. IMERG, CMORPH, and the PERSIANN-
CDR over-estimated the concentration values and the index was mostly higher than 0.75. It
can be inferred that most of the products performed well in the variability analysis with
some exceptions. For example, the lower index values were only captured well by CHIRPS.
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Figure 9. Precipitation variability distribution over UAE for the period of 2004–2020. Plots (b–e)
represent the four satellite products while plot (a) shows the precipitation variability of rain gauge
observations.

3.5. Precipitation Concentration Index (PCI)

The Precipitation Concentration Index provides a useful tool to analyze temporal
rainfall distribution [83–85]. The results for the PCI are represented in Figure 10. The
figure shows a visual comparison between rain gauge data and satellite products. It can
be observed that the rainfall concentration in the UAE is extremely irregular, according
to the ranges defined by [76]. Overall, the satellite products are consistent with in situ
observations, with some exemptions in a few years (2010 and 2015). Except for CMORPH,
the confidence bands of all the products displayed a decreasing trend during the study
duration, which is in agreement with the gauge observation. The gauge observations
depict that the year 2008 showed an extremely irregular precipitation distribution with
the highest PCI value. Interestingly, this behavior was captured by all products; however,
the PCI values were relatively lower than the gauge PCI. In terms of temporal trend and
PCI values, the IMERG product closely followed the gauge PCI values. The other three
products exhibited lower PCI values as compared to gauge data. The wide yellowish bands
in Figure 10 represent the maximum/minimum value of the PCI which could ever occur
based on rainfall data used in calculating the PCI. IMERG and gauge showed similar PCI
values throughout the study period, while CHIRPS displayed relatively low PCI values
as compared to its counterparts. Overall, the studied products could provide promising
results while analyzing the precipitation concentration in the UAE.
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Figure 10. Precipitation Concentration Index (PCI) distribution over the study period for different
satellite products and rain gauge observations over UAE. Thick continuous black line = PCI, straight
blue line = mean value, light brown band = confidence band, yellowish wider band = prediction band.

4. Discussions

The discrepancies between measured rainfall data at gauge stations and satellite
products may come from different scales [86,87]. While satellite precipitation products
represent an average estimate of the specific pixel’s or grid’s precipitation, the rainfall gauge
station provides a point estimate [88]. Due to the large regional variability of rainfall, this
disparity in the spatial scale of the data constitutes a significant contributor to discrepancies
between the estimations of satellite products and ground observations [1]. This hypothesis
may provide an argument for the better performance of products with comparatively higher
spatial resolution. For instance, in the present study, the highest-resolution product was
CHIRPS, having a 5 × 5 km spatial resolution, followed by CMORPH and GPM-IMERG,
having an 8 × 8 km and 10 × 10 km spatial resolution, respectively, while the PERSIANN-
CDR has a 25 × 25 km spatial resolution. This prognosis becomes true when the total
annual average rainfall maps (Figure 3) are analyzed for all products. CHIRPS provided a
much closer spatial distribution to the gauge data, while the PERSIANN-CDR performed
the least. The daily averaged maps showed discrepancies, as seen in Figure 4, where
both CMORPH and IMERG over-estimated the gauge data in most parts of the country.
CHIRPS showed over-estimation only in the eastern part of the Abu Dhabi emirate, while it
under-estimated the rainfall in the western part of the country. Figures 3 and 4 demonstrate
that CHIRPS, CMORPH, and IMERG performed better on annual scales rather than daily
scales. This can be ascribed to the fact that as the data accumulate on the temporal scale, the
extent of error becomes marginalized [28] and, therefore, the performance of the products
becomes reasonable at higher temporal scales.

Similarly, monthly average rainfall revealed a good match of all products with gauge
data (Figure 5). However, in February, the PERSIANN-CDR was equally on par with the
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gauge data, while all the other products over-estimated the monthly average. The summer
months were almost consistent in terms of rainfall quantity, which signifies that all the four
products are efficient in capturing low rain (especially during July–September). Overall,
the products yielded higher values than the gauge data for wet months, except for the
PERSIANN-CDR. Some researchers also characterized the best precipitation products for
each month [68]; however, this can only be viable to marginalize the products based on
months for particular gauge stations. The generalization of this hypothesis is not feasible,
as the purpose of identifying the best suitable alternative products to gauge data is usually
to develop long-term databases.

The comparison of statistical measures including correlation coefficient and RMSE
(Figure 6) over the four different climatological regions of the UAE revealed the perfor-
mance of all the products. In the Desert Foreland part, which comprises the largest portion
of the country’s area and the maximum number of gauge stations, IMERG was better in
terms of error measurement, while CMORPH and IMERG showed the best correlation
coefficient. For Gravel Plains and Mountains, IMERG and CMORPH performed well,
while CHIRPS and the PERSIANN-CDR did not provide good rainfall estimates. The
PERSIANN-CDR displayed the best agreement with the gauge data on the East Coast,
showing a correlation coefficient close to 0.8. CMORPH was the least performing, with a
value of 0.5.

The product’s efficiency in capturing events is usually measured with various contin-
gency measures [19,42,71], which include the Probability of Detection (POD), False Alarm
Ratio (FAR), and Critical Success Index (CSI). Average values, as well as station-based val-
ues of these measures, are important in understanding the event-capturing ability of these
products. Figure 7 indicates that CHIRPS, CMORPH, and IMERG were best at capturing
the events. Although it is not necessarily true that higher POD values should yield lower
FAR values and vice versa, the FAR values for almost all the stations were relatively low
for CHIRPS followed by CMORPH and IMERG. This can again be associated with the
finer resolution of these three products that enabled them to capture the true events. The
PERSIANN-CDR missed many localized events owing to its coarser resolution as compared
to the other products. Therefore, the contingency measures confirm the correlation between
the products’ resolutions and their accuracy.

Previous investigations focused on the consistency analysis of satellite products by
exploiting various statistical measures and only discussed the trend analysis of the prod-
ucts [21,58,69,71]. In this study, climate indices, Precipitation Concentration Index, and
Shannon Diversity Index were incorporated to thoroughly examine the performance of the
selected products. The findings of all five precipitation indicators were plotted over various
geographic areas and for gauge and satellite products, as seen in Figure 8. CMORPH
outperformed its counterparts, particularly in the East Coast and Mountains. IMERG,
however, was more consistent with the gauge results. The gauge data revealed very few
days with a rainfall intensity higher than 20 to 30 mm. All products displayed a similar
trend except for CHIRPS, which under-estimated all indices. It should be noted that all
the indicators may have provided significantly lower values because of the spatial and
temporal averaging of rainfall data. Gravel Plains had the highest daily average value
over a year for the gauge data, trailed by the East Coast. The gauge values for the Rx1
day analysis and the IMERG products were relatively close. The East Coast followed the
Mountains region had the highest consecutive wet days (seven). The PERSIANN-CDR
over-stated this index and recorded CWD in the East Coast and Mountains as high as 11.
The values from CHIRPS were almost identical to those from the CWD gauge. In terms of
five selected climate indices, IMERG performed better than the other products.

The results of the Shannon Diversity Index and the Precipitation Concentration Index
further classify the products as behavioral or non-behavioral. Figure 9 shows that the
ranges of all the plots in the UAE varies greatly across the region. The lowest index value
for all the products and gauge data was higher than 0.6. Contrary to gauge observations, all
the products exhibited consistency for the upper index value. The geographic evenness of
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rainfall variability was shown by IMERG, CMORPH, and CHIRPS, but the PERSIANN-CDR
exhibited more variability, with a value close to 0.9. The Desert Foreland and Mountain
regions, however, had a sharp interface, and the value of the index was lower in the
northern Mountain region. In a few gauges located in the western region and Al-Ain
region, CHIRPS revealed the largest variability. Overall, the products showed precipitation
evenness in agreement with the gauge data, except for the north-western part of Abu
Dhabi, where the satellite products showed relatively higher variability as compared to
the gauge data. Temporal distribution of precipitation provides useful information to
assess the long-term trends and seasonal precipitation [85]. The results of PCI present
the temporal variation in rainfall concentrations. The PCI analysis revealed that IMERG
displayed the temporal distribution of the precipitation concentration with a minimum
error as compared to gauge values. The highest PCI values were observed in the year
2008, which was captured accordingly by all the products. CMORPH, CHIRPS, and the
PERSIANN CDR under-estimated the highest value. Figure 10 showed a declining trend in
PCI values which was closely imitated by the products as well. Hence, the results indicated
that while the selected precipitation products can be utilized for precipitation concentration
analysis, IMERG provides better results for the case of the UAE.

5. Conclusions

Unlike other investigations, this study considered a four-grid-point neighboring
weighted average approach to extract the satellite precipitation corresponding to the gauge
station and accounted for the spatial heterogeneity of the study area. The extreme precipi-
tation indices were calculated and analyzed for the UAE to study the ability of the satellite
products in simulating precipitation extremes. In addition, the precipitation diversity and
concentration were analyzed explicitly to better understand the precipitation regimes.

Four satellite precipitation products, namely GPM-IMERG, CMORPH, CHIRPS, and
the PERSIANN-CDR, were considered to evaluate their effectiveness in capturing rainfall
consistency, variability, and concentration over the UAE. The records of 17 years of daily
data (2004–2020) were utilized for the analysis over the whole country by using rainfall
data from 50 gauge stations as ground truth references. Various statistical, contingency,
and precipitation indices were calculated to determine the satellite precipitation product
performance over various domains. In addition to the daily analysis, the products were
investigated on monthly and annual scales to further validate their performance.

The CC and RMSE results revealed that CHIRPS performed equally well in all regions,
except for the East Coast, where it performed slightly better than CMORPH and IMERG.
Following GPM-IMERG, CMORPH demonstrated the best consistency in the Gravel Plains
and the least agreement in the East Coast. A similar agreement was seen in the Mountains
and Desert Foreland, where the correlation was between 0.5 and 0.7. The RMSE values
of all products for Desert Foreland and East Coast products ranged from 1 mm to 2 mm,
while the RMSE values for the other two regions were slightly greater than 2 mm. Overall,
GPM-IMERG had the lowest error rate of all the products in most of the regions. As a
result, GPM-IMERG and CMORPH are deemed to be superior in terms of correlation
and prediction errors. CHIRPS showed the highest POD values, followed by IMERG and
CMORPH, while PERSIANN-CDR demonstrated the least POD values. Similarly, CSI
values for all the stations was between 0.4 and 0.6, except the PERSIANN-CDR, which
showed much smaller CSI values (less than 0.2 for most stations). The False Alarm Ratio
was the least for CHIRPS and similar for the other three products.

The analysis of extreme precipitation indices revealed that GPM-IMERG was better in
capturing the Rx1 day, R10 mm, and R20 mm, while it over-estimated the extreme index of
R30 mm. In terms of consecutive wet days (CWD), CHIRPS provided similar results with
the gauge data, while the PERSIANN-CDR over-estimated the CWD. For almost all the
five indices, CMORPH was over-estimating rainfall as compared to the gauge data. The
results for the precipitation variability and concentration revealed that both IMERG and
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CHIRPS performed better than the other products in displaying the spatial evenness of the
rainfall and the temporal variation.

Previous studies did not discuss at length the post-processing of a satellite-based
data set. The focus remained on their accuracy based on spatial and temporal resolution.
However, each product is unique in terms of the techniques and processes used for post-
processing. Although the CHIRPS product has the finest spatial resolution and CMORPH
produces half-hourly estimates, IMERG demonstrated promising ability, especially in
analyzing the rainfall evenness and precipitation concentration variation. Therefore, it is
suggested that the studies focusing on satellite precipitation products should thoroughly
investigate their applicability to various hydro-climatological measures in addition to
finding their correlation, error measures, and overall trend.

The finer temporal and spatial resolution of the remote sensing satellite products
can augment the ground observations for various hydro-climatological studies. One of
the major limitations of satellite products is the availability of a limited temporal domain.
Detailed statistical analysis should be carried out when longer records are available for these
products. The overall applicability of these products is promising for arid regions, apart
from the apparent over-estimation, especially for low rainfalls. The results of the study
can be utilized to perform hydro-climatological forecasts and develop sustainable policies
which were otherwise limited due to the unavailability of dense rain gauge stations in dry
and regions. The future aspects of this study are to minimize the bias from satellite products
by incorporating information from various climatic parameters, such as temperature and
humidity, and to develop a consistent, grid-based, and long-term rainfall database for the
study area.
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Appendix A

Table A1. Station-based rainfall statistics based on total monthly rainfall values for the study area for the selected time period (2011–2020).

Stations Mean SE Mean StDev Var CoefVar Min Q1 Median Q3 Max Range IQR Skewness Kurtosis

Abu Al Abyad 48.2 18.4 63.7 4061.7 132.13 0.0 0.0 20.6 89.6 194.6 194.6 89.6 1.33 1.09
Abu Al Bukhoosh 52.9 20.1 69.6 4838.6 131.37 0.0 0.0 12.8 127.7 187.0 187.0 127.7 1.00 −0.59
Abu Dhabi 56.9 22.5 77.9 6064.5 136.79 0.0 0.0 19.5 121.9 216.8 216.8 121.9 1.23 0.13
Al Ain 62.5 24.2 83.7 7012.0 133.89 1.8 16.1 22.4 91.5 255.4 253.6 75.4 1.75 1.88
Al Aryam 27.8 12.1 42.0 1761.6 150.84 0.0 0.0 7.9 48.4 126.8 126.8 48.4 1.63 1.83
Al Faqa 140.4 33.7 116.8 13,631.3 83.14 25.0 41.0 101.9 237.0 354.0 329.0 196.1 0.92 −0.47
Al Jazeera B.G 30.7 11.1 38.4 1473.1 125.15 0.0 7.5 18.8 31.6 133.8 133.8 24.1 2.14 4.69
Al Malaiha 86.0 24.7 85.5 7304.7 99.33 8.8 25.4 52.9 140.4 283.3 274.5 115.1 1.37 1.22
Al Qattara 36.0 12.4 43.0 1846.3 119.25 1.8 8.8 23.8 34.4 143.5 141.7 25.5 1.95 3.22
Al Shiweb 125.3 49.4 171.0 29,254.2 136.55 5.1 17.8 42.0 179.6 569.2 564.1 161.8 1.94 3.62
Alarad 89.6 30.0 104.0 10,808.2 115.99 8.6 17.6 57.0 97.4 305.0 296.4 79.8 1.66 1.65
Alfoah 115.6 45.1 156.1 24,355.3 135.01 0.0 12.2 57.2 163.8 491.3 491.3 151.6 1.78 2.37
Al Gheweifat 57.7 16.4 56.9 3232.8 98.53 0.0 0.0 62.0 105.9 161.7 161.7 105.9 0.35 −1.14
Al Khazna 80.1 35.5 122.8 15,091.9 153.31 0.0 1.1 29.9 137.2 410.8 410.8 136.1 2.06 4.53
Alqlaa 51.1 16.1 55.9 3126.6 109.37 3.8 12.5 16.1 110.3 165.1 161.3 97.8 1.05 −0.33
Alquaa 71.0 21.6 75.0 5619.8 105.56 5.4 13.5 25.8 133.0 210.8 205.4 119.5 0.86 −0.83
Al Wathbah 60.5 23.4 81.2 6588.9 134.15 0.0 0.0 30.9 93.8 253.4 253.4 93.8 1.60 1.94
Al Tawiyen 39.2 15.7 54.4 2958.7 138.79 0.0 3.5 18.9 45.5 162.6 162.6 42.1 1.77 2.05
Bu Hamrah 56.9 21.8 75.4 5682.7 132.58 0.0 0.0 23.5 121.5 226.4 226.4 121.5 1.27 0.78
Das Island 53.7 26.3 91.2 8321.7 169.82 0.0 2.6 20.0 34.3 253.0 253.0 31.7 1.97 2.44
Damsa 38.4 16.8 58.3 3399.5 151.67 0.0 0.0 14.2 50.8 166.9 166.9 50.8 1.66 1.66
Dhudna 135.3 48.5 168.0 28,233.6 124.18 0.0 0.4 59.7 294.7 495.1 495.1 294.3 1.24 0.35
Falaj Al Moalla 117.6 39.0 135.3 18,293.0 114.98 0.0 1.7 93.4 180.1 394.8 394.8 178.4 1.20 0.51
Hamim 52.2 16.9 58.5 3426.1 112.17 0.0 1.0 27.1 96.5 173.0 173.0 95.6 0.98 −0.11
Hatta 92.0 27.8 96.2 9263.5 104.58 1.1 8.2 49.3 175.3 293.2 292.1 167.0 0.88 −0.25
Jabal Hafeet 85.5 21.1 73.2 5354.6 85.62 2.1 27.4 63.2 137.2 248.1 246.0 109.9 1.03 0.62
Jabal Jais 153.7 52.5 182.0 33,105.9 118.40 0.0 0.9 112.8 228.3 526.4 526.4 227.4 0.98 0.02
Jabal Mebreh 84.9 35.0 121.2 14,683.4 142.67 0.0 1.2 24.2 165.2 376.5 376.5 164.0 1.52 1.80
Khatam Al Shaklah 149.3 47.9 166.0 27,564.8 111.18 0.0 24.1 94.9 225.1 551.0 551.0 201.0 1.52 2.08
Madinat Zayed 46.3 17.0 58.9 3467.6 127.19 0.0 1.6 27.0 76.8 191.2 191.2 75.1 1.58 2.34
Manama 44.0 14.5 50.1 2512.2 113.87 0.0 0.0 26.1 90.0 123.1 123.1 90.0 0.55 −1.42
Makassib 72.7 21.5 74.3 5525.2 102.30 8.5 21.6 41.8 130.5 248.9 240.4 108.9 1.49 1.61
Masafi 97.4 31.1 107.7 11,603.8 110.57 1.5 15.6 39.8 206.9 295.0 293.5 191.3 1.00 −0.67
Mezaira 54.5 13.1 45.4 2061.9 83.36 0.6 15.8 49.2 70.6 157.1 156.5 54.8 1.01 1.20
Mezyed 107.3 23.3 80.6 6494.7 75.10 13.6 47.2 95.9 135.1 301.2 287.6 87.9 1.28 1.98
Mukhariz 75.3 20.3 70.5 4965.9 93.56 19.8 26.1 43.4 91.7 262.5 242.7 65.6 1.98 4.21
Owtaid 62.2 18.7 64.7 4181.5 103.93 0.1 10.4 54.4 88.6 237.1 237.0 78.2 1.89 4.80
Qarnen 41.5 15.7 54.3 2948.6 130.82 0.0 0.0 16.8 80.0 153.6 153.6 80.0 1.16 0.16
Raknah 91.4 32.5 112.6 12,673.4 123.22 1.5 9.4 46.3 200.6 315.5 314.0 191.3 1.24 −0.06
Ras Ghanadah 58.3 21.7 75.1 5635.9 128.75 0.0 0.0 19.3 102.2 213.2 213.2 102.2 1.11 0.12
Ras Musherib 25.19 8.95 31.02 962.07 123.13 0.00 0.00 8.85 47.90 96.30 96.30 47.90 1.22 0.92
Rowdah 72.6 29.8 103.3 10,663.2 142.17 6.4 17.6 30.0 74.2 327.2 320.8 56.7 2.02 3.11
Saih Al Salem 66.1 24.8 85.9 7379.2 130.04 0.0 2.3 42.7 93.9 286.4 286.4 91.6 1.80 3.33
Sir Bani Yas 46.4 14.9 51.7 2674.6 111.36 0.0 0.1 22.3 108.3 116.8 116.8 108.2 0.42 −1.93
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Table A1. Cont.

Stations Mean SE Mean StDev Var CoefVar Min Q1 Median Q3 Max Range IQR Skewness Kurtosis

Sir Bu Nair 45.3 16.7 58.0 3366.4 128.01 0.0 0.0 7.0 104.4 143.5 143.5 104.4 0.79 −1.21
Swiehan 92.1 32.7 113.2 12,823.3 123.01 1.0 13.0 29.4 131.5 345.4 344.4 118.6 1.51 1.35
Um Azimul 38.4 11.1 38.5 1483.8 100.40 0.0 0.5 33.7 69.5 112.2 112.2 69.0 0.69 −0.63
Um Ghafa 57.3 17.6 60.9 3711.3 106.38 1.7 8.4 33.3 104.8 168.1 166.4 96.4 1.01 −0.37
Umm Al Quwain 65.9 23.3 80.8 6522.8 122.49 0.0 2.3 22.7 140.6 231.4 231.4 138.3 0.99 −0.32
Yasat 37.8 13.8 47.7 2271.7 126.23 0.0 0.0 19.1 73.7 134.9 134.9 73.7 1.04 −0.07

Appendix B

Table A2. Station-based rainfall statistics based on total annual rainfall values for the study area for the selected time period (2011–020).

Stations Mean StDev Var CoefVar Min Q1 Med Q3 Max Range IQR Skewness Kurtosis

Abu Al Abyad 34.04 37.28 1389.91 109.54 0.00 2.80 19.40 64.75 126.40 126.40 61.95 1.08 0.56
Abu Al Bukhoosh 37.3 42.4 1794.2 113.44 0.0 3.2 13.6 71.4 146.2 146.2 68.2 1.24 1.10
Abu Dhabi 39.9 44.6 1985.0 111.70 0.0 6.0 21.0 69.9 157.6 157.6 63.9 1.46 1.68
Al Ain 44.1 54.4 2960.9 123.31 0.0 1.7 30.2 62.5 194.6 194.6 60.8 1.84 3.25
Al Aryam 19.58 24.77 613.47 126.52 0.00 0.30 7.80 42.60 65.80 65.80 42.30 1.01 −0.63
Al Faqa 98.5 69.7 4863.6 70.81 0.4 41.3 96.7 169.0 222.6 222.2 127.7 0.51 −1.04
Al Jazeera B.G 21.64 23.73 563.18 109.66 0.00 0.00 12.60 41.05 77.80 77.80 41.05 0.94 0.13
Al Malaiha 60.2 56.0 3137.9 93.09 0.0 16.5 42.8 103.9 203.8 203.8 87.4 1.27 1.20
Al Qattara 24.84 37.78 1426.96 152.07 0.00 0.30 6.60 38.40 136.40 136.40 38.10 2.02 4.13
Al Shiweb 88.0 85.1 7236.0 96.61 0.2 25.9 60.8 134.3 327.2 327.0 108.4 1.47 2.63
Alarad 62.6 61.7 3807.6 98.54 0.0 15.9 44.6 86.1 208.9 208.9 70.2 1.55 2.00
Alfoah 81.2 76.8 5891.0 94.52 0.2 18.0 75.8 106.8 286.8 286.6 88.8 1.39 2.09
Al Gheweifat 40.7 41.4 1715.3 101.67 0.0 5.0 25.4 78.3 128.9 128.9 73.3 0.87 −0.47
Al Khazna 56.12 38.92 1514.91 69.35 0.00 22.50 50.60 88.90 134.60 134.60 66.40 0.38 −0.67
Alqlaa 35.9 52.6 2766.9 146.59 0.2 2.2 13.4 50.1 166.2 166.0 47.9 1.88 2.73
Alquaa 49.9 68.0 4628.7 136.28 0.0 2.8 22.4 67.5 223.2 223.2 64.7 1.65 1.72
Al Wathbah 42.7 42.2 1781.7 98.84 0.0 3.2 24.6 79.6 121.9 121.9 76.4 0.75 −0.85
Al Tawiyen 26.55 35.65 1270.70 134.25 0.00 1.90 17.80 39.20 139.80 139.80 37.30 2.25 5.99
Bu Hamrah 40.1 54.6 2977.0 135.95 0.4 6.8 16.2 64.2 219.8 219.4 57.4 2.47 7.26
Das Island 37.8 63.6 4041.3 168.02 0.0 0.0 9.6 54.9 238.2 238.2 54.9 2.35 5.85
Damsa 27.11 36.45 1328.84 134.48 0.00 0.00 5.40 63.30 101.00 101.00 63.30 1.08 −0.42
Dhudna 91.9 94.6 8941.6 102.93 2.0 16.1 59.8 157.5 285.3 283.3 141.4 1.06 −0.03
Falaj Al Moalla 82.5 86.1 7419.9 104.43 0.6 25.5 58.0 112.0 303.0 302.4 86.5 1.77 2.68
Hamim 35.5 43.3 1876.4 121.88 0.0 6.2 14.6 55.5 158.0 158.0 49.3 1.75 2.92
Hatta 61.2 62.2 3874.1 101.66 0.0 10.1 43.2 105.0 208.9 208.9 94.9 1.08 0.40
Jabal Hafeet 59.0 61.4 3764.5 104.00 0.0 14.3 50.4 85.1 246.0 246.0 70.8 1.95 4.70
Jabal Jais 108.4 128.5 1614.7 118.51 0.0 17.0 58.0 174.8 461.6 461.6 157.8 1.67 2.39
Jabal Mebreh 58.8 86.5 7490.6 147.29 0.0 0.2 15.2 83.1 252.2 252.2 82.9 1.53 1.06
Khatam Al Shaklah 103.7 91.5 8380.6 88.25 0.0 18.3 81.8 168.8 305.7 305.7 150.5 0.71 −0.28
Madinat Zayed 31.58 29.05 843.80 91.98 0.00 8.30 24.00 50.90 109.40 109.40 42.60 1.28 1.82
Manama 30.89 39.22 1538.44 126.96 0.00 3.45 13.00 56.45 143.80 143.80 53.00 1.77 3.16
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Table A2. Cont.

Stations Mean StDev Var CoefVar Min Q1 Med Q3 Max Range IQR Skewness Kurtosis

Makassib 48.8 57.1 3264.9 117.19 0.4 10.8 21.0 89.9 206.9 206.5 79.1 1.56 2.31
Masafi 68.71 38.95 1516.83 56.69 0.00 40.20 61.60 104.90 124.80 124.80 64.70 −0.45 −0.92
Mezaira 35.1 59.4 3530.8 169.12 0.0 5.4 15.4 26.6 200.8 200.8 21.2 2.42 4.88
Mezyed 74.14 36.91 1362.05 49.78 28.00 39.96 61.80 113.26 127.58 99.59 73.30 0.27 −1.62
Mukhariz 51.0 95.6 9140.6 187.62 0.0 5.6 18.6 36.4 347.0 347.0 30.8 2.63 6.33
Owtaid 42.22 38.15 1455.34 90.35 0.00 13.35 28.60 54.10 131.00 131.00 40.75 1.35 1.37
Qarnen 29.28 27.37 748.95 93.48 0.00 5.50 17.00 55.15 79.10 79.10 49.65 0.69 −0.98
Raknah 64.1 59.2 3509.7 92.47 0.0 20.8 56.4 81.3 232.2 232.2 60.5 1.51 3.08
Ras Ghanadah 41.0 53.9 2905.1 131.44 0.0 3.7 19.0 63.3 185.5 185.5 59.6 1.75 2.42
Ras Musherib 17.30 20.25 409.95 117.04 0.00 1.95 4.60 34.45 63.10 63.10 32.50 1.04 −0.15
Rowdah 51.2 61.7 3809.1 120.51 0.0 2.2 29.2 68.6 230.0 230.0 66.4 1.79 3.48
Saih Al Salem 46.4 61.9 3831.0 133.51 2.2 8.8 20.8 68.4 242.9 240.7 59.6 2.33 6.02
Sir Bani Yas 32.32 41.08 1687.58 127.09 0.00 2.35 16.60 51.50 132.80 132.80 49.15 1.47 1.24
Sir Bu Nair 31.88 32.83 1078.00 102.98 0.00 5.60 17.80 67.95 92.20 92.20 62.35 0.79 −0.95
Swiehan 64.7 55.7 3105.0 86.06 0.0 10.9 55.8 101.2 192.1 192.1 90.3 0.76 0.01
Um Azimul 26.38 28.92 836.36 109.62 0.00 4.50 14.60 57.70 84.70 84.70 53.20 1.00 −0.61
Um Ghafa 37.9 50.5 2551.6 133.18 0.0 0.7 21.0 58.3 165.5 165.5 57.6 1.64 1.94
Umm Al Quwain 46.5 49.2 2424.0 105.97 0.0 10.0 32.6 58.8 177.4 177.4 48.8 1.63 2.47
Yasat 26.64 34.97 1223.16 131.31 0.00 3.90 6.40 44.15 108.00 108.00 40.25 1.48 1.16
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