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Abstract: Forest ecosystems can be regarded as huge carbon sinks. In order to effectively assess
carbon balance in such ecosystems, rapid and accurate estimation of the aboveground biomass of a
forest is critically needed. However, the current methods for biomass estimation and mapping are of
limited spatial resolution and mostly depend on large numbers of measurements. In order to obtain
better biomass estimation outcomes with higher spatial resolution, a rapid method is introduced
for region-scale biomass estimation in alpine and canyon areas using space-borne light detection
and ranging (LiDAR) data and optical remote-sensing images. Specifically, we explored alpine and
canyon areas in Shangri-La City in China using space-borne LiDAR data from ICESAT-2 and optical
remote-sensing images from Landsat8 OLI, Sentinel-2, and Microwave remote sensing Sentinel-1.
An extrapolation model of the forest canopy heights in these areas was constructed with a 30-m
resolution of continuous canopy height outputs. For continuously estimating the diameter at breast
height (DBH) in Shangri-La City, a tree height-DBH growth model was constructed based on the
LiDAR and remote-sensing measurements. Finally, based on the average DBH of the explored forests,
a model was constructed for estimating and mapping the aboveground biomass and carbon storage
in Shangri-La with a spatial resolution of 30 m. The results show that the forest canopy height in
Shangri-La City is mainly in the range of 2.82–30.96 m, and that the estimation accuracy is verified by
the LiDAR-based canopy height model (CHM) with a coefficient of determination of R2 = 0.7143. The
inversion results were still largely affected by geospatial location factors (longitude, latitude), terrain
factors (slope, elevation), and vegetation indices (NBR, NDGI, NDVI). Based on the relationship
between the tree height and the DBH, the DBH of trees in Shangri-La City was estimated to be mainly
in the range of 20 cm to 30 cm, and this estimate was verified by actual measurements with R2 greater
than 0.7 all. Finally, the established model estimated the aboveground forest biomass and carbon
storage of the study area of Shangri-La City in 2020 to be 1.28 × 108 t and 6.41 × 107 t, respectively.
These estimates correspond to total accuracies of 92.28%, respectively.

Keywords: LiDAR; canopy height; DBH; forest aboveground biomass; forest carbon storage

1. Introduction

Forests are terrestrial natural ecosystems with highly complex structures and functions.
Forests represent important strategic resources for world countries, and forests play an
important role in water and soil conservation, carbon balance, oxygen release, climate regu-
lation, environmental purification, and biodiversity protection [1]. Numerous factors have
been considered in the evaluation of conditions of forest ecosystems. In particular, forest
biomass is a key factor for evaluating carbon sequestration potential and investigating
global climate changes [2,3]. In fact, the effectiveness of sustainable ecosystem develop-
ment and regional carbon cycle management significantly depends on the accurate and
convenient estimation of the forest biomass and carbon storage, as well as the identification
of the influence of these two factors on ecological environmental changes.
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The biomass of a single tree can be accurately evaluated through a direct manual
measurement approach. However, this approach requires considerable manpower and
material resources, and may even lead to ecosystem damage [4,5]. These drawbacks can
be avoided through several remote-sensing approaches (such as those based on optical or
microwave technologies), which save time and effort and enable large-scale estimation of
the forest biomass and carbon storage [6–8]. Nevertheless, remote sensing technologies
have different limitations. For example, the quality of the data collected through optical
remote sensing can be greatly degraded by cloudy and rainy weather conditions, and
the poor penetration of light rays in forests. So, this type of data cannot typically reveal
the structural details of a forest canopy and lower layers. Also, although microwave
remote sensing can overcome the influence of weather conditions, and the microwave
backscattering coefficient is significantly correlated with the trunk biomass, the microwave
remote sensing data is still prone to signal saturation [9–11].

Earlier studies demonstrated a strong correlation between the forest biomass and the
canopy height, and Wang et al. [12] particularly established a biomass estimation model
based on the canopy height. The canopy height and other parameters of the forest vertical
structures can be remarkably obtained through the highly-penetrative light detection
and ranging (LiDAR) technology. In particular, small-spot LiDAR data can be highly
accurate, but are of limited coverage and excessively large amounts. Moreover, although
space-borne large-spot LiDAR can be used to obtain forest canopy information in a large
area, this technology exhibits low spatial resolution, discontinuous sampling, and limited
applicability at regional scales [5]. In order to alleviate the sampling discontinuity problem,
space-borne LiDAR data was commonly combined with optical remote-sensing images
to obtain continuous canopy height information [13]. Wang et al. [14] used waveform
data correction based on the GeoScience Laser Altimeter System (GLAS) waveform data
correction and the Moderate Resolution Imaging Spectroradiometer (MODIS) data in order
to estimate the average vegetation height in Northeast China. Lefsky et al. [15] used the
GLAS waveform range and the topographic data of the Shuttle Radar Topography Mission
(SRTM) in order to construct a multiple regression model for canopy height estimation
in forests. The obtained height data was used to estimate the aboveground biomass.
Naesset and Gobakken [16] estimated the biomass of forest plots in Northern Norway
using the centile height variable and the canopy density variable of LiDAR echo data. A
regression model was constructed by taking these two variables as independent variables,
the statistical characteristics and the age of each plot as virtual variables, and the tree species
as continuous variables. Huang et al. [17] used airborne LiDAR and stepwise regression
modeling to estimate the biomass of a GLAS spot, establish a regression relationship with
a GLAS3 waveform index, and thus map the aboveground biomass (AGB) in the whole
study area.

Nevertheless, there are still several gaps that need to be filled in the current methodol-
ogy. First of all, the current methods for biomass distribution mapping are of low spatial
resolution, typically within 500–1000 m, and obviously high-resolution biomass distribution
mapping is still needed. Secondly, few studies are available on canopy height inversion
models for the alpine and canyon areas. Thirdly, most remote-sensing-based biomass
estimation methods require the collection of large numbers of field measurements.

The aforementioned gaps can be filled in through the combination of LiDAR data and
optical remote-sensing images. We use such a combination for large-scale high-resolution
estimation of the canopy height and the forest biomass. In this work, the LiDAR data is
ATL08 spot data obtained from the ICESAT-2 satellite for Shangri-La City (Northwestern
Yunnan Province, China). Remote-sensing images were obtained from optical remote
sensing data like Landsat 8 OLI, Sentinel-2, and microwave remote sensing data like
Sentinel-1. These two types of data were used along with other auxiliary data in order to
construct a canopy height extrapolation model and thus achieve high-resolution canopy
height inversion for the alpine and canyon areas of Shangri-La City. The relationship
between the tree height and the DBH was established based on measurements of these two
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quantities, and thus high-resolution mapping of the average DBH in Shangri-La City was
completed. Finally, using the biomass scale equation, the aboveground biomass and carbon
storage were estimated for the forests in Shangri-La City.

2. Materials and Methods
2.1. Study Area

The study area in our work was selected to be Shangri-La, Diqing Tibetan Autonomous
Prefecture, Yunnan Province, China. Shangri-La is a typical alpine and canyon area with
high mountains and steep valleys. This area is located in the eastern part of the Longitudinal
Valley area of the Three Parallel Rivers in the Hengduan Mountains on the southeastern
edge of the Qinghai-Tibet Plateau. In fact, Shangri-La is a part of the parallel-flow area of the
three rivers of the Salween (Nujiang), the Mekong (Lancangjiang), and the River of Golden
Sand (Jinshajiang). The geographical coordinates of this study area are 99◦22′–100◦19′E,
26◦52′–28◦52′N (See Figure 1). The altitude within the area varies widely from low to high
values, with significantly different weather conditions. The area has essentially a montane
cold temperate monsoon climate, with distinct dry and wet seasons, where the wet rainfall
season is mainly from June to October. Moreover, the geomorphic structures in the study
area are mainly mountains, basins, plateaus, and river valleys. As well, the terrain is low in
the southeast and high in the northwest, with a maximum elevation difference of 4042 m
and an average altitude of 3459 m [18]. Furthermore, the forest coverage rate is about
74.99%, and the forest ecosystem is rich and well-preserved. The main tree species are Picea
asperata Mast., Abies fabri (Mast.) Craib, Pinus densata Mast., Pinus Yunnanensis, and Quercus
Sichuanensis Aquifolioides Rehd. Et Wils.
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Figure 1. Location of the Shangri-La study area in China.

Due to the special topographic and geomorphic conditions of the study area, the
quality of the data obtained by the satellite remote-sensing sensors in this area is relatively
poor. Actually, because of the special topographic and climatic conditions and the excessive
human activities, Shangri-La City suffers from severe soil erosion, and poor ecological
security. This situation makes Shangri-La City one of the most fragile ecological environ-
ment areas in China [19–21]. In recent years, with the implementation of relevant policies,
regulations, and governance measures, both the ecological environment quality and the
ecological security in this city have been improved.
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2.2. Data Description and Processing
2.2.1. ICESat-2/ATL08

The ICESat-2 satellite (Ice, Cloud, and land Elevation Satellite-2) is equipped with the
Advanced Topographic Laser Altimeter System (ATLAS), and is a sequel to the ICESat
satellite launched in 2003. The Geoscience Laser Altimeter System (GLAS) carried by
ICESat has a sensitive single-photon detector. The higher pulse repetition rate can lead
to the acquisition of photon point clouds with smaller light spots and higher densities.
Then, fine three-dimensional surface measurements can be collected and used to estimate
the vegetation height and biomass in a large area. In fact, ICESat-2 was launched in
2018 to monitor changes in ice sheets, glacier elevation, sea ice freeboard, and forest
heights. The ICESat-2/ATLAS architecture provides 21 standard data types, with four
levels each. Among these types, the level-3 ATL08 data represents data of the terrestrial
vegetation, including the canopy height, the canopy cover, the surface slope, roughness,
and, if available, the apparent reflectance [22].

The ICESAT-2 orbit has an altitude of about 500 km, an inclination angle (i.e., satellite’s
orbit tilt around the Earth) of 92◦, and an observation coverage of 88◦S to 88◦N. This
satellite has a repetition period of 91 days, with 1387 orbits per cycle. The ATLAS system is
equipped with two laser systems, where usually only one of which is in operation. Each
laser system can emit a single pulse (532 nm) at a 10-kHZ repetition rate with a pulse width
of 1.5 ns, and can thus scan spots with 17 m in diameter and 0.7 m of inter-spot separation.

For our study, we collected all ATL08 data captured by ICESat-2 for Shangri-La City
from January to December 2020. The collected data samples include those of the left and
right orbits for 6 laser beams (GT1L, GT1R, GT2L, GT2R, GT3L, GT3R) and 115 spectral
bands. The original data was stored in the H5 format. In order to better ensure the ac-
curacy of forest height inversion results, ATL08 data were screened: (1) According to
the signal-to-noise ratio label of ICESat-2 satellite product, thresholds were set for low
signal-to-noise ratio (<3) was deleted; (2) To reduce the influence of cloud, remove the
cloud affected spots (cloud_flag_atm < 2), and screen ICESat-2 data with the distance
between ground elevation and reference ground elevation less than 50 m; (3) Remove data
with greater uncertainty of forest height (h_canopy_uncertainty = 3.4028235 × 1038) [23].
Based on this, the 95th percentile parameter of canopy height (canopy_h_metrics (95))
was extracted for forest height inversion. The experimental Data used in this paper
are ATL08 products of the ICESat-2 satellite [24,25], which was publicly released in
NSIDC (National Snow & Ice Data Center (Boulder, CO, USA)). The free download site is
https://nsidc.org/data/icesat-2/data sets (accessed on 6 June 2022).

2.2.2. Optical Remote Sensing and Microwave Remote Sensing Data

The optical remote-sensing data used in this study was collected from three satellites,
namely, Landsat 8 OLI, Sentinel-2, and microwave data Sentinel-1. The obtained image
data samples were first processed using the Google Earth Engine (GEE), which is a remote-
sensing cloud-computing platform. Any image with a cloud cover of less than 5% within
the time period from January 2020 to December 2020 was selected (following the same
procedure for the space-borne LiDAR data). Further data processing steps were carried out:
radiometric calibration, atmospheric correction, image mosaicking, geometric correction,
and image cropping. Most of the images processed within the GEE can be retrieved by
clipping according to the vector range of the research area.

2.2.3. SRTM DEM

The digital elevation model (DEM) data used in this study is the SRTM 1 data released
by the National Aeronautics and Space Administration (NASA) of the United States. The
SRTM 1 data has a spatial resolution of 30 m, and it was again processed within the GEE to
extract topographic features such as tree elevation, slope, aspect, and shadow.

https://nsidc.org/data/icesat-2/data
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2.2.4. Field, Airborne LiDAR Data Measurements and Forest Survey Data

The forest resources were surveyed in the study area in September 2020 and August
2021. Measurements were performed for several single-tree parameters such as the tree po-
sition, the canopy height, the diameter at the breast height, and the crown width. Airborne
LiDAR data samples were collected for more than 40 plots using the Rigel-VUX-1 UAV
LIDAR system. Single-tree measurements were collected in the east, south, west, north,
and middle of Shangri-La City for 1193 trees, including the typical tree species in the area:
Pinus densata Mast. (279 trees), Pinus yunnanensis (535 trees), Picea asperata Mast. (130 trees),
Abies fabri (Mast.) (111 trees) Craib, and Quercus (138 trees). The collected LIDAR data was
preprocessed to generate canopy height model (CHM) data with the same resolution as
the Landsat 8 OLI images, in order to verify the accuracy of the high-resolution canopy
height estimation. The location and orthophoto of the plot investigated by UAV are shown
in Figure 2.
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The forest resources survey data used in this study were the fourth round of forest
resources planning and design survey data of Shangri-La in 2016, which recorded the
dominant tree species, stock volume, age group, average DBH, average tree height, tree
number, and other information of each tree forest in Shangri-La.

2.2.5. GlobeLand 30

The GlobeLand 30 dataset is an important outcome of the global land-cover remote-
sensing mapping and key technologies research project of China’s National High-Technology
Development Program (863 Program). The spatial resolution of this dataset is 30 m, and it
mainly contains ten major land-cover types (namely, arable land, forest, grassland, shrub
land, wetland, water body, tundra, artificial surface, bare land, glacier, and permanent
snow). The labelled images in the dataset are mainly 30-m multispectral images, including
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TM5, TM+, and OLI multispectral images captured by the US LandSat satellite and China’s
Environmental Disaster Reduction Satellite (HJ-1). The most recently available 2020 version
of the data has also GF-1 multispectral images of 16-m resolution. For the 2020 data, the
best-reported classification accuracy was 85.72%, while the Kappa coefficient was 0.82 [26].
In our work, high-resolution canopy height mapping was obtained by stacking the high-
resolution height data with the forest ground class of the GlobeLand30 data and then
trimming. Table 1 shows the specific parameters of each of the data collections used in
our work.

Table 1. A summary of the data collections used in our work.

Type Name Spatial Resolution Data Source

LiDAR data
ICESat-2/ATLAS 100 m NSIDC (https://nsidc.org/data/icesat-2/data-sets

(accessed on 6 June 2022))
ULS - Rigel-VUX-1

Optical remote
sensing data

Landsat 8 OLI 30 m USGS (http://earthexplorer.usgs.gov (accessed on 6
June 2022))

Sentinel-2 10 m USGS (http://earthexplorer.usgs.gov (accessed on 6
June 2022))

Microwave remote
sensing data Sentinel-1 20 m USGS (http://earthexplorer.usgs.gov (accessed on 6

June 2022))

DEM SRTM 1 30 m USGS (http://earthexplorer.usgs.gov (accessed on 6
June 2022))

Thematic Data
Globeland 30 30 m www.globallandcover.com (accessed on 6 June 2022)

2016 Forest survey data Forest government

2.3. Methods

The ICESat2 ATL08 data and optical remote-sensing data were jointly used to estimate
the forest canopy height in Shangri-La City. Then, measurement samples were used to
establish a data model for the tree diameter at the breast height (DBH). Based on that model,
DBH calculations were completed and used for forest biomass estimation in Shangri-La City.
In addition, the forest biomass was used along with the carbon factor in order to estimate
the forest carbon storage. Thus, the mapping of the forest biomass and the carbon storage
in Shangri-La City was completed. A flow chart of the overall proposed methodology is
shown in Figure 3.
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2.3.1. High-Resolution Canopy Height Estimation

The ATL08 data type within the ICESAT-2 data represents vegetation height data
that can be used solely for canopy height estimation. However, the number of light
spots is quite limited and discrete, so it is necessary to augment this estimation process
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with rich high-resolution spectral information of optical remote-sensing images. Spectral
band calculations were carried out by combining Sentinel-1, Sentinel-2, and Landsat8 OLI
images. The indices extracted from these images are the normalized difference vegetation
index (NDVI), the difference vegetation index (DVI), the ratio vegetation index (RVI),
the normalized difference built-up index (NDBI), the normalized difference water index
(NDWI), the enhanced vegetation index (EVI), the normalized burn ratio (NBR), and the
normalized difference green index (NDGI). Topographic factors of slope and elevation
were obtained by processing the DEM data. We thus computed three types of features (i.e.,
the vegetation indices, the terrain factors, and location information), found the importance
of each feature, and established a random-forest model for high-resolution canopy height
estimation from the corresponding spot locations (Figure 4) [13]. The candidate feature
factors are shown in Table 2. Finally, the woodland part in the land-use data was clipped
for high-resolution canopy height mapping in the study area.
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Table 2. Candidate feature factors.

Type Factors

Location Latitude, Longitude
Terrain Slope, Elevation,

Vegetion Index

the normalized difference green index (NDGI), the ratio vegetation index (RVI),
the normalized burn ratio (NBR),the enhanced vegetation index (EVI), the

difference vegetation index (DVI), the normalized difference vegetation index
(NDVI), the normalized difference built-up index (NDBI),the terrestrial

chlorophyll index (MTCI),the inverted red-edge chlorophyll index (IRECI), the
normalized difference water index (NDWI), modified NDWI (MNDWI), the

Pigment-Specific-Simple Ratio (PSSRa)
Sentinel-1 Vertically-polarized (VV), Horizontally-polarized (VH)

Landsat8 OLI The red band(B4_1), the near-infrared band (B5_1), the first short wave infrared
band (B6_1), the second short wave infrared band (B7_1)

Sentinel-2

The blue band (B2), the red band (B4), the visible and near-infrared band (B5), the
visible and near-infrared band (B6), the visible and near-infrared band (B7), the

visible and near-infrared band (B8), the visible and near-infrared band (B8A), the
short wave infrared band (B11), the short wave infrared band (B12)

2.3.2. High-Resolution DBH Estimation

The tree diameter at the breast height (DBH) is directly related to the growth status
of a tree. Generally speaking, according to the scale rule of vegetation growth, the larger
the DBH in a stand is, the higher the trees will be, that is, there is a positive correlation
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between the DBH and the tree height [4]. In this study, single-tree height and DBH field
measurements were used for data cleaning and outlier removal. A regression model could
thus be established with the tree height as the independent variable and the DBH as the
dependent variable. Different types of such a model are shown in Table 3. Through model
evaluation, the best model fitting the data can be selected and used to predict DBH values
from given canopy heights. Therefore, by feeding high-resolution estimates of the forest
canopy height into the Height-DBH regression model, corresponding high-resolution DBH
estimates can be obtained.

Table 3. Candidate regression models for the relation between the canopy height and the DBH. In
the table, D represents the tree DBH (cm), H represents the tree height (m), and a, b, c, and d are
constants or parameters.

ID Model Express Parameters

1 Linear D = a + b × H a, b
2 Exponential D = a × ebH a, b
3 Power D = a × Hb a, b

4 Quadratic
polynomial D = a + b × H + c × H2 a, b, c

5 Cubic polynomial D = a + b × H + c × H2 + d × H3 a, b, c, d

2.3.3. Estimation of the Forest Biomass and Carbon Storage

Common standing biomass models mainly include unary, binary, and multivariate
biomass models. Unary biomass models mostly choose tree DBH as independent variables,
while binary biomass models mostly choose DBH and tree height [27–30]. Through the
comparison of previous studies, it is found that the accuracy of the bivariate biomass model
is higher than that of the monadic biomass model. Through searching data and referring
to the study of Wang [12] et al., the standing biomass model of the main dominant tree
species in Shangri-La was selected, as shown in Table 3. The biomass of individual trees
can be calculated by using the biomass estimation model of each tree species in Table 4,
and the above-ground biomass of the plot can be obtained by multiplying the tree plant
density of the plot.

Table 4. Above ground biomass model of main tree species in Shangri-La City.

Spieces of Trees Above Ground Biomass Model

Abies fabri (Mast.) Craib W = 0.06127D2.05753H0.50839

Quercus W = 0.07806D2.06321H0.57393

Pinus densata Mast. W = 0.0730D2.3560H0.1090

Picea asperata Mast. W = 0.09152D2.2106H0.25663

Pinus yunnanensis W = 0.070231D2.10392H0.41120

In Table 4, where W denotes the forest biomass (kg/tree), D denotes the tree DBH
(cm), H denotes the tree height (m).

After estimating the forest biomass, the biomass-to-carbon-storage conversion factor is
used to convert the forest biomass into the corresponding forest carbon storage as follows:

C = W × q (1)

where C denotes the forest carbon storage, W denotes the forest biomass, and q denotes the
conversion factor. Some studies have shown that this conversion factor varies by the tree
species, but the variation is small and basically stable within a certain range (0.47–0.55) [31].
Therefore, the median conversion factor (0.50) was used in our work to partially offset the
positive and negative errors in the estimation of carbon storage.
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3. Experimental Results
3.1. High-Resolution Canopy Height Mapping

By combining optical remote sensing and microwave remote sensing images (collected
from LandSat8 OLI, Sentinel-2, Sentinel-1) and ICESAT-2/ATL08 data, we extracted vegeta-
tion indices, terrain factors, the geospatial location, and other vegetation characteristics, and
thus established a random-forest regression model between these factors and the canopy
height [13]. Then, random-forest importance ranking was conducted on the feature factors,
and the factors with the greatest influence were selected. Model training was carried out
again, and high-resolution canopy height estimation was finally completed. The forest
canopy height map for Shangri-La City was obtained by dividing the woodland distribution
range into 30-m land-use data of GlobeLand 30. The features were ranked by a random-
forest algorithm, and the features with the greatest influence on canopy height estimation
were found to be the longitude, latitude, slope, elevation, NBR (Normalized Burn Ratio),
NDGI (Normalized Difference Greenness Index), NDVI (Normalized Difference Vegetation
Index), VV (Vertically-polarized band in Sentinel-1), VH (Horizontally-polarized band in
Sentinel-1), B4_1 (Red band in Landsat8 OIL), B5_1 (Red-edge band in Landsat8 OIL), B6_1
(First shortwave-infrared band in Landsat8 OIL) and B7_1 (Second shortwave-infrared
band Landsat8 OIL). The feature ranking results are shown in Figure 5. For comparison
with the inversion result, a canopy height model (CHM) with the same resolution as the
inversion result was generated by processing the UAV airborne LiDAR data obtained
from field measurements. The model has a coefficient of variation of R2 = 0.7143, and this
shows that the inversion result is somewhat correlated with the measurements and is thus
relatively reliable (Figure 6). The high-resolution canopy height estimation result is shown
in Figure 7. Obviously, the forest canopy height map estimated by the random-forest model
is basically in line with the actual situation in Shangri-La City. Indeed, Shangri-La City is
rich in forest resources, where the forest canopy height ranges between 2.28 m and 30.96 m.
This height distribution is different from that of the single-tree height measurements in
the field. This is because we used Landsat8 remote-sensing images for canopy height
estimation, and the resolution of the obtained result was 30 m. Each pixel represents the
average tree height within 900 m2 of the surrounding area. In terms of spatial distribution,
the forest canopy height in the east side of Shangri-La City is higher than that in the west
side. This is mainly because pine trees (such as the Pinus yunnanensis and the Pinus densata
Mast.) are more distributed in the west side of Shangri-La, and these trees are higher than
Picea asperata Mast., Abies fabri (Mast.) Craib and other Chinese fir trees.
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3.2. High-Resolution DBH Mapping

The statistical model of forest tree height and DBH in Shangri-La was established
by using the measured data and the data of the forest resources survey in 2016. Five
candidate models, including unary linear, exponential function, power function, quadratic
polynomial, and cubic polynomial were established according to different tree species. In
this study, a total of 32,492 sample plots of five typical tree species were selected from the
forest resources survey data. 75% of the sample plots were used as the training data set,
and 25% were used as the test data set for cross-validation. R2 and RMSE were selected
as the evaluation indexes to calculate the correlation between the predicted values and
the estimated values. According to the evaluation of the established relationship models,
among the relationship models of different tree species, the predicted DBH of the cubic
polynomial model is the closest to the real value, and this relationship model can best reflect
the relationship of tree height DBH of typical forest trees in Shangri–La City (Figure 8).
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Also, most of the DBH values were concentrated between 20 cm and 35 cm. These results 
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endfigure

Figure 8. Regression models for tree DBH prediction from the tree Height including: linear model,
quadratic-polynomial model, cubic-polynomial model, exponential model and power-function model.
(a–e): Pinus densata Mast.; (f–j): Abies fabri (Mast.) Craib; (k–o): Quercus; (p–t): Pinus yunnanensis;
(u–y): Picea asperata Mast.

Based on the cubic-polynomial model, the high-resolution canopy height map esti-
mated from space-borne LiDAR data (Figure 7) was used to obtain the corresponding
high-resolution DBH map (Figure 9) in Shangri-La City by raster computations. The maxi-
mum and minimum DBH values were found to be 64.11 cm and 4.42 cm, respectively. Also,
most of the DBH values were concentrated between 20 cm and 35 cm. These results are
consistent with the actual field measurements.
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3.3. Mapping of the Forest Biomass and Carbon Storage

In our study, the biomass estimation equation in Table 3. was used (along with the
tree height and DBH results) to estimate the forest biomass in Shangri-La City. The biomass
estimation results are shown in Figure 10. The biomass-to-carbon-storage conversion
factor (Equation (1)) was then used to estimate the carbon storage in Shangri-La City (See
Figure 11). The results show that the total biomass and carbon storage in Shangri-La City
are 1.28 × 108 t and 6.41 × 107 t, respectively. Indeed, Shangri-La City has jurisdiction over
11 townships, among which the spatial distributions of the forest aboveground biomass
and the carbon storage are uneven. The Gezan Township has the largest proportion of
forest biomass and carbon storage (with an overall percentage of 30.22%), where the
aboveground biomass and carbon storage are 3.88 × 107 t and 1.94 × 107 t, respectively.
Secondly, the Dongwang Township accounts for 10.90% of the total, with 1.40 × 107 t of
aboveground biomass and 6.99 × 106 t of carbon storage. The Shangjiang Township has
the least aboveground biomass of only 3.98 × 106 t and carbon storage of 1.99 × 106 t,
accounting for only 3.10% of the total in the study region. Shangri-La City has a large
altitude span, with an elevation gradient between 1400 m and 5000 m, and distinct vertical
forest features. Our results show that the forest biomass and carbon storage in Shangri-La
City are mainly distributed between 2400 m and 4000 m, accounting for 86.31% of the
total. The forest biomass and carbon storage below the 2400-m altitude were the least,
with 6.90 × 106 t and 3.45 × 106 t, respectively (accounting for only 5.38% of the total). In
general, the elevation range of the forest biomass and the carbon storage in Shangri-La City
is 3200–4000 m, accounting for 60.30% of the total.



Remote Sens. 2022, 14, 5816 15 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

a no-slope aspect [32]. Spatial analysis of the slope aspect shows that the distribution of the 
aboveground biomass and the carbon storage in Shangri-La City was relatively uniform in 
each slope upward (See Figure 12). The no-slope area had the least distribution with a biomass 
of 2.42 × 106 t and a carbon storage of 1.21 × 106 t (accounting for 1.88% of the total). The areas 
with the largest shares were the southwest orientation of the semi-sunny slope. In particular, 
the forest biomass of the southwest orientation of the semi-sunny slope area was 1.83 × 107 t, 
and the corresponding carbon storage was 9.14 × 106 t (accounting for 14.25% of the total). In 
general, the aboveground biomass and the carbon storage in the shady-slope and sunny-slope 
areas accounted for 50.60% and 47.52% of the total, respectively. Obviously, the difference be-
tween the two areas in terms of these quantities was not large, and the overall distribution was 
uniform along the various slope directions without obvious regularity. 

 
Figure 10. Aboveground biomass in Shangri-La City. 

 
Figure 11. Aboveground carbon storage in Shangri-La City. 

Figure 10. Aboveground biomass in Shangri-La City.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

a no-slope aspect [32]. Spatial analysis of the slope aspect shows that the distribution of the 
aboveground biomass and the carbon storage in Shangri-La City was relatively uniform in 
each slope upward (See Figure 12). The no-slope area had the least distribution with a biomass 
of 2.42 × 106 t and a carbon storage of 1.21 × 106 t (accounting for 1.88% of the total). The areas 
with the largest shares were the southwest orientation of the semi-sunny slope. In particular, 
the forest biomass of the southwest orientation of the semi-sunny slope area was 1.83 × 107 t, 
and the corresponding carbon storage was 9.14 × 106 t (accounting for 14.25% of the total). In 
general, the aboveground biomass and the carbon storage in the shady-slope and sunny-slope 
areas accounted for 50.60% and 47.52% of the total, respectively. Obviously, the difference be-
tween the two areas in terms of these quantities was not large, and the overall distribution was 
uniform along the various slope directions without obvious regularity. 

 
Figure 10. Aboveground biomass in Shangri-La City. 

 
Figure 11. Aboveground carbon storage in Shangri-La City. Figure 11. Aboveground carbon storage in Shangri-La City.

According to the slope analysis method for forest resource surveying, the slope from
0◦ to 90◦ can be divided into six categories: a flat slope (0◦–5◦), a gentle slope (6◦–15◦), a
normal slope (16◦–25◦), a steep slope (26◦–35◦), a sharp slope (36◦–45◦), and a dangerous
slope (≥45◦) [32]. As demonstrated in Figure 12, spatial slope analysis shows that the
aboveground biomass and the carbon storage in Shangri-La City are mostly distributed with
a slope of 6◦–45◦. The steep-slope area (with a slope of 26◦–35◦) has the highest biomass
and carbon storage of 3.83 × 107 t and 1.92 × 107 t, respectively (accounting for 29.88% of
the total). In the flat-slope area (0◦–5◦), the aboveground biomass was 4.87 × 106 t, and the
carbon storage was 2.43 × 106 t (accounting for only 3.79% of the total).



Remote Sens. 2022, 14, 5816 16 of 20
Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

  
(a) (b) 

(c) (d) 

Figure 12. Spatial distribution of the aboveground biomass and carbon storage in Shangri-La City: 
(a) Distribution in different townships; (b) Distribution at different elevations; (c) Distribution at 
different slopes; (d) Distribution in different slope directions. 

4. Discussion 
4.1. Importance of Model Variables in Canopy Height Estimation 

There is a strong correlation between the canopy height and biomass in forests [4]. In 
our work, ICESAT-2/ATL08 data, optical remote-sensing images, and topographic data 
were used for high-resolution estimation of the forest canopy height and the aboveground 
biomass in Shangri-La City. The ICESat-2/ATL08 data contain canopy height data but are 
of limited spatial resolution. Therefore, one of the key issues in estimating the forest 
aboveground biomass distribution is how to extrapolate from the discrete light spots to 
highly-continuous height data. At present, the main solution to this key problem is to es-
tablish a model that captures the relationship between spot data and spectral indices using 
optical remote-sensing images [33]. This model is used to extrapolate the whole study 
area. Following Zhu et al. [13], we established the relationship between ICESat-2/ATL08 

Figure 12. Spatial distribution of the aboveground biomass and carbon storage in Shangri-La City:
(a) Distribution in different townships; (b) Distribution at different elevations; (c) Distribution at
different slopes; (d) Distribution in different slope directions.

According to the slope aspect classification method in forest resource surveying, the
slope aspect can be divided into a shady slope (north), a semi-shady slope (northeast,
northwest, east), a semi-sunny slope (west, southeast, southwest), a sunny slope (south)
and finally a no-slope aspect [32]. Spatial analysis of the slope aspect shows that the
distribution of the aboveground biomass and the carbon storage in Shangri-La City was
relatively uniform in each slope upward (See Figure 12). The no-slope area had the least
distribution with a biomass of 2.42 × 106 t and a carbon storage of 1.21 × 106 t (accounting
for 1.88% of the total). The areas with the largest shares were the southwest orientation
of the semi-sunny slope. In particular, the forest biomass of the southwest orientation of
the semi-sunny slope area was 1.83 × 107 t, and the corresponding carbon storage was
9.14 × 106 t (accounting for 14.25% of the total). In general, the aboveground biomass and
the carbon storage in the shady-slope and sunny-slope areas accounted for 50.60% and
47.52% of the total, respectively. Obviously, the difference between the two areas in terms of
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these quantities was not large, and the overall distribution was uniform along the various
slope directions without obvious regularity.

4. Discussion
4.1. Importance of Model Variables in Canopy Height Estimation

There is a strong correlation between the canopy height and biomass in forests [4]. In
our work, ICESAT-2/ATL08 data, optical remote-sensing images, and topographic data
were used for high-resolution estimation of the forest canopy height and the aboveground
biomass in Shangri-La City. The ICESat-2/ATL08 data contain canopy height data but
are of limited spatial resolution. Therefore, one of the key issues in estimating the forest
aboveground biomass distribution is how to extrapolate from the discrete light spots to
highly-continuous height data. At present, the main solution to this key problem is to
establish a model that captures the relationship between spot data and spectral indices
using optical remote-sensing images [33]. This model is used to extrapolate the whole study
area. Following Zhu et al. [13], we established the relationship between ICESat-2/ATL08
canopy height data and vegetation indices, topographic factors, and the geospatial location
using a random-forest regression model. This model can effectively capture complex
relations among predictor variables. A total of 32 features were selected for model training,
and an importance ranking of these features was established. The results show that
the geographical location factors (i.e., the longitude and the latitude) had the greatest
influence on the canopy height prediction results. Indeed, these geospatial location factors
directly affect the temperature gradient and thus the forest canopy height. In addition,
the topographic factors (i.e., slope and elevation) also have a great influence on the forest
canopy height, mainly because of the high correlation of these factors with the average
temperature. This has a strong correlation with the special geographical environment
of Shangri-La City, which is a typical area of mountains and valleys with high and low
latitudes, and the climate there changes significantly with the increase in altitude. These
research results are consistent with those expressed by Matasci et al. [34].

4.2. Carbon Factor Selection

In our work, the forest carbon factor was used to convert the forest aboveground
biomass into forest carbon storage. However, because the biomass and carbon storage were
not directly measured, the carbon factor could not be estimated in practice. For typical tree
species in Shangri-La City, measurements of the average carbon content have been reported:
Pinus yunnanensis stands (51.48%), Pinus densata Mast. (51.31%), Abies fabri (Mast.) Craib
(50.79%), and Quercus aquifolioides Rehd. Et Wils. (48.71%) [31]. These carbon content levels
are clearly different among the four tree species. However, the carbon content levels are
essentially the same for parts of the same tree species. The carbon content variations among
different tree species (for the same tree part) or among trees of different ages (from the
same tree species) are small, with the maximum coefficient of variation not exceeding 6%,
and the carbon content rate essentially within 47–55% [31]. Therefore, the median carbon
content rate (50% or 0.5) was selected to convert the biomass into carbon storage in order
to partially offset the positive and negative errors in the estimation of the carbon storage.

4.3. Estimation Results for the Forest Aboveground Biomass and Carbon Storage

According to the forest resources monitoring results of Shangri-La in 2020, the total
woodland area of Shangri-La in 2020 will be 961,500 hectares, the forest area will be
897,500 hectares, and the living wood stock will be 139 million cubic meters. According to
experience, the ratio of live biomass to the stock of stand is about 1 [35]. In this study, it
is estimated that the forest biomass of Shangri-La in 2020 will be 128,267,202.1 t and the
carbon storage will be 64,133,601.05 t. The estimated results in this paper are compared
with the existing studies in Shangri-La, and the comparison results are shown in Table 5.
By comparing the results, it is found that the difference between our estimation results and
the existing ones is not much, with the maximum difference being 5.91 × 107 t with Guo’s
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and the minimum difference being 2.63 × 106 t with Cheng’s. Although the estimated
year is different, the forest ecosystem is a stable one. The change in forest biomass is not
significant, and the estimated results of this study are in high consistency with those of
other scholars. The forest live wood stock in the forest survey results published in 2020
is converted to live wood biomass of about 1.39 × 108 t, and the estimation accuracy is
92.28%. Therefore, the estimation results in this paper have a certain reliability.

Table 5. Estimation results comparison.

Methods Above Ground Biomass Year

Our 1.28 × 108 t 2020
Yue [36] 1.19 × 108 t 2008

Cheng [37] 1.26 × 108 t 2009
Su [33] 1.87 × 108 t 2016

Forest survey data 1.39 × 108 t 2020

Although the estimated results of the present study are in good agreement with the
existing published results, the method adopted in this paper still has some limitations. The
spatial resolution of the estimation results in this study is 30 m, so the overall result is
higher than that estimated with measured data. The established tree height-DBH model
is based on the average tree height and DBH in the survey data. Although this paper
has established a tree height DBH relationship model for each specific tree species, it is
only a relatively simple linear model. Exploring more complex and complete models of
tree height DBH relationship will help to further improve the results of regional forest
biomass estimation.

5. Conclusions

The estimation of the forest biomass and carbon storage is of great significance for
forest ecosystem protection, global warming mitigation, carbon emission reduction, carbon
capturing and sequestration, as well as other ecological and environmental issues. Remote-
sensing technologies have been recently employed in order to effectively and rapidly
estimate the forest biomass and carbon storage at different regional scales. In our work, we
focused on a study area within Shangri-La City in China which is rich in forest resources.
Therefore, quantitative estimation and analysis of the forest biomass and carbon storage in
this city is helpful to comprehensively evaluate the carbon absorption capacity as well as
other ecological and environmental effects. Combining active and passive remote-sensing
techniques, we obtained high-resolution canopy height mapping using a random-forest
machine-learning model for the alpine and canyon areas of Shangri-La City. As well,
high-resolution DBH values were estimated by constructing a regression model between
the tree height and the DBH. Finally, the aboveground biomass in Shangri-La City was
estimated by a DBH-biomass equation, and the carbon storage was subsequently obtained
by multiplying the biomass by a known carbon content coefficient. The results showed that
the forest aboveground biomass and the carbon storage in Shangri-La City were 1.28 × 108

t and 6.41 × 107 t, respectively. Compared with actual measurements from forest survey
data, these numbers are indeed reliable with estimation accuracies of 92.28%, respectively.
In terms of spatial distribution, the aboveground biomass and the carbon storage are mostly
abundant in the Gezan Township of Shangri-La, with 30.22% of the total for this city. The
two quantities also have obvious distribution patterns by altitude and slope.

Even though we have achieved some results, there is still the possibility of progress.
This study relies on the accuracy of tree height DBH modeling and the accuracy of tree
species classification, although we have classified tree species based on forest resource
survey data and modeled the relationship between mean DBH and mean tree height for
each species. However, since the classification of tree s Even though we have achieved
some results, there is still the possibility of progress. This study relies on the accuracy of
tree height DBH modeling and the accuracy of tree species classification, although we have
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classified tree species based on forest resource survey data and modeled the relationship
between mean DBH and mean tree height for each species. However, since the classification
of tree species is not in the same period, and the relationship between tree height and DBH
is only a simple linear model, it cannot be fully adapted to other research areas, or we
believe that the estimation accuracy of this method is still possible to be improved. In the
following work, we will focus on the classification of regional high-precision tree species
and establish a more complex and universal tree height DBH model, so as to improve the
accuracy of regional biomass estimation.

Species is not in the same period, and the relationship between tree height and DBH
is only a simple linear model, it cannot be fully adapted to other research areas, or we
believe that the estimation accuracy of this method is still possible to be improved. In the
following work, we will focus on the classification of regional high-precision tree species
and establish a more complex and universal tree height DBH model, so as to improve the
accuracy of regional biomass estimation.
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