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Abstract: A composite spectral feature space is used to characterize the spectral mixing properties of
Sentinel 2 Multispectral Instrument (MSI) spectra over a wide diversity of landscapes. Characterizing
the linearity of spectral mixing and identifying bounding spectral endmembers allows the Substrate
Vegetation Dark (SVD) spectral mixture model previously developed for the Landsat and MODIS
sensors to be extended to the Sentinel 2 MSI sensors. The utility of the SVD model is its ability to
represent a wide variety of landscapes in terms of the areal abundance of their most spectrally and
physically distinct components. Combining the benefits of location-specific spectral mixture models
with standardized spectral indices, the physically based SVD model offers simplicity, consistency,
inclusivity and applicability for a wide variety of land cover mapping applications. In this study,
a set of 110 image tiles compiled from spectral diversity hotspots worldwide provide a basis for
this characterization, and for identification of spectral endmembers that span the feature space. The
resulting spectral mixing space of these 13,000,000,000 spectra is effectively 3D, with 99% of variance
in 3 low order principal component dimensions. Four physically distinct spectral mixing continua
are identified: Snow:Firn:Ice, Reef:Water, Evaporite:Water and Substrate:Vegetation:Dark (water
or shadow). The first 3 continua exhibit complex nonlinearities, but the geographically dominant
Substrate:Vegetation:Dark (SVD) continuum is conspicuous in the linearity of its spectral mixing.
Bounding endmember spectra are identified for the SVD continuum. In a subset of 80 landscapes,
excluding the 3 nonlinear mixing continua (reefs, evaporites, cryosphere), a 3 endmember (SVD)
linear mixture model produces endmember fraction estimates that represent 99% of modeled spectra
with <6% RMS misfit. Two sets of SVD endmembers are identified for the Sentinel 2 MSI sensors,
allowing Sentinel 2 spectra to be unmixed globally and compared across time and space. In light
of the apparent disparity between the 11D spectral feature space and the statistically 3D spectral
mixing space, the relative contribution of 11 Sentinel 2 MSI spectral bands to the information content
of this space is quantified using both parametric (Pearson Correlation) and nonparametric (Mutual
Information) metrics. Comparison of linear (principal component) and nonlinear (Uniform Manifold
Approximation and Projection) projections of the SVD mixing space reveal both physically inter-
pretable spectral mixing continua and geographically distinct spectral properties not resolved in the
linear projection.

Keywords: Sentinel 2; spectral unmixing; SVD model; UMAP; manifold learning

1. Introduction

The Sentinel 2 constellation [1] extends the 50 year Landsat legacy of multispectral
Earth imaging [2] with higher spatial, spectral and temporal resolution. The combined
spatial and spectral resolution of a sensor is manifest in the spectral dimensionality and
topology of the spectral feature space defined by dimensions corresponding to the imaging
sensor’s different spectral band measurements [3,4]. In the case of decameter-resolution
broadband sensors we refer to this feature space as a spectral mixing space to explicitly
acknowledge the optical processes which occur when upwelling radiance from more than
one spectrally distinct material is aggregated within the Instantaneous Field of View (IFOV)
of a single pixel.
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Previous analyses of spectrally diverse mixing spaces of both multispectral and hyper-
spectral sensors with decameter spatial resolution reveal a consistent topology with 97%
to 99% of spectral variance embedded within a 3D linear mixing subspace bounded by
distinct spectral endmembers [5–9]. These studies indicate that the vast majority of ice-free
landscapes on Earth can be modeled accurately as linear mixtures of rock, alluvia and
soil substrates (S), photosynthetic vegetation (V) and optically transmissive/absorptive
materials like deep clear water, wet soils and low albedo substrates (e.g., ferromagnesian
rocks). In addition, both micro and macro-scale shadow is often indistinguishable from
absorptive/transmissive materials. Together, these components of the landscape are re-
ferred to as Dark targets (D) and comprise the third spectral endmember of the SVD linear
spectral mixture model.

Within spectrally diverse mixing spaces, these materials are associated with endmem-
ber (EM) reflectance spectra that reside at the apexes of a triangular point cloud bounded
by binary mixing lines between the Dark EM and each of the Substrate and Vegetation
EMs. While both of these binary mixing lines are conspicuous in their linearity, the mix-
ing trend between the Substrate and Vegetation EMs is generally concave inward as a
result of the ubiquitous presence of multiple scales of shadow on most landscapes. In
some landscapes the diversity of substrates is sufficient to extend the planar triangular
mixing space into a 3D tetrahedral mixing space also bounded by a plane of substrates of
varying reflectance, sometimes referred to as the “soil line” [10,11]—although this third
dimension rarely accounts for >~3% of total spectral variance. The apparent linearity of
spectral mixing within this Substrate, Vegetation, and Dark bounded mixing space renders
it generally amenable to representation with linear spectral mixture models. The minimal
linear model used to represent this mixing space is referred to here (and elsewhere) as the
SVD model [5–9,12]. The utility of the SVD model is its ability to represent a wide variety of
landscapes in terms of the areal abundance of their most spectrally and physically distinct
components. Combining the benefits of location-specific spectral mixture models with
standardized spectral indices, the SVD model offers simplicity, consistency, inclusivity and
applicability. In contrast to spectral indices which map specific materials using only 2 or
3 spectral bands, spectral mixture models use all available spectral bands to map the areal
abundance all spectrally distinct materials present within a pixel’s Instantaneous Field of
View simultaneously.

The objective of this study is to quantify the information content, spectral dimen-
sionality and topology of the spectral mixing space of a spectrally diverse compilation of
Sentinel 2 MSI imagery collected over a wide range of terrestrial biomes. In anticipation
of similar topology and linearity to the mixing spaces of other multispectral and hyper-
spectral sensors, we identify spectral endmembers and evaluate the validity and stability
of the SVD model for the Sentinel 2 MSI sensors. In addition to the 3D spectral mixing
space rendered by the (linear) principal components of the Sentinel 2 compilation, we
also employ manifold learning to render nonlinear 2D embeddings of the mixing space to
identify additional, more subtle spectral distinctions (clusters and mixing continua) among
land cover subcategories that are not apparent in the principal component projections of
the mixing space. This comparison of linear and nonlinear embeddings is extended to
land cover-specific compilations of Sentinel 2 imagery in the companion analysis to that
presented here [13].

2. Materials and Methods
2.1. Data

We construct a composite mixing space from a set of 110 Sentinel 2 MSI tiles collected
from spectral diversity hotspots worldwide. The geographic locations and biome des-
ignations of these hotspots are shown in Figure 1. Unlike previous studies, we include
numerous examples of cryospheric landscapes, evaporite basins and shallow marine en-
vironments, in addition to a range of anthropogenically modified landscapes (e.g., urban
& agriculture). From this collection of (110 tiles × 10,9802 pixels =) 13.3 × 109 Sentinel 2
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spectra we identify a second set of (12 categories × 10 examples =) 120 subtiles from
specific land cover subcategories. Diverse sets of either 5 or 10 subtiles, each 10 × 10 km
in area, are chosen from agricultural (10), evaporite (10), cryospheric (10), volcanic (5),
urban (5), shallow marine (10), sand dune (10), closed (10) and open (10) canopy forest,
scrub/shrub (5), tundra (5), wetland (10), and igneous/sedimentary/metamorphic rock +
alluvium (10 + 10) landscapes for a total 120,000,000 subcategory-specific spectra. False
color composites of both of these aggregate mosaics are shown in Figure 2. Tile IDs and
subcategory subtile locations are given in Appendix B. All data were downloaded free-of-
charge as Level 1C exoatmospheric reflectance from the USGS EarthExplorer data portal
(https://earthexplorer.usgs.gov/, accessed on 1 October 2022).
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Figure 1. Geographic and climatic distributions of 110 Sentinel 2 tiles from spectral diversity hotspots.
Geographic distribution of sample sites is guided by climatic and geologic diversity as well as
overall species biodiversity. Individual tile selection criteria favor spectral diversity arising from
land cover diversity within and across biomes. Tile geographic coverage corresponds well to global
land area distribution within the climatic parameter space (lower left) from [14]. All biomes are well
represented. Biome classification (lower right) adapted from [15].
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The spectral diversity hotspots were chosen on the basis of climatic gradients, biome
diversity, soil diversity, plant diversity and geologic diversity—both within and among
individual tiles. Sources used include geologic (https://mrdata.usgs.gov/geology/world/
map-us.html, accessed on 11 September 2021) and climatic (https://storymaps.arcgis.com/
stories/61a5d4e9494f46c2b520a984b2398f3b, accessed on 11 September 2021) basemaps
in conjunction with maps of soils (https://atlas-for-the-end-of-the-world.com/world_
maps/world_maps_soils.html, accessed on 11 September 2021), biomes (https://www.
worldwildlife.org/publications/terrestrial-ecoregions-of-the-world, accessed on 11 Septem-
ber 2021), plant biodiversity (https://databasin.org/datasets/43478f840ac84173979b226
31c2ed672/, accessed on 11 September 2021) and crop wild relatives (https://colostate.
pressbooks.pub/cropwildrelatives/chapter/introduction-to-crop-wild-relatives/, accessed
on 11 September 2021).

2.2. Methods

All analyses described in this study use Sentinel 2 MSI bands 1, 2, 3, 4, 5, 6, 7, 8, 8a,
11, and 12. The 20 m and 60 m bands (1) are coregistered with and upsampled to the 10 m
bands (2, 3, 4, 8) by bilinear interpolation.

The compilation of 13.3 × 109 Sentinel 2 spectra from 110 spectral diversity hotspots
provides a basis for statistical assessment of the information content of the MSI spectral
bands. The parametric Pearson correlation coefficient and the non-parametric Mutual
Information metric were computed for all band pairs. The Pearson correlation coefficient,
rxy, is given as:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(1)

where x and y are band-specific reflectances for each spectrum in the mosaic. Correlations
are computed for all 55 band pairs.

The mutual information metric, as originally conceived by [16] and further formal-
ized [17], is defined for two random variables X and Y as the Kullback–Leibler divergence
from the product of the joint distribution from the product of the marginal distributions.
That is,

MI = DKL(pX,Y ‖ pX pY), (2)

where MI is mutual information, DKL is the Kullback–Leibler divergence, pX,Y is the
joint distribution of X and Y, and pX and pY are the marginal distributions of X and Y.
The MI of a variable with itself is defined as its self-information. Both mutual and self-
information are bounded by [0, +∞], and MI ≤ SI. Conceptually, both self-information
and MI can be understood as measures of “surprise”—the less probable are more sur-
prising than probable events, and events with 100% probability are totally “unsurpris-
ing” (information = 0). Computation of MI was performed in Python using scikit-learn
(package sklearn.featureselection.mutual_info_regression, with the implementa-
tion of [18,19]). As with the correlations, MI is computed for all 55 band pairs.

Spectral dimensionality is estimated from the variance partition of the eigenvalues of
the spectra in the compilation mosaics described above. Variance partition by principal
component dimension, given by the sum-normalized eigenvalues of the Singular Value
Decomposition of the mosaics, and land cover subcategories, are shown in Figure 3. Because
the tiles in the 120 tile spectral diversity hotspot mosaic are arranged in alphabetical order
of the tile IDs (effectively random geographically), and most tiles are internally spectrally
diverse, the mosaic can be subdivided into 5 subsets to assess the scaling of the spectral
dimensionality of the compilation with number of spectra. Spectral dimensionality is
estimated from variance partition for both the 110 tile Spectral Diversity Hotspot mosaic
and the 120 subset land cover subcategory mosaic.

https://mrdata.usgs.gov/geology/world/map-us.html
https://mrdata.usgs.gov/geology/world/map-us.html
https://storymaps.arcgis.com/stories/61a5d4e9494f46c2b520a984b2398f3b
https://storymaps.arcgis.com/stories/61a5d4e9494f46c2b520a984b2398f3b
https://atlas-for-the-end-of-the-world.com/world_maps/world_maps_soils.html
https://atlas-for-the-end-of-the-world.com/world_maps/world_maps_soils.html
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://databasin.org/datasets/43478f840ac84173979b22631c2ed672/
https://databasin.org/datasets/43478f840ac84173979b22631c2ed672/
https://colostate.pressbooks.pub/cropwildrelatives/chapter/introduction-to-crop-wild-relatives/
https://colostate.pressbooks.pub/cropwildrelatives/chapter/introduction-to-crop-wild-relatives/
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Figure 3. Spectral dimensionality from variance partition. Five 20 tile subsets (left) each have
very similar variance partition to the full 110 tile aggregate (black) with 99% variance in the first
3 dimensions. The aggregate of 120 land cover subcategory subsets (right-black) also has very
similar variance partition with 98% in the first 3 dimensions. The individual land cover subcategories
vary somewhat, with sand and ice + snow having lower dimensionality than more heterogeneous
categories. All have <1% variance in all dimensions >4. Both mosaics can be considered 3D in the
sense that the 3 low order dimensions represent >98% of total variance.

The topology of the Sentinel 2 MSI spectral mixing space is characterized with the
low order principal components identified by the variance partition. As described by [20],
apexes of the mixing space indicate spectral endmembers and straight edges between
apexes indicate binary mixing lines between the corresponding endmembers. Three pair-
wise combinations of the three low order PCs provide orthogonal planar projections of
the 3D mixing space. Because the PC transform maximizes variance partition into the
smallest number of uncorrelated dimensions, it reveals the “global” structure of the mixing
space corresponding to differences in the shape of the spectral continuum of different
endmembers. Therefore, different categories of land cover with physical properties form
distinct limbs on the mixing space.

An alternative approach can be provided by manifold learning. Here, “local” structure
is revealed by a nonlinear mapping of high-dimensional spectra into lower-dimensional
embedding space. This mapping is constructed in such a way to optimally preserve local
(statistical “nearest neighbor”) distance and/or connectivity structures. In this analysis
we use the Uniform Manifold Approximation and Projection (UMAP) algorithm [21] to
provide a complementary projection for comparison to the PC-derived mixing space. The
UMAP algorithm assumes that the Sentinel-2 spectra are uniformly distributed on a locally
connected Riemannian manifold with an (approximately) locally constant Riemannian
metric. UMAP models this manifold using a fuzzy topological structure, then seeks a low-
dimensional (2- or 3-D) embedding with an optimally similar fuzzy topological structure. In
general, the resulting embedding is nonlinear and not invertible. For excellent background
information on UMAP, see: https://umap-learn.readthedocs.io/en/latest/ (accessed on 1
October 2022).

All UMAP computations were performed using the open source umap-learn Python
package on a commercially available laptop computer with 32 GB RAM, 2GHz Quad-Core
Intel Core i5 CPU, and a 1536 MB Intel Iris Plus Graphics GPU. Hyperparameter sensitiv-
ity was investigated by sweeps which looped through various choices of n_components,
n_neighbors, and min_dist. Results were found to be relatively insensitive to all three
hyperparameters, within at least 2 orders of magnitude of variability. All UMAP shown in
this analysis used n_components = 2, n_neighbors = 5 or 500, and min_dist = 0.1.

Spectral EMs derived from the composite spectral mixing space provide the basis for
the standardized SVD model, which is inverted to provide endmember fraction estimates
for all spectra in the mosaic. The 3 EM linear spectral mixture model is given explicitly as a

https://umap-learn.readthedocs.io/en/latest/
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set of 11 band-specific mixing equations. Because the number of mixing equations exceeds
the number of unknown fractions, the system is overdetermined, allowing for inversion by
minimization of model misfit.

FSE1 + FVE1 + FDE1 O1
. . .
. . = . In matrix notation: O = FE + ε

. . .
FSE11 + FVE11 + FDE11 O11

(3)

where E is the 3 column matrix of 11-band endmember vectors, O is the observed spectral
vector to be modeled, FS|V|D is the vector of endmember fractions to be estimated, and
ε is the model misfit to be minimized by the inversion. In addition, a unit sum constraint
equation is included. The least squares solution, F = (ETE)−1ET O [22] for the S,V,D
endmember fraction estimates gives fractions well-bounded [0, 1]. Model validity is
assessed by the Root Mean Square (RMS) of the difference between observed and modeled
spectra using the S, V, D estimates and endmember spectra in the forward model (L2 norm).

3. Results

Information content of the Sentinel 2 MSI bands is quantified using both Pearson’s r
parametric correlation and the mutual information (MI) metric for all 55 band pairs for the
8 × 10 land cover subcategory mosaic. Tables 1 and 2 give the r and MI matrices for each
band pair for the 80 tile subset. In both matrices, values≥ 0.8 are shown in bold italic. As in
previous studies, the highest correlations occur between adjacent bands within the visible,
near infrared (NIR) and shortwave infrared (SWIR) wavebands. However, unlike the study
of [12] which focused only on soils and agriculture, this analysis also finds high correlations
between visible and SWIR bands as a result of the high albedo sands included in the mosaic.
The mutual information matrix shows a similar pattern of higher MI between adjacent band
pairs within wavebands, but more pronounced than for r. In comparing correlations and
MI estimates for all 55 band pairs, the two metrics show a decidedly nonlinear relationship,
with a correlation of 0.88 and MI of 1.195 (r on MI) and 1.16 (MI on r) (Appendix A).

Table 1. Sentinel 2 MSI Band Pearson Correlation (r).

1 2 3 4 5 6 7 8 8a 11 12
1 0.62 0.57 0.5 0.47 0.31 0.21 0.21 0.18 0.39 0.42

0.62 1 0.96 0.85 0.8 0.53 0.35 0.37 0.3 0.67 0.71
0.57 0.96 1 0.95 0.93 0.7 0.52 0.55 0.48 0.82 0.85
0.5 0.85 0.95 1 0.99 0.76 0.57 0.6 0.53 0.92 0.95

0.47 0.8 0.93 0.99 1 0.84 0.65 0.69 0.63 0.95 0.96
0.31 0.53 0.7 0.76 0.84 1 0.9 0.96 0.94 0.87 0.8
0.21 0.35 0.52 0.57 0.65 0.9 1 0.91 0.92 0.71 0.62
0.21 0.37 0.55 0.6 0.69 0.96 0.91 1 0.98 0.76 0.66
0.18 0.3 0.48 0.53 0.63 0.94 0.92 0.98 1 0.71 0.6
0.39 0.67 0.82 0.92 0.95 0.87 0.71 0.76 0.71 1 0.98
0.42 0.71 0.85 0.95 0.96 0.8 0.62 0.66 0.6 0.98 1

The spectral dimensionality of both the 110 tile spectral diversity hotspot mosaic and
the 120 subset land cover subcategory mosaic are nearly identical (Figure 3), suggesting
that the subcategories chosen encompass the salient structure of the larger spectral diversity
hotspot mosaic. The variance partition in Figure 3 indicates that both mosaics are effectively
3D, containing 99% and 98% of spectral variance in the three low order dimensions and
<<1% variance in all higher order dimensions. Figure 3 also shows the variance partition
of 5 subsets of 20 tiles each, compared to the variance partition of the full 110 tile spectral
diversity hotspot mosaic. The fact that all 5 subsets have nearly identical variance partition
to the full mosaic suggests that each is sufficiently spectrally diverse to encompass the
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diversity of the full spectral mixing space. The implication of this convergence is that the full
110 tile mosaic is more than sufficient to encompass full global spectral diversity. Figure 3
also shows the variance partition of each of the 12 land cover subcategories compared to
the variance partition of the full mosaic. As expected, there is significant variation among
the subcategories with more homogeneous land cover like snow and sand showing lower
relative dimensionality and others like evaporites showing higher relative dimensionality.

Table 2. Sentinel 2 MSI Band Mutual Information (MI, 3 nearest neighbors).

1 2 3 4 5 6 7 8 8a 11 12
1.06 0.86 0.56 0.42 0.41 0.19 0.17 0.15 0.15 0.29 0.33
0.68 1.39 0.85 0.61 0.58 0.25 0.22 0.21 0.2 0.39 0.44
0.49 0.96 1.28 0.83 0.8 0.38 0.31 0.32 0.28 0.54 0.57
0.39 0.83 0.9 1.17 1.03 0.59 0.52 0.53 0.49 0.68 0.76
0.34 0.66 0.83 0.99 1.29 0.69 0.57 0.54 0.52 0.81 0.79
0.14 0.21 0.36 0.5 0.59 1.37 1.03 0.96 0.93 0.55 0.43
0.1 0.16 0.28 0.44 0.5 1.04 1.34 1.11 1.19 0.46 0.39

0.09 0.16 0.28 0.44 0.46 0.95 1.08 1.4 1.08 0.45 0.37
0.08 0.14 0.24 0.39 0.44 0.9 1.15 1.08 1.42 0.44 0.37
0.24 0.41 0.53 0.67 0.81 0.64 0.58 0.57 0.58 1.28 0.88
0.27 0.51 0.6 0.78 0.88 0.55 0.51 0.5 0.5 1.01 1.1

The topology of the spectral mixing spaces of both mosaics are very similar and consis-
tent with their spectral dimensionality. Figure 4 shows the 3D mixing spaces of the 110 tile
Spectral Diversity Hotspot mosaic and the 120 subset land cover subcategory mosaic as
orthogonal projections of bivariate PC distributions, along with the most conspicuous
spectral endmembers from each. Both mixing spaces show complete mixing continua span-
ning the Substrate, Vegetation and Dark endmembers (PC 3 vs. 2 projections)—although
the greatest spectral variance is associated with the PC 1 vs. 2 projection, driven by the
strong contrast of the two highest albedo endmembers, sand and snow. Snow/ice and
reefs each form distinct mixing continua with the Dark endmember, while evaporites form
more distinct clusters without a single dominant mixing continuum. This suggests a more
complex spectral continuum that may not be as linear as the others. It is noteworthy that
neither reefs nor evaporites generally represent linear spectral mixing among distinct land
cover types. Whereas aggregate albedo of most landscapes is modulated by a combination
of reflectance, illumination flux density and shadow, the albedo of reefs is also strongly
influenced by water depth while the albedo of evaporite basins is most strongly modulated
by moisture content and the presence of standing water. Purely cryospheric environments
are distinguished from other environments by their more homogeneous gradients spanning
the snow-firn-ice continuum. Partial snow cover in non-cryospheric environments (e.g.,
boreal forests) may exhibit linear or nonlinear spectral mixing, but is sufficiently complex
to warrant a more focused investigation separately.

Because reefs, evaporite basins and cryospheric environments are geographically
and spectrally distinct from the SVD continuum that encompasses the majority of Earth’s
biomes, the focus of the rest of the analysis is on the 8 × 10 column subset of the land
cover subcategories spanning the SVD continuum. This mixing space is effectively 2D with
(81% + 14% =) 95% of variance in the two low order PC dimensions. This triangular mixing
space is dominated by the Substrate-Dark and Vegetation-Dark mixing continua as seen in
Figure 5. Unlike previous studies, the Sentinel 2 MSI SVD space shows a clear distinction
(kink & discontinuity) between high albedo sands and the lower albedo substrates that
bound one side of the SVD continuum. Most non-forest biomes fall within this continuum,
with varying amounts of nonphotosynthetic vegetation (NPV) and exposed substrate
interspersed with herbaceous and woody photosynthetic vegetation.
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Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Sentinel 2 SVD spectral mixing space, spectral endmembers, and the corresponding SVD 
fraction space. An eight column (80,000,000 spectra) subset of the Land Cover Subcategory mosaic 
encompassing the SVD-bounded plane of the full mixing space is effectively 2D with PC dimensions 
1 (81%) and 2 (14%) accounting for 95% of total variance, compared to PC 3 (2%). Maximum ampli-
tude (Outer) and lower amplitude mean (Inner) endmember spectra for Substrate and Vegetation 
define bases for maximal and minimal SVD models (left). Inversion of the minimal model provides 
liberal estimates of SVD fractions (right), but excludes pure sand landscapes. Because sands lie out-
side the minimal SVD model, their Substrate fractions exceed 1.0 with Dark fractions < 0. The result-
ing planar SVD fraction distribution can be projected onto a 2D ternary diagram (lower right) with 
no loss of information. 

Table 3. Sentinel 2 MSI Spectral Endmembers (Exoatmospheric reflectance × 10000). 

λ (nm) Si Vi D So Vo 

443 1754 1084 1198 1536 1194 
490 1799 827 946 1556 909 
560 2154 892 739 2291 969 
665 3028 410 280 5485 447 
705 3303 1070 208 6236 1126 
740 3472 4206 180 6889 4762 
783 3656 5646 167 7323 6323 
842 3566 5495 135 7176 6193 
865 3686 6236 129 7530 6629 

1610 5097 2101 26 10,252 1731 
2190 4736 775 14 8745 712 

Inversion of the SVD linear mixture model using the inner Si and Vi endmembers 
yields the SVD fraction space shown in Figure 5. As expected, S fractions for the high 
albedo sands outside the triangular model exceed 1.0 with Dark fractions <0, but all other 
fraction estimates are well-bounded [0,1]. Relatively small percentages of the binary S-D 
and V-D mixtures have V and S (respectively) fractions are slightly negative, but almost 
all are within 5% of 0. As shown in Figure 6, the spectra with these slightly negative near-
zero fractions are limited to a few spatially contiguous geographies (e.g., mangroves, 
dunes or volcanic ash deposits). The distribution of RMS misfit between the observed and 
modeled spectra for the 80 subcategory composite has <6% misfit for >99% of 80,000,000 
Sentinel 2 spectra, with the upper tail of higher misfits also limited to a few specific land 
covers not represented in the SVD model (e.g., turbid water, evaporites and light snow). 

Figure 5. Sentinel 2 SVD spectral mixing space, spectral endmembers, and the corresponding SVD
fraction space. An eight column (80,000,000 spectra) subset of the Land Cover Subcategory mosaic
encompassing the SVD-bounded plane of the full mixing space is effectively 2D with PC dimensions 1
(81%) and 2 (14%) accounting for 95% of total variance, compared to PC 3 (2%). Maximum amplitude
(Outer) and lower amplitude mean (Inner) endmember spectra for Substrate and Vegetation define bases
for maximal and minimal SVD models (left). Inversion of the minimal model provides liberal estimates
of SVD fractions (right), but excludes pure sand landscapes. Because sands lie outside the minimal SVD
model, their Substrate fractions exceed 1.0 with Dark fractions < 0. The resulting planar SVD fraction
distribution can be projected onto a 2D ternary diagram (lower right) with no loss of information.
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The Substrate limb discontinuity, combined with the diffuse apex of the Vegetation
limb suggest two different, but related, SVD models. Because pure sands (e.g., dunefields)
rarely support vegetation communities, an SVD model using an inner Substrate endmember
(Si) is more physically plausible than an SVD model using an outer Substrate endmember
(So) composed of pure sand. However, the outer Substrate endmember could be used for
modeling landscapes where bright sands are prominent. Similarly, an outer Vegetation
endmember (Vo) composed of a single pixel spectrum is less representative than an inner
Vegetation endmember (Vi) composed of an average of several individual spectra at the
more densely occupied inner Vegetation apex of the mixing space. Comparisons of inner
and outer S and V endmembers are shown in Figure 5. All 5 endmember spectra are given
in Table 3.

Table 3. Sentinel 2 MSI Spectral Endmembers (Exoatmospheric reflectance × 10,000).

λ (nm) Si Vi D So Vo

443 1754 1084 1198 1536 1194

490 1799 827 946 1556 909

560 2154 892 739 2291 969

665 3028 410 280 5485 447

705 3303 1070 208 6236 1126

740 3472 4206 180 6889 4762

783 3656 5646 167 7323 6323

842 3566 5495 135 7176 6193

865 3686 6236 129 7530 6629

1610 5097 2101 26 10,252 1731

2190 4736 775 14 8745 712

Inversion of the SVD linear mixture model using the inner Si and Vi endmembers
yields the SVD fraction space shown in Figure 5. As expected, S fractions for the high
albedo sands outside the triangular model exceed 1.0 with Dark fractions <0, but all other
fraction estimates are well-bounded [0, 1]. Relatively small percentages of the binary S-D
and V-D mixtures have V and S (respectively) fractions are slightly negative, but almost all
are within 5% of 0. As shown in Figure 6, the spectra with these slightly negative near-zero
fractions are limited to a few spatially contiguous geographies (e.g., mangroves, dunes or
volcanic ash deposits). The distribution of RMS misfit between the observed and modeled
spectra for the 80 subcategory composite has <6% misfit for >99% of 80,000,000 Sentinel 2
spectra, with the upper tail of higher misfits also limited to a few specific land covers not
represented in the SVD model (e.g., turbid water, evaporites and light snow).

The SVD fraction composite for the 8 × 10 land cover subcategories (Figure 7) is
skewed toward RGB primaries, consistent with the S-D and V-D binary mixing continua
seen in the SVD mixing space. The larger, more spatially heterogeneous collection of
110 spectral diversity hotspot tiles shows a wider range of intermediate spectral mixtures,
as would be expected.

The spectral mixing space rendered by the 2D UMAP embedding preserves the binary
S-D and V-D mixing trends that dominate the PC and fraction spaces. Figure 8 shows
a broader mixing continuum for the V-D limb extending to NPV-dominant biomes near
the distinct S-D continuum. However, both UMAP embeddings also show a number of
distinct clusters located outside the S-D and V-D continua. Most obvious are the several
distinct sand clusters associated with different dunefields with distinct sand mineralogies.
Additionally, noteworthy are the single distinct clusters associated with two tundra sites in
the Canadian and Alaskan arctic and the single cluster associated with two mangrove sites in
the Bangladesh Sundarban. It is noteworthy that all of the distinct clusters are associated with
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specific, spatially contiguous, areas within individual (sometimes multiple) subsets that are
evident when labeled clusters in the UMAP space are back-projected to geographic space.
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4. Discussion
4.1. Spectral Information Content

The increased NIR spectral resolution of the Sentinel 2 MSI sensors contributes sub-
stantially to the spectral information content. While the correlations of adjacent spectral
bands within the visible, NIR and SWIR are >0.8, scatterplots of band pairs reveal con-
spicuous departures from linearity in all but the highest correlations (>~0.95) which are
reflected in correspondingly lower MI scores. A comparison of all bands with MSI band 8
in Appendix A illustrates a variety of such features, suggesting a diversity of spectra with
significantly different reflectance (e.g., absorptions) between adjacent spectral bands. As
in previous studies using Landsat multispectral and AVIRIS hyperspectral, the primary
correlation structure clearly distinguishes visible, NIR and SWIR wavebands [12], but both
r and MI suggest only moderate redundancy between adjacent spectral bands within each
waveband. This may be partially responsible for the two clearly diverging lower limbs
of the V-D continuum (Fv < ~0.5) trending toward the Dark endmember and toward the
ternary mixing NPV + soil + shadow region near the S-D mixing continuum. Empirically,
these mixing trends appear to correspond to closed and open canopy forest. Figure 5
also shows two distinct subparallel clusters on a single mixing trend on the V-D mixing
continuum in the PC 3 vs. 2 space. These features are not seen in either the Landsat or
MODIS mixing spaces [7,8].

Among the new VNIR bands provided by Sentinel 2 MSI, the greatest redundancy
appears to be among bands 7, 8 and 8a, as indicated by some of the highest MI values.
Whereas bands 4 and 5 have a correlation of 0.99, their MI is a comparatively lower
1.03, suggesting that the MI metric can resolve nonredundancies that correlation does
not. The curvature of the log-linear relationship between the upper tails of the r and MI
relationship (Appendix A) suggests that the two metrics are sensitive to different disparities
between band reflectance distributions. Given the wide diversity of reflectances included
in these mixing spaces, the similarities and differences in spectral continuum shape may
overshadow meaningful differences in VNIR band information content. The fact that
the UMAP embeddings identify a number of distinct clusters and apexes not apparent
in the PC-derived feature space suggests that subtle differences in continuum curvature
captured by the narrow NIR bands may indeed provide potentially useful resolving power
to discriminate between otherwise similar reflectances within land cover subcategories.

4.2. Spectral Dimensionality and Mixing Space Topology

While the full mixing spaces shown in Figure 4 are both 3D, neither is amenable to a
single mixture model containing 6+ endmembers (SVD + evaporite, reef, snow/ice). Such
a mixture model would be both physically and mathematically implausible. Physically, as
discussed above, reefs, evaporite basins and cryospheric landscapes are generally distinct
from the continuum of biomes (Figure 1) in which a substrate continuum is interspersed
with multiple scales of photosynthetic and nonphotosynthetic vegetation and structural
shadow. Mathematically, the similarity of spectral shape of many evaporites with ice
and snow spectra, and the inverse similarity of both to vegetation spectra will destabilize
any inversion containing either two or all three of these endmembers because they are
far from orthogonal, and often nearly colinear. The result is significant percentages of
strongly negative (<−0.5) fractions in one or more of the fraction distributions. These are
the primary reasons we focus on the 8 × 10 subset mosaic and the SVD model for the latter
part of this analysis.

4.3. The SVD Model

The new, lower amplitude, Substrate endmember identified from the break in the S-D
continuum supports a more physically plausible mixture model than earlier SVD models
which used sand spectra for the Substrate EM. Using high albedo sand as an endmember
has the undesirable consequence of likely underestimating the true substrate fraction in
most situations where sand is not actually present. While we have advocated the use
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of local Substrate endmembers in previous studies, we find the use of a more realistic
standardized Substrate reflectance as a reasonable substitute in situations where a single
local Substrate endmember cannot be identified. In many landscapes, a more distinct plane
of substrates may be more apparent than in the mixing spaces of these unusually diverse
collections of spectra. If so, local soil and NPV endmembers might be distinguishable, as
we have found in similar analyses of compilations of hyperspectral data in agricultural
environments [13]. Because we did not identify a distinct apex associated with NPV in
either of the composite mixing spaces, and observe that NPV occupies an intermediate
region on the Substrate-Dark mixing continuum, we find no reason to extend the SVD
model to include a NPV endmember.

The use of a lower amplitude inner Substrate endmember also provides more dynamic
range to the Substrate fraction distribution by eliminating the much brighter sands which
compress the dynamic range of the Substrate fraction. Allowing greater dynamic range may
also facilitate distinction between different dry soil reflectances and different moisture con-
tent within a single soil type. At present, variations in dry reflectance and variations in mois-
ture content are accommodated by varying fractions of Dark endmember—representing a
fundamental ambiguity in the SVD model specifically and broadband reflectance generally.
While this distinction may be impossible in single date imagery, spatiotemporal variations
in soil moisture (and hence the S-D fraction continuum) of a single location may facilitate
distinguishing these two effects on soil reflectance.

4.4. Manifold Topology and Spectral Resolution

The use of nonlinear, nonparametric dimensionality reduction provides a new and
potentially very useful approach to spectral feature/mixing space characterization [23].
The presence of numerous distinct clusters in the UMAP projections contrasts strongly
to the much more continuous PC-derived feature spaces. While the latter are essential to
identifying spectral endmembers and verifying linearity of spectral mixing, the variance
maximization on which the PC transform is based is much more sensitive to the shape of the
spectral continuum than the presence of more subtle (lower variance) absorption features.
In contrast, manifold learning algorithms that preserve local structure in the form of nearest
neighbor proximity (e.g., UMAP, t-SNE) make it possible to identify more subtle differences
in spectral curvature and absorption features (often aliased in multispectral imagery) that
convey real physical meaning and may considerably extend the usable information content
of narrowband multispectral sensors like Sentinel 2 MSI. The companion study to this [24]
carries this duality a step further by combining the physically interpretable structure of the
SVD mixing space with the more subtle features of local scale manifolds in the form of a
joint characterization of the spectral mixing space.

In summary, the construction of a diverse collection of Sentinel 2 MSI tiles from
110 spectral diversity hotspots worldwide provides a basis for a globally representative
spectral feature space. Because spectral mixing is pervasive in most biomes, even at 10 m
resolution, we refer to this aliased feature space as a spectral mixing space. Identification of
more spectrally homogeneous examples of a variety of specific land cover subcategories
makes it possible to separate landscapes dominated by nonlinear spectral mixing (reefs,
evaporite basins and cryospheric landscapes) from the more linear SVD continuum that
spans most terrestrial biomes. Global standardized SVD endmembers chosen from the inner
apexes of the SVD mixing space provide the basis for a general model of fractional subpixel
land cover that is applicable to most biomes. While the PC-based mixing space allows
for unambiguous identification of spectral endmembers, and determination of linearity of
mixing (and inversion of linear mixture models), the use of nonlinear manifold learning to
project proximity-preserving embeddings of the higher dimensional mixing space allows
for identification of both mixing continua and isolated clusters of spectrally distinct land
covers that are not generally apparent in the PC-based mixing space.
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Figure A1. Correlation vs. Mutual Information estimates and band to band bivariate distributions
for the 80 land cover specific subset mosaic. For all band to band pairs (top) correlation and Mutual
Information estimates show a correlation of 0.88 and MI of 1.195 (r on MI) and 1.16 (MI on r), with
some degree of Log-linear scaling on the lower tail of the distribution and clear nonlinearity on the
upper tail. The range of both metrics suggests that almost all non-adjacent, and some adjacent, band
combinations provide some discriminative utility for at least some land cover subcategories. Bivariate
distributions of MSI band 8 with all other bands show considerable deviations from linearity for all
but band 7.
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Appendix B

Table A1. Sentinel 2 tileIDs.

c1 c2
S2A_MSIL1C_20160723T143750_T19KEQ S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH
S2A_MSIL1C_20160723T143750__T19KER S2B_MSIL1C_20180311T185149_N0206_R113_T10SFJ
S2A_MSIL1C_20170118T081241_N0204_R078_T35MRV S2A_MSIL1C_20170315T101021_N0204_R022_T32TPP
S2A_MSIL1C_20170119T074231_N0204_R092_T36JTT S2A_MSIL1C_20170412T074611_N0204_R135_T37PDQ
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT S2A_MSIL1C_20170427T021921_N0205_R060_T50HLH
S2A_MSIL1C_20170119T143731_N0204_R096_T20NNM S2A_MSIL1C_20170427T153621_N0205_R068_T18NTP
S2A_MSIL1C_20170124T051101_N0204_R019_T43PGL S2A_MSIL1C_20170428T215921_N0205_R086_T01KFS
S2A_MSIL1C_20170124T051101_N0204_R019_T44RQV S2A_MSIL1C_20170506T054641_N0205_R048_T42QXM
S2A_MSIL1C_20170124T165551_N0204_R026_T14QQE S2A_MSIL1C_20170508T012701_N0205_R074_T54STE
S2A_MSIL1C_20170125T202521_N0204_R042_T58CDU S2A_MSIL1C_20170604T043701_N0205_R033_T45RYL
c3 c4
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB S2A_MSIL1C_20170723T064631_N0205_R020_T41TKG
S2A_MSIL1C_20170620T181921_N0205_R127_T12TTK S2A_MSIL1C_20170723T182921_N0205_R027_T11UQQ
S2A_MSIL1C_20170621T074941_N0205_R135_T37RGL S2A_MSIL1C_20170724T145731_N0205_R039_T18LZL
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUF S2A_MSIL1C_20170830T125301_N0205_R138_T27WXM
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUG S2A_MSIL1C_20170830T131241_N0205_R138_T23KLP
S2A_MSIL1C_20170628T173901_N0205_R098_T13SCS S2A_MSIL1C_20170908T063621_N0205_R120_T40QFK
S2A_MSIL1C_20170704T013711_N0205_R031_T52MHD S2A_MSIL1C_20170914T065621_N0205_R063_T40TFQ
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN S2A_MSIL1C_20170915T213531_N0205_R086_T06WVS
S2A_MSIL1C_20170718T210021_N0205_R100_T08WNB S2A_MSIL1C_20170916T055631_N0205_R091_T42RUN
S2A_MSIL1C_20170719T084601_N0205_R107_T41XNE S2A_MSIL1C_20170917T190351_N0205_R113_T10SFG
c5 c6
S2A_MSIL1C_20170919T142931_N0205_R139_T23VMH S2A_MSIL1C_20171117T064141_N0206_R120_T40RFU
S2B_MSIL1C_20180328T183949_N0206_R070_T11SKA S2A_MSIL1C_20171129T142031_N0206_R010_T18FXJ
S2A_MSIL1C_20170923T074231_N0205_R049_T37PHN S2A_MSIL1C_20171201T150711_N0206_R039_T18LZH
S2A_MSIL1C_20171002T150621_N0205_R039_T19LBE S2A_MSIL1C_20171203T034121_N0206_R061_T48QUM
S2A_MSIL1C_20171003T143321_N0205_R053_T20MQC S2A_MSIL1C_20171207T082321_N0206_R121_T34HCH
S2A_MSIL1C_20171013T080931_N0205_R049_T25CEM S2A_MSIL1C_20171208T111441_N0206_R137_T29QKD
S2A_MSIL1C_20171016T073911_N0205_R092_T36MZC S2A_MSIL1C_20171209T072301_N0206_R006_T38QND
S2A_MSIL1C_20171017T103021_N0205_R108_T32TLQ S2A_MSIL1C_20171210T065251_N0206_R020_T40QCJ
S2A_MSIL1C_20171107T070231_N0206_R120_T39LUC S2A_MSIL1C_20160615T183312_N0204_R127_T11SPS
S2A_MSIL1C_20171117T064141_N0206_R120_T40RFU S2A_OPER_PRD_MSIL1C_PDMC_20150813T101657
c7 c8
S2A_MSIL1C_20150813T101026_N0204_R022_T32UPU S2A_OPER_MSI_L1C_TL_EPA__20161012T193400_A006777_T55KCB
S2A_MSIL1C_20151022T184002_N0204_R027_T11SMA S2B_MSIL1C_20170713T023549_N0205_R089_T51RTN
S2A_OPER_PRD_MSIL1C_PDMC_20151206T145051 S2B_MSIL1C_20170723T124309_N0205_R095_T28WDT
S2A_OPER_PRD_MSIL1C_PDMC_20160318T145513_01 S2B_MSIL1C_20170727T053639_N0205_R005_T43SFV
S2A_OPER_MSI_L1C_TL_SGS__20161011T162433_A006812_T32WPT S2B_MSIL1C_20170730T040549_N0205_R047_T47SND
S2A_OPER_MSI_L1C_TL_SGS__20161013T032322_A006834_T56LKR S2B_MSIL1C_20170816T005709_N0205_R002_T53JQJ
S2A_OPER_MSI_L1C_TL_EPA__20161012T193400_A006777_T55LCC S2B_MSIL1C_20170817T114639_N0205_R023_T33XWF
S2A_OPER_MSI_L1C_TL_MTI__20161014T211238_A006858_T15MXV S2B_MSIL1C_20170824T145909_N0205_R125_T22WEV
S2A_OPER_MSI_L1C_TL_SGS__20161017T100159_A006894_T45QYG S2B_MSIL1C_20170826T155519_N0205_R011_T17NMJ
S2A_OPER_MSI_L1C_TL_MTI__20161018T111609_A006910_T38RPV S2B_MSIL1C_20170905T085549_N0205_R007_T35TMF
c9 c10
S2B_MSIL1C_20170906T002659_N0205_R016_T55KCA S2B_MSIL1C_20171013T081959_N0205_R121_T36SYF
S2B_MSIL1C_20170912T084549_N0205_R107_T36TUL S2B_MSIL1C_20171019T083959_N0205_R064_T36STF
S2B_MSIL1C_20170912T170949_N0205_R112_T14RLP S2B_MSIL1C_20171101T004649_N0206_R102_T54JTL
S2B_MSIL1C_20170916T215519_N0205_R029_T06WVB S2B_MSIL1C_20171103T061009_N0206_R134_T42SWC
S2B_MSIL1C_20170918T054629_N0205_R048_T43SDT S2B_MSIL1C_20171103T061009_N0206_R134_T42SWD
S2B_MSIL1C_20170918T205119_N0205_R057_T07VEG S2B_MSIL1C_20171116T132219_N0206_R038_T23KKP
S2B_MSIL1C_20170919T140039_N0205_R067_T21KVA S2B_MSIL1C_20171123T043059_N0206_R133_T45QYE
S2B_MSIL1C_20170929T222959_N0205_R072_T60KWF S2B_MSIL1C_20171130T160619_N0206_R097_T17RMH
S2B_MSIL1C_20171008T105009_N0205_R051_T30TYN S2B_MSIL1C_20171202T064229_N0206_R120_T40RGU
S2B_MSIL1C_20171009T003649_N0205_R059_T55MDP S2B_MSIL1C_20171207T105419_N0206_R051_T30RVT
c11
S2B_MSIL1C_20171208T052209_N0206_R062_T44SMD
S2B_MSIL1C_20180729T141049_N0206_R110_T21LTC
S2B_MSIL1C_20171208T084329_N0206_R064_T33JWN
S2B_MSIL1C_20171212T064249_N0206_R120_T40QEL
S2B_MSIL1C_20171212T064249_N0206_R120_T40QFH
S2B_MSIL1C_20171212T100359_N0206_R122_T32RLQ
S2B_MSIL1C_20180622T085559_N0206_R007_T34RGS
S2B_MSIL1C_20171214T155519_N0206_R011_T18RUN
S2B_MSIL1C_20171215T152629_N0206_R025_T18NUF
S2B_MSIL1C_20171227T160459_N0206_R054_T17QME
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Table A2. TileIDs and NW corner coordinates of land cover subcategory subsets.

Agriculture
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 868610 2223190
S2A_MSIL1C_20170315T101021_N0204_R022_T32TPP 32N 623950 4864330
S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 269220 3988590
S2A_MSIL1C_20170723T064631_N0205_R020_T41TKG 41N 266210 4645260
S2A_MSIL1C_20170917T190351_N0205_R113_T10SFG 10N 688930 4167330
S2A_OPER_PRD_MSIL1C_PDMC_20161017T044357 45N 723470 2625060
S2B_MSIL1C_20170730T040549_N0205_R047_T47SND 47N 554190 4363690
S2B_MSIL1C_20170918T054629_N0205_R048_T43SDT 43N 459570 3800040
S2B_MSIL1C_20171008T105009_N0205_R051_T30TYN 30N 702100 4787760
S2B_MSIL1C_20171013T081959_N0205_R121_T36SYF 36N 778000 4095680

Sand
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170628T173901_N0205_R098_T13SCS 13N 372290 3654900
S2A_MSIL1C_20170908T063621_N0205_R120_T40QFK 40N 653400 2447190
S2A_MSIL1C_20171119T040041_N0206_R004_T48TUK 48N 305540 4438710
S2A_MSIL1C_20171208T111441_N0206_R137_T29QKD 29N 291550 2399280
S2A_MSIL1C_20171209T072301_N0206_R006_T38QND 38N 527910 1890720
S2B_MSIL1C_20171207T105419_N0206_R051_T30RVT 30N 481880 3290910
S2B_MSIL1C_20171208T084329_N0206_R064_T33JWN 33S 541880 7265640
S2B_MSIL1C_20171212T100359_N0206_R122_T32RLQ 32N 339750 2966720
S2B_MSIL1C_20171212T100359_N0206_R122_T32RLR 32N 331950 3100020

Lava & Ash
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 861160 2206290
S2A_MSIL1C_20171016T073911_N0205_R092_T36MZC 36S 819250 9703580
S2A_MSIL1C_20171016T073911_N0205_R092_T36MZC 36S 834220 9768640
S2A_OPER_PRD_MSIL1C_PDMC_20161014T163303 15S 652170 9967520
S2B_MSIL1C_20170723T124309_N0205_R095_T28WDT 28N 399960 7200220

Urban
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 269890 3950620
S2A_MSIL1C_20170830T131241_N0205_R138_T23KLP 23S 328970 7398470
S2A_MSIL1C_20170916T055631_N0205_R091_T42RUN 42N 300000 2758120
S2A_MSIL1C_20171017T103021_N0205_R108_T32TLQ 32N 390060 4999690
S2B_MSIL1C_20170912T170949_N0205_R112_T14RLP 14N 364980 2848280

Forest—1
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170118T081241_N0204_R078_T35MRV 35S 831290 9963030
S2A_MSIL1C_20170119T074231_N0204_R092_T36JTT 36S 284150 7247210
S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 847400 2230620
S2A_MSIL1C_20170427T021921_N0205_R060_T50HLH 50S 355240 6230970
S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 257880 3907290
S2A_MSIL1C_20170604T043701_N0205_R033_T45RYL 45N 794940 3088140
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 450950 704020
S2A_MSIL1C_20170724T145731_N0205_R039_T18LZL 18S 875170 8546360
S2A_MSIL1C_20170724T145731_N0205_R039_T19LBF 19S 215640 8582190
S2A_MSIL1C_20170830T131241_N0205_R138_T23KLP 23S 321220 7348390

Forest—2
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170917T190351_N0205_R113_T10SFG 10N 607440 4106660
S2A_OPER_PRD_MSIL1C_PDMC_20151206T145051 20N 469370 431170
S2B_MSIL1C_20170713T023549_N0205_R089_T51RTN 51N 231700 3257530
S2B_MSIL1C_20170718T101029_N0205_R022_T32TQS 32N 773730 5121020
S2B_MSIL1C_20170906T002659_N0205_R016_T55KCA 55S 353630 8006280
S2B_MSIL1C_20170912T084549_N0205_R107_T36TUL 36N 335150 4512660
S2B_MSIL1C_20171009T003649_N0205_R059_T55MDP 55S 469610 9317570
S2B_MSIL1C_20171013T081959_N0205_R121_T36SYF 36N 791100 4092030
S2B_MSIL1C_20171116T132219_N0206_R038_T23KKP 23S 215910 7344400
S2B_MSIL1C_20171215T152629_N0206_R025_T18NUF 18N 381240 26200

Senescent Vegetation
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 387540 7237130
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 381920 7259800
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 375110 7261040
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 379990 7209420
S2A_MSIL1C_20170516T154911_N0205_R054_T18TWQ 18N 563770 4938390
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Table A2. Cont.

Tundra & Wetlands
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170718T210021_N0205_R100_T08WNB 8N 508380 7654750
S2A_MSIL1C_20170718T210021_N0205_R100_T08WNB 8N 540940 7608620
S2A_OPER_PRD_MSIL1C_PDMC_20160318T145513 19S 495986 7997974
S2B_MSIL1C_20170916T215519_N0205_R029_T06WVB 6N 442210 7700040
S2B_MSIL1C_20170916T215519_N0205_R029_T06WVB 6N 458950 7676830

Mangroves
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170427T153621_N0205_R068_T18NTP 18N 258620 824760
S2A_MSIL1C_20170704T013711_N0205_R031_T52MHD 52S 814620 9839210
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 498390 752360
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 423780 704730
S2A_MSIL1C_20170916T055631_N0205_R091_T42RUN 42N 319520 2736030
S2A_OPER_PRD_MSIL1C_PDMC_20161018T073751 38N 655730 3419140
S2B_MSIL1C_20170826T155519_N0205_R011_T17NMJ 17N 472220 875270
S2B_MSIL1C_20170919T140039_N0205_R067_T21KVA 21S 445610 8017250
S2B_MSIL1C_20171123T043059_N0206_R133_T45QYE 45N 756960 2481220
S2B_MSIL1C_20171123T043059_N0206_R133_T45QYE 45N 763390 2429410

Rock & Alluvium—1
TileID UTM Zone Easting Northing

S2A_MSIL1C_20160723T143750_T19KER 19S 506000 7534310
S2A_MSIL1C_20170124T051101_N0204_R019_T44RQV 44N 781870 3417600
S2A_MSIL1C_20170412T074611_N0204_R135_T37PDQ 37N 467190 1496550
S2A_MSIL1C_20170412T074611_N0204_R135_T37PDQ 37N 415880 1480390
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 478340 4162580
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 441920 4110190
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 424630 4194020
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 429810 4180830
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUF 12N 310360 4011400
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUF 12N 304930 4096250

Rock & Alluvium—2
TileID UTM Zone Easting Northing

S2A_MSIL1C_20170627T180911_N0205_R084_T12SUG 12N 393280 4169500
S2A_MSIL1C_20170908T063621_N0205_R120_T40QFK 40N 664760 2494790
S2A_MSIL1C_20171201T150711_N0206_R039_T18LZH 18S 866060 8213050
S2A_MSIL1C_20171207T082321_N0206_R121_T34HCH 34S 395100 6286480
S2A_OPER_PRD_MSIL1C_PDMC_20151022T184002 11N 516790 4027140
S2A_OPER_PRD_MSIL1C_PDMC_20160318T145513 19S 486817 8008443
S2B_MSIL1C_20171103T061009_N0206_R134_T42SWC 42N 576560 3774420
S2B_MSIL1C_20171103T061009_N0206_R134_T42SWD 42N 544220 3856340
S2B_MSIL1C_20171202T064229_N0206_R120_T40RGU 40N 768340 3304040
S2B_MSIL1C_20171212T064249_N0206_R120_T40QEL 40N 520620 2570980
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