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Abstract: Since the launch of Sentinel-1 mission, automated processing systems have been developed
for near real-time monitoring of ground deformation signals. Here, we perform a regional analysis of
5 years over 64 volcanic centres located along the East African Rift System (EARS). We show that the
correction of atmospheric signals for the arid and low-elevation EARS volcanoes is less important
than for other volcanic environments. We find that the amplitude of the cumulative displacements
exceeds three times the temporal noise of the time series (3σ) for 16 of the 64 volcanoes, which includes
previously reported deformation signals, and two new ones at Paka and Silali volcanoes. From a
5-year times series, uncertainties in rates of deformation are ∼0.1 cm/yr, whereas uncertainties
associated with the choice of reference pixel are typically 0.3–0.6 cm/yr. We fit the time series using
simple functional forms and classify seven of the volcano time series as ‘linear’, six as ‘sigmoidal’
and three as ‘hybrid’, enabling us to discriminate between steady deformation and short-term pulses
of deformation. This study provides a framework for routine volcano monitoring using InSAR on
a continental scale. Here, we focus on Sentinel-1 data from the EARS, but the framework could be
expanded to include other satellite systems or global coverage.

Keywords: Sentinel-1 SAR; volcanic ground deformation; East Africa

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) can routinely produce ground
displacement maps over large areas. Current satellite missions, especially Sentinel-1, are
well-suited for carrying out deformation surveys on the scale of entire plate boundaries,
which would not be feasible with ground-based stations. Previous large-scale surveys have
mostly been retrospective analyses of strain accumulation in tectonically active regions
such as Tibet [1] and Anatolia [2,3], and surveys of volcanic unrest [4–9].

The availability of SAR datasets has increased dramatically over the past decade.
In particular, the open-access policy of the Sentinel-1 mission opened new perspectives for
the near real-time monitoring of ground deformation at global and regional scales [3,9–11].
This has been supported by the development of automated processing platforms that now
produce large databases of InSAR products: ARIA (NASA Jet Propulsion Laboratory),
SARVIEWS (University of Alaska Fairbanks), Geohazards Exploitation Platform (European
Space Agency), and LïCSAR (COMET) [12–15].

Satellite observations are particularly critical for sub-saharan Africa, where the re-
sources to deploy and maintain a dense network of ground-based stations are limited.
The East African Rift System (EARS) contains 78 volcanoes considered active during
Holocene [16]. Population exposure is high, particularly in Ethiopia and Kenya, where
over 70 million people live within a 100 km radius of a Holocene volcano [17]. InSAR
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regional surveys using the ERS (1997–2000) and ENVISAT (2003–2010), satellites improved
our knowledge of the dynamics of the EARS magmatic systems [7,8]. However, these early
missions were not designed for continuous monitoring, and the dataset had low temporal
resolution (3–4 images per year) and many gaps. More recently, [9] analysed Sentinel-1
data over 64 Holocene active volcanoes along the EARS between October 2014 and January
2020 and detected ground deformation signals at 14 volcanic centres.

Here, we discuss the best practices for using Sentinel-1 SAR data for the automatic
production of time series and the characterisation of volcanic ground deformation sig-
nals, using the EARS as a case study (Figure 1). First, we describe the methodological
developments that support the routine production of Sentinel-1 InSAR time series. We
then analyse the 64 EARS volcanoes to assess the benefit of atmospheric corrections for
rift volcanoes and estimate the uncertainties on the mean line-of-sight (LOS) velocities.
We apply a threshold based on the noise level at each volcano to detect deformation and
classify the resulting time-series using simple functional forms. Finally, we discuss the
implications for this regional study for global volcano monitoring, in terms of the limits of
detection and classification.

a) PRE-PROCESSING OF InSAR DATA (Section 2.1)

- Download the LiCSAR products 
https://comet.nerc.ac.uk/COMET-LiCS-portal/

- Cropping the data on each volcano (0.5° x 0.5°)

- Checking the quality of the data

- Least-squares inversion

- Automatic production of velocity maps and time series

- Automatic detection of signals

b) ATMOSPHERIC CORRECTION (Section 2.2)

 correction

high correlation low correlation

Estimation of the phase-elevation correlation

no correction

V

V

V

V

c) REFERENCE FRAME (Section 2.3)

d) TIME SERIES CHARACTERISATION (Section 2.4)

Linear

no deformation

Sigmoid Hybrid

 deformation

|AB|>3σA|AB|<2σA

V

V V V

V

expert check

2σA<|AB|<3σA
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Figure 1. Flowchart showing the important steps for the automatic production and classification of
Sentinel-1 time series.

2. Materials and Methods

In this section, we describe the methods used for the automated processing and clas-
sification of Sentinel-1 data over the 64 volcanoes of the EARS (Figure 1). We start by
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describing the processing of the Sentinel-1 data, and our approach to atmospheric correc-
tions and reference frame selection. We then describe the methods used to analyse the set
of time-series, including the automatic detection and classification of deformation signals.

2.1. Pre-Processing of Sentinel-1 Data

Sentinel-1 is a C-band imaging radar mission operated by the European Satellite
Agency (ESA) through the Copernicus programme. The constellation consists of two
satellites: Sentinel-1A (launched 3 April 2014) and Sentinel-1B (launched 25 April 2016).
However, an anomaly occurred on Sentinel-1B satellite on 23 December 2021 and the
end of the Sentinel-1B mission was announced by ESA and the European Commission
on August 2022. In Africa, revisit time of Sentinel-1 acquisitions is 12 days during the
2017–2021 period and 24 days otherwise. Differential Interferometric Synthetic Aperture
Radar (DInSAR) consists of computing the phase difference between two SAR images of the
same geographical location acquired at different times [18]. The processing of SAR images
produces (i) wrapped interferograms which contain ambiguous phase values between −π
and π, (ii) unwrapped interferograms which contain continuous phase values relative to
a reference pixel and (iii) coherence maps, which indicate the degree of decorrelation of
ground targets.

We generate Sentinel-1 interferograms and coherence maps using the LïCSAR process-
ing system [15], which is built on the GAMMA software package [19] (Figure 1a) . Our
dataset spans a 5-year period (2015–2020) and consists of a total of 3570 interferograms
covering 64 Holocene active volcanoes from the Eastern Branch of the African Rift system,
including Ethiopia, Kenya and Tanzania (Table S1). All InSAR products are freely available
at https://comet.nerc.ac.uk/comet-lics-portal/ (accessed on 25 October 2022). The LïC-
SAR system automatically generates the 3–4 shortest temporal baseline interferograms
at a spatial resolution of 0.001◦ (∼111 m at the equator) [15]. To reduce the computing
time for the time series analysis, we first crop all the LïCSAR products to a geographical
region 0.5◦ × 0.5◦ centred on the location of each volcano derived from the Smithsonian
catalogue [16] (Figure 1a) .

A small proportion of the automatically-generated interferograms have poor quality
due to processing issues (e.g., missing data, co-registration errors) or limitations of the
InSAR method (e.g., temporal decorrelation). We apply a quality test based on two crite-
ria calculated on the cropped area: (1) the mean coherence and (2) the fraction of pixels
unwrapped (Figure 1a). We select images with average coherence exceeding 0.05 and the
fraction of pixels unwrapped exceeding 0.2. The aim is to remove images that contain no
information due to issues in the processing. For example, among the 294 total interfero-
grams processed at Fentale volcano, only six did not pass the quality test (Figure S1 in
Supplementary Materials). For the total dataset, the proportion of rejected interferograms
is <8% (Figure S2 in Supplementary Materials).

2.2. Atmospheric Noise

Changes in the atmospheric conditions (mostly pressure and water vapour) between
two SAR acquisitions cause phase delays in an interferogram that can potentially mask
real ground deformation signals. The impact of these atmospheric signals is expected to
be most significant for InSAR measurements in regions with high-relief, as large elevation
gradients may cause strong stratified signals, and for regions located in tropical climates
where large spatio-temporal variations of water vapour content may induce turbulent
signals. Topographically-correlated atmospheric signals have been identified at many
high-elevation stratovolcanoes, including arc volcanoes located in tropical regions such as
Central America and Indonesia [20–22] and continental volcanoes such as Etna (Italy) and
Hasan Dagi (Turkey) [23,24]. These topography-dependent signals can be reduced using
(1) empirical methods based on the correlation between phase and elevation [23,25,26] and
(2) weather-based models [22,27–30], which have the ability to correct both topographically-
correlated and long-wavelength turbulent components.

https://comet.nerc.ac.uk/comet-lics-portal/
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Although much of the EARS is located in the tropics, most of the volcanoes are
low relief and lie in desert and semi-arid climates [31]. More than 80% of the EARS
volcanoes have relief <1000 m, with height average value of ∼690 m in Afar, ∼340 m
in the Main Ethiopian Rift (MER) and ∼650 m in the Tanzania-Kenya rift (Figure S3 in
Supplementary Materials). Previous InSAR studies have reported no obvious atmospheric
errors in the MER and Kenya-Tanzania rift [8,32] whereas significant atmospheric noise
has been reported in the Afar region [33,34].

We calculate the coefficient of determination, R2, between the interferometric phase
and the elevation for each of the >4000 unwrapped interferograms processed (Figure 1b).
For each volcano, we then calculate the cumulative distribution function (CDF) of the R2

values for each region (Figure 2a–c). CDF curves located close to the top-left corner of
the plot correspond to volcanoes that typically present a low phase-elevation correlation
while CDF curves that plot close to the diagonal correspond to volcanoes with a uniform
distribution of R2 values.

2.3. Reference Frame

Differential interferometry measures relative displacement, meaning the choice of
reference frame has an influence on the time-series and velocity estimates. Possible choices
for the reference value include: (i) a single pixel or an average of a region [27,35] located far
from the deformation area and coherent in time, (ii) the average value of each unwrapped
interferogram [36], (iii) the average of an annulus centred on the volcano summit [20],
(iv) the evaluation of all pixels outside the volcanic area as a potential reference [21].

The first approach is based on an arbitrary choice. The second one is based on the
assumption of zero mean deformation, which is not appropriated for volcanic areas with
potential long-lived surface deformation. The third approach was designed for volcanoes in
order to reduce the effect of small-scale atmospheric variations on the time series. However,
the method only works for symmetrical edifices with a clearly-identified summit (e.g.,
stratovolcanoes, cones) and is not suitable for many of the volcanic centres located in the
East African Rift.

For these reasons, we chose the method developed by [21] as it provides several
advantages for our study: it is well-suited for automation, it minimises the effects of local
atmospheric artefacts and it provides an estimate of the associated uncertainty (Figure 1c).
We consider all pixels located more than 20 km from the volcano summit as a potential
reference pixel to ensure that those are not affected by any ground deformation. Then, we
derive the distribution of the corresponding LOS velocity estimates at the centre of the
volcano. We select a pixel associated with the peak of the distribution as the reference point.
The standard deviation of this distribution, σre f , is a measure of the uncertainty in the LOS
velocity estimate, and we will henceforth refer to it as the ’reference uncertainty’.

2.4. Time Series Characterisation

We produce time series of ground displacements using the classic least-squares ap-
proach [35,37] with no temporal filtering applied (Figure 1d). For each volcano, time
series are automatically generated at two specific points: (i) the point A, chosen outside
the volcanic area and (ii) the point B corresponding to the location where cumulative
displacements are maximum in the volcanic area (Figure S4 in Supplementary Materials).
For each volcano, we calculate (1) the temporal standard deviation of the time series at
the point A, σA, which characterises the noise level and (2) the modulus of the cumulative
LOS displacement at the point B, |AB|, which characterises the amplitude of the signal
(Figure 1d).
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Figure 2. Cumulative Distribution Function (CDF) of the phase-elevation correlation values
(R2) recorded for each volcano at different location along the rift: (a) Afar, (b) Main Ethiopia
Rift, and (c) Kenya-Tanzania. Blue lines indicate volcanoes with low phase-elevation corre-
lation (CDF(0.5) > 0.8) and red lines indicate volcanoes with high phase-elevation correlation
(CDF(0.5) < 0.8), (d) map showing the degree of phase-elevation correlation through the value
CDF(0.5) for all the volcanoes processed. All volcanoes showed with red triangles were corrected
using phase-elevation correlation, (e) distribution of the phase-elevation correlation along the EARS.

2.4.1. Time Series Functions

For those volcanoes showing deformation signals, we fit the time series, U(t) in the
point B by using two simple models: a linear function to represent steady-state deformation
and a sigmoid function to represent transient deformation. These are not intended to reflect
the underlying geophysical processes but are a simple way to parametrize and compare a
range of signals (Figure 1d) . The functions are chosen to have a small number of unknown
parameters (2–3) and the ability to approximate a range of behaviours

The linear function, U(t) = vt + U(0), has two parameters with v corresponding to
the mean velocity. The sigmoid function

U(t) =
Umax

1 + e−(
t−tc

τ )
(1)

has three parameters: Umax, the maximum displacement at t = ∞, τ is the characteristic
time and tc is the time at the centre of the sigmoid. We consider the time period between
t = tc − 2τ and t = tc + 2τ, which contains 76% of the total displacements Umax, as a proxy
of the period of unrest.

For each time series, we calculate the R2 for the linear and sigmoid functions. For those
time series where both linear and sigmoid models provide an acceptable fit (R2 > 0.5),
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we then use Akaike’s Information Criterion (AIC) [38] to compare the goodness of fit
while accounting for the different number of model parameters. Since AIC is a relative
measure, we quote the value ∆AIC = AICsigmoid − AIClinear and assume that the errors
have independent identical normal distributions, such that

∆AIC = (n ln
RSSs

n
+ 2ks)− (n ln

RSSl
n

+ 2kl) (2)

where n is the number of data in the time series, RSS is the residual sum of squares, and k
is the number of model parameters. The subscripts l and s correspond to the linear and
sigmoidal models, respectively. Here, kl = 2 and ks = 3, the expression can be simplified as:

∆AIC = n(ln
RSSs

RSSl
) + 2 (3)

If ∆AIC << 0, the best model is the sigmoid and, if ∆AIC >> 0, the best model is
linear. For −10 < ∆AIC < 10, the two models are roughly equivalent, and we select the
linear model for simplicity.

2.4.2. Velocity Uncertainties

We then evaluate the LOS velocity uncertainties in the Sentinel-1 time series for our
EARS dataset by looking at the time series for the volcanoes that show a continuous linear
trend. The standard deviation of the LOS velocity is derived using the percentile bootstrap
method [39]. The method consists of computing the distribution of the velocity using a
random selection of N resampled datasets with data replacement (here, we chose N = 100).
The standard deviation of the velocity is then calculated for different duration from 1 to
5 years.

Regional and global analysis of geodetic time series have showed that velocity uncer-
tainties σv decrease with the duration of the time series ∆t, following a power-law function
σv = ∆t−b [40–42]. The parameter b corresponds to the decay rate, and it usually ranges
between 1 for flicker noise (correlated) and 3

2 for pure white noise (uncorrelated). For two
previous studies using Sentinel-1 InSAR dataset, such power-law relationships have been
modelled with a decay rate corresponding to white noise (b = 3

2 ) [3,43].

3. Results
3.1. Atmospheric and Reference Frame Uncertainties

The EARS volcano dataset shows a low correlation between elevation and the phase
of the interferograms. We found that (i) the coefficient of determination, R2, has an average
value of 0.2 and (ii) only 15% of the interferograms processed show a R2 > 0.5. As an
illustration, Figure 3a shows one interferogram containing a strong stratified signal from
Silali volcano. An empirical model based on the linear correlation between phase and
elevation (R2 = 0.8) largely removes the atmospheric signal (Figure 3b,d) and the residuals
after correction have a standard deviation of <2 cm (Figure 3c). Figure 3e shows one
interferogram containing low atmospheric signal from Suswa volcano. Here, the empirical
model based on the phase-elevation correlation (R2 = 0.04) does not improve the quality
of the data (Figure 3f,h) and the corrected interferogram is very similar to the original
interferogram (Figure 3g).

To avoid over-correcting any real deformation signals, we only apply the empirical
phase-elevation corrections at volcanoes for which many interferograms show high corre-
lation. We chose to apply phase-elevation corrections at volcanoes for which more than
20% of interferograms have a correlation coefficient larger than 0.5 [CDF(R2 = 0.5) < 0.8]
(Figure 2a,c—red lines). This corresponds to only 15 of the 64 volcanoes processed (23%)
(Figure 2d,e): seven volcanoes in Afar (Alid, Ma-Alalta, Dabbayra, Manda-Gargori, Asavyo,
Nabro and Dubbi), three in the Main Ethiopian Rift (Bishoftu, Butajiri-Silti field and Tullu
Moye) and five in the Kenyan-Tanzania Rift (Emuruangogolak, Silali, Paka, Korosi and Ol
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Doinyo Lengai). For Afar and the MER, we notice that the volcanoes that require corrections
are mostly located at the margin of the rift (Figure 2d), where the relief of the border faults
rather than the topography of the volcanic edifice generates the topographically-correlated
signal. Our statistic analysis confirms that atmospheric noise is generally low for the EARS
volcanoes and consequently atmospheric corrections are not a critical step for the detection
of volcanic ground deformation signals.
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Figure 3. Atmospheric corrections using the empirical method of linear phase-elevation correlation.
The top row shows an example for Silali volcano showing high correlation (R2 = 0.8) with (a) the
interferogram, (b) the phase-elevation model, (c) the corrected interferogram and (d) the phase-
elevation plot. The bottom row shows an example for Suswa volcano showing low correlation
(R2 = 0.04) with (e) the interferogram, (f) the phase-elevation model, (g) the corrected interferograms
and (h) the phase-elevation plot.



Remote Sens. 2022, 14, 5703 8 of 20

Reference frame uncertainties vary widely among the EARS volcanoes with val-
ues ranging between 0.18 cm/yr (Groppo) and 1.65 cm/yr (Gufa) with an average of
∼0.5 cm/yr (Figure 4d, Tables S1–S3 in Supplementary Materials). Figure 4a–c shows ex-
ample histograms from Dallol (0.4 cm/yr), Nabro (0.8 cm/yr) and South Island (1.6 cm/yr).
Two thirds of the 64 EARS volcanoes studied have reference uncertainties between
0.3 < σre f < 0.6 cm/yr. The four end-members (Alid, Gufa, South island and The Bar-
rier) with reference uncertainties greater than 1 cm/yr (Figure 4e) are volcanoes that have
the smallest number of interferograms processed (Figure S2 in Supplementary Materials).
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Figure 4. Distribution of the LOS velocity estimates at the centre of the volcanoes (a) Dallol, (b) Nabro
and (c) South island, using all the pixels outside the volcanoes as a potential reference point. Vertical
black lines indicate the peak of frequency. The standard deviation of the distribution (1σ) is an
indication of the velocity uncertainty due to the choice of the reference point, (d) map showing the
LOS velocity uncertainty for all the volcanoes processed, (e) distribution of the uncertainty along
the EARS.

3.2. Analysis of Deformation Signals
3.2.1. Signal-to-Noise Ratio

We plot the amplitude of the signal (|AB|) as a function of the temporal noise (σA) for
each of the 64 volcanoes processed (Figure 5). The noise level σA is similar between the
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three EARS regions, with mean values of 1.4 ± 0.5 cm, 1.2 ± 0.4 cm, and 1.4± 0.5 cm (1σ)
for Afar, MER and Kenya-Tanzania, respectively (Table 1).
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Figure 5. Limit of detection of displacements for the different sections of the rift: (a) Afar, (b) MER
and (c) Kenya-Tanzania. The signal amplitude corresponds to the absolute value of the cumulative
displacement recorded by the time series after 5-years at the location (B). Temporal noise corresponds
to the standard deviation of the 5-years time series at the location (A) outside the deformation.
The red lines show the two detection thresholds: |AB| = 2σA and |AB| = 3σA. Volcanic centres
with amplitude above 3σA are automatically classified as deformed volcanoes whereas volcanoes
with amplitude between 2σA and 3σA need manual inspection. Arrows indicate the mean LOS
velocity for the year 2019. Gray ellipse indicates cases for which one ground signal is identified
on different neighboured volcanic centres. The symbol (*) indicates volcanic centres where phase-
elevation corrections have been applied. Vertical dashed lines indicate the average temporal noise
for each section of the rift, (d) minimum LOS velocity that will be detected as a function of the
duration of the time series, assuming the threshold of 2σA. Solid lines are derived from the mean
value of the temporal noise found in (a–c) and dashed lines indicate the confidence intervals within
1 standard deviation.

For volcanoes which did not deform, the amplitude of the signal is the same order of
magnitude as the noise level (e.g., Gedamsa: |AB| = 0.9 cm and σA = 1 cm) (Figure S4a–c
in Supplementary Materials). For volcanoes that did deform, the amplitude of the signal
is much higher than the temporal noise (e.g., Tullu Moje: |AB| = 14.7 cm and σA = 1 cm)
(Figure S4d–f in Supplementary Materials).

We evaluate two threshold’s values for the detection of volcanic unrest: |AB| = 2σA and
|AB| = 3σA. The amplitude |AB| exceeds 3σA for 19 volcanoes, which is ∼30% of the total
number (Table 2; coloured circles in Figure 5). This includes eight volcanoes in Afar (Nabro,
Alu-Dalafilla, Gada Ale, Dallol, Alu Bagu, Hayli Gubbi, Erta Ale and Dabbahu-Hararo),
seven in the MER (Alutu, Fentale, Kone, Haledebi, Bora-Bericcio, Tullu Moje and Corbetti)
and four in Kenya-Tanzania (Suswa, Olkaria, Paka and Silali). Three of these are actually
duplicates, where two or more closely spaced volcanoes appear in the same 0.5◦ × 0.5◦

tile: the signal from Erta Ale also appears in the tiles for Alu Bagu and Hayli Gubbi and
the signal from Tullu Moje also appears in the tile for Bora Bericcio. These duplicates are
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removed from the subsequent analysis, leaving 16 unique signals. With the exception of
Silali and Paka, all these signals were reported as ground deformation signals in Albino
and Biggs [9].

As we decrease the threshold to 2σA (dashed line in Figure 5), five volcanoes will be
flagged in addition to the 16 previously detected, with three in Afar (Ma Alalta, Adwa,
Ayelu), one in the MER (O’a caldera) and one in Kenya-Tanzania (Longonot). The choice
of the appropriate threshold is a compromise between the number of false alarms (if the
threshold is too low) and the numbers of missed detections (if the threshold is too high).
In our case, we suggest to automatically flag as deformation each signal with amplitude
exceeding 3σ, and to manually inspect signals with amplitude between 2σ and 3σ (see
Section 4).

Table 1. Statistical values (mean, median, standard deviation, minimum and maximum values)
associated with the temporal noise σA for each of the three EARS regions (Afar, MER, Kenya-Tanzania).
Units are in centimetres.

Region Nb of Volc. Mean Median Std Min/Max

Afar 31 1.4 1.3 0.5 0.7/2.8
MER 16 1.2 1.1 0.4 0.2/2.2
Kenya-Tanzania 17 1.4 1.4 0.5 0.4/2.2

Table 2. Values of the signal-to-noise ratio and the best-fit model for InSAR time series of all volcanoes
where |AB| > 3σA.

Volcano Detection Model Sigmoid R2 > 0.75
|AB| (cm) σA (cm) |AB|/σA ∆AIC tc (Days) τ (Days) Umax (cm)

Fentale 5.8 1.0 5.8 −133 20150422 43 8.3
Erta Ale 18.0 1.9 9.5 −86 20170626 146 −19.0
Tullu Moje 14.7 1.0 14.7 −61 20161130 212 13.4
Suswa 5.5 1.0 5.5 −49 20181025 64 6.2
Kone 6.1 1.2 5.1 −31 20190329 426 −8.2
Olkaria 7.9 1.4 5.6 −10 20170429 261 −10.7

Model Linear R2 > 0.75
∆AIC vB (cm/yr) σB (cm/yr) b

Corbetti 26.1 1.6 16.3 −4 4.6 0.1 1.47
Alu−Dallafilla 6.10 1.5 4.1 −3 −1.3 0.1 1.53
Silali 3.4 0.4 8.5 −2 −0.7 0.05 1.35
Dallol 14.6 1.2 12.2 10 −3.2 0.1 1.45
Paka 4.4 0.5 8.8 11 −0.7 0.06 1.61
Gada Ale 9.9 1.4 7.1 21 −1.9 0.1 1.45
Dabbahu 22.0 2.7 8.1 23 3.9 0.2 1.65

Model Linear + Seasonal
vB (cm/yr) As (cm)

Nabro 5.5 1.2 4.6 1.7 2.9
Alutu 3.8 0.2 19 −0.8 2.1
Haledebi 5.8 1.3 4.5 0.4 2.1

3.2.2. Deformation Characteristics

Four of the volcanoes are best fit by a linear model: Dallol, Paka, Gada Ale and
Dabbahu (Table 2 and Figure 6a,b). Although the sigmoidal model was preferred at
Corbetti, Alu-Dallafilla and Silali, |∆AIC|was small (<10) and τ was large (461, 557 and
281 days, respectively), and we classify these as linear too (Figure 6c). For the seven steady
deformation signals detected, velocities range from −3.2 to 4.6 cm/yr with most of the
cases showing slow subsidence (Table 2). Steady uplift over the 5-year time period was
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only reported at two volcanoes, Corbetti and Dabbahu, where sustained uplift has been
attributed to a combination of magma movement and a viscoelastic rheology [44,45].

The sigmoidal model is preferred for six volcanoes: Fentale, Suswa, Erta Ale, Tullu
Moje, Olkaria and Kone, but there is significant variation in the time-scale of the deforma-
tion episodes (Figure 6d,i). For Fentale, Suswa and Erta Ale, the characteristic time τ is
smaller than 0.5 year with values of one month and half, two months and five months, re-
spectively (Table 2). For Fentale, the time series shows a ramp increase with Umax = 8.3 cm
in March 2015. For Suswa, the time series show a ramp increase with Umax = 6.2 cm
with the onset of deformation starting around June 2018. For Tullu Moje, Olkaria and
Kone, the characteristic time τ is larger than 0.5 year with values of 0.6 year, 0.7 year and
1.2 years, respectively (Table 2). Both Tullu Moje and Olkaria show an exponential decay
trend, with LOS cumulative displacements of ∼15 cm and ∼−8 cm, respectively. Based
on the sigmoid fit, the ground deformation started in early June 2015 for Olkaria and late
September 2015 for Tullu Moje.
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Figure 6. Examples of nine time series of LOS displacement showing the fit for the two functions:
linear (blue) and sigmoid (red). Linear trend is preferred for the volcanoes (a) Dallol, (b) Gada Ale,
and (c) Corbetti whereas sigmoid trend best fit for (d) Fentale, (e) Suswa, (f) Erta Ale, (g) Tullu Moje,
(h) Kone and (i) Olkaria.

Three volcanoes (Nabro, Alutu and Haledebi) do not fit either the linear or sigmoidal
models (R2 < 0.5). All three can be described by a linear model superimposed with a
seasonal signal (Figure S5 in Supplementary Materials). The amplitude of the seasonal
signal, As, is ∼3 cm for Nabro and ∼2 cm for Alutu and Haledebi (Table 2).
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3.3. Velocity Uncertainties

For the seven volcanoes whose time-series were classified as linear deformation
(Corbetti, Alu-Dallafilla, Silali, Dallol, Paka, Gada Ale and Dabbahu), we estimate the LOS
velocity uncertainties at the point B. In each case, the standard deviation of the velocity,
σv, decreases linearly with the duration of time series ∆t in a log-log plot (Figure 7). This
indicates a power-law relationship: σv = a∆t−b, in which a corresponds to the LOS velocity
uncertainties after a 1-year period, and b corresponds to the decay rate. The value b = 1
is an indication of flicker noise (correlated), whereas b = 3

2 indicates pure white noise
(uncorrelated). After 5 years, LOS velocity uncertainties range from 0.05 cm/yr at Silali
to 0.2 cm/yr at Dabbahu with an average value of 0.1 cm/yr and the decay rate b ranges
from 1.35–1.65 with an average value of 1.5. These results indicate (1) a typical detection
threshold of ∼1 mm/yr for EARS volcanoes based on 5 years of Sentinel-1 data and (2) that
the velocity uncertainties in the Sentinel-1 time series are dominated by uncorrelated noise
in agreement with previous InSAR studies [3,43].
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Figure 7. LOS velocity uncertainties σv as a function of the duration of the InSAR time series ∆t (log-
log scale) for the seven volcanoes showing persistent linear displacements for the period 2015–2020:
Dabbahu, Alu-Dallafilla, Dallol, Gada Ale, Corbetti, Paka and Silali. Linear trends are an indication
of a power-law relationship: σv = a∆t−b, where a corresponds to the LOS velocity uncertainties after
a 1-year period and b the decay rate (Table 2).

4. Discussion
4.1. Automated Detection Based on Signal-to-Noise Ratio

Based on our Sentinel-1 survey, the average temporal noise at EARS volcanoes, σA, is
∼1.35± 0.5 cm, with little systematic variation between regions. Using a threshold of 3σA
(∼4 cm), we detected all the ground deformation signals reported by the manual study of
Albino and Biggs [9], and in fact detected two previously unreported signals at Paka and
Silali volcanoes (see Section 4.3). However, subtle signals with small amplitudes could still
be missed (false negatives).

A threshold of 2σ (∼3 cm) is able to detect smaller signals, but a number of false
positives can occur (Figure 5). In our study, there were five volcanoes with 2σ < |AB| < 3σ
after 5-years: Ma Alalta, Adwa and Ayelu in Afar, O’a caldera in the MER and Longonot in
Kenya. None of these were reported by the study of Albino and Biggs [9].
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• At Adwa and Ayelu, the velocities recorded at point B are 0.1 cm/yr, which is in
the same order of magnitude as our estimates of LOS velocity uncertainties. In ad-
dition, part of the signal is correlated with topography, which suggests tropospheric
residuals signals.

• At O’a caldera, the phase information is very sparse as the volcanic area is covered
by three lakes (Shala, Abijata and Langano). Ground displacements has been only
retrieved at the caldera rim and LOS velocities do not exceed 0.2 cm/yr. No clear
deformation signal has been observed.

• At Longonot, the temporal noise is ∼2 cm, which is larger than the mean value
calculated for the EARS. The signal detected has a long wavelength, and it can be
observed in the entire scene (50× 50 km), with LOS rates of displacement ranging
from 0.5 cm/yr in the NW to −0.5 cm/yr in the SE. This pattern may suggest residual
orbital ramps.

• At Ma Alalta, the signal is located on Quaternary rhyolite lava flows [46]. The maxi-
mum rate of LOS displacement is about−0.7 cm/yr, which is larger than the four cases
previously described. Therefore, it is difficult to determine if this signal is noise or
real ground deformation associated with the compaction or remobilization of volcanic
products as previously observed in Kone lava flow [9].

In the framework of an automatic detection system, we recommend the use of a lower
detection threshold (e.g., 2σ for the EARS) and re-evaluating positive results based on an
expert analysis to identify potential false positives.

4.2. Previously Unreported Deformation

For two of the volcanoes with a high signal-to-noise ratio, Paka and Silali, no de-
formation has previously been reported in the Sentinel dataset (2015–2020). However,
both experienced deformation during the Envisat era (2006–2010) [7,47,48]. At Paka, five
distinct phases of unrest were identified with surface LOS displacement rates between
95 ± 1.3 cm/yr (July–August 2006) and 2.5 ± 0.9 cm/yr (February 2008–July 2010) [47].
Based on the modelling of ground deformation, unrest phases have been interpreted as
the inflation and deflation of four simple sources located beneath the northeastern and
southern flanks of the volcano at depths between 1 and 5 km. At Silali, a long-term linear
subsidence signal with maximum LOS displacement rates of 1.6 ± 0.4 cm/yr was detected
between October 2003 and September 2010, and modelled by the deflation of a source
located at 4–5 km depth below the caldera [47].

For the period 2015–2020, |AB|/σA = 8.8 at Paka and |AB|/σA = 8.5 at Silali.
Both timeseries were classified as linear, and the maximum LOS displacement rate was
−0.7± 0.1 cm/yr (Figure 8b,e) at both. This rate is much smaller than observed during
2006–2010 but significantly greater than the uncertainty. The signals both show that LOS
range increases in the same area as the previously detected signals (Figure 8), which is sug-
gestive of long-term subsidence associated with magmatic or hydrothermal processes [49].
However, the profiles of displacements also show some similarity with the topography of
the edifice (Figure 8c,f), which is typical of stratified atmospheric signals. Phase elevation
corrections have already been applied at both of these volcanoes (see Section 3.1), but we
cannot rule out that the signal may be the result of residual tropospheric signals instead of
ground deformation.

4.3. Deformation Classification

We automatically classify the time-series associated with positive detections as ‘linear’
or ‘sigmoidal’ using Akaike’s Information Criterion to chose the most appropriate func-
tional form. Although, there were three signals that did not fit either the linear or sigmoidal
models (Alutu, Haledebi and Nabro); these were well fit by a ‘hybrid’ model combining
linear and seasonal models (Figure 9). Albino and Biggs [9] noted the seasonal signals at
both Alutu and Haledebi and showed that they correlated with rainfall. The linear rate
estimated for Nabro of 1.7 cm/yr (Table 2) is comparable to the 1.5± 0.5 cm/yr estimate of
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Albino and Biggs [9]. Thus, the scheme could be easily improved by including an additional
functional form to represent seasonal patterns combined with underlying deformation
sources, e.g., [50].
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Figure 8. LOS displacement detected at the two Kenyan volcanoes, (a–c) Silali and (d–f) Paka,
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series of LOS displacements at the location B, (c,f) comparison between the profiles of displacements
(red lines) and the topography (shaded area) along W-E (left) and S-N (right) directions.

However, the categories provided by the empirical time-series fits do not directly
correspond with the process-based categories of Albino and Biggs [9]. The ’sigmoidal’
classification represents a range of processes: the signals at Fentale and Erta Ale have been
attributed to dyke intrusions [51,52], while Suswa, Tullu Moje and Olkaria are considered
to be restless calderas [7]. For Erta Ale, the sigmoid fit is poorer than for the other cases
(Figure 9), as the time series shows a complex trend: (1) a step-like LOS decrease of ∼10 cm
on January 2017 associated with co-eruptive processes [51,53] followed by (2) a slow decay
in displacement rate related to post-eruptive processes [54].

Similarly, the processes responsible for the five examples of linear subsidence are
varied (Figure 9). The subsidence at Alu-Dalafilla and Dallol are thought to be long-term
responses to recent activity: Alu-Dalafilla last erupted in 2008 [55] and there was a dike
intrusion at Dallol in 2004 [56]. In contrast, Paka and Silali are restless calderas, with no
recent activity [7]. The signal at Gada Ale has previously been attributed to poro-elastic
fluid effects [9].

Although the spatial pattern of deformation can be used to discriminate between
source processes with different geometries, many of the deformation signals are radially
symmetrical. Thus, while empirical fitting can be useful for a first order categorisation of the
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InSAR dataset, it cannot be used to uniquely determine the magmatic processes. Additional
information from other monitoring streams, e.g., [57,58] or baseline knowledge of the
long-term deformation patterns or eruptive history is needed for monitoring purposes.
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4.4. Measurement Uncertainty

The uncertainties on InSAR time series are the combination of several different processes:
atmospheric noise, orbit and DEM uncertainties, errors in phase unwrapping and temporal
decorrelation [59–62]. Our InSAR regional survey enables us to discuss various measures of
uncertainty at the regional scale and to compare to other geographical environments.

For the EARS, interferograms from the majority of the volcanoes (∼75%) had a low
phase-elevation correlation and did not require atmospheric corrections. Given that most
EARS volcanoes have low relief (<1000 m), this is consistent with previous studies that have
shown atmospheric uncertainty increases with volcano height, e.g., [28]. The only volcanoes
at which atmospheric corrections were considered necessary (CDF(R2 = 0.5) < 0.8) were
high and/or large edifices (e.g., Silali and Paka) and volcanic systems located at the margin
of the rift (e.g., Alid, Dubi, Butajiri), where the high relief is associated with the rift border
faults rather than the volcanic edifice itself.

4.4.1. Regional Detection Threshold

InSAR measurement accuracy can be evaluated by the detection threshold defined
as the minimum velocity that can be detected in the time series. This can be evaluated
by calculating the noise δ of N independent interferograms or the noise of interferogram

stacking with vlimit =
δi f g
√

N
t = δstack

t , e.g., [4,59]. The detection threshold largely decreases
with the duration of the time series and is highly dependent on the content of atmospheric
noise. Assuming that the noise is characterised by the value of 2σA, the detection threshold
can be expressed as vlimit =

2σA
t .

Therefore, the average detection threshold in the East African Rift System is 0.5–0.6 cm/yr
for a 5-year duration. For volcanoes in Central Andes, Pritchard and Simons [63] found
a detection threshold of 0.4 cm/yr for a 5-year ERS-1/2 (C-band) time series, assuming a
maximum error of 2 cm per interferogram. Thus, our estimates of the detection threshold in
the EARS are in good agreement with previous ones found for Central Andes volcanoes. We
may conclude that, for C-band sensors, the limit of detection is 0.4–0.6 cm/yr for volcanoes
located in arid or semi-arid environment (high coherence and low atmospheric noise), such
as the EARS and Central Andes.

In comparison, [20] estimated the average detection threshold for a set of 20 volca-
noes in Central America to be 2.4 cm/yr using a 3-year time-series of ALOS-PALSAR
(L-band) data, equivalent to 1.4 cm/yr for a 5-year duration. Such results are three times
higher than our estimates. Discrepancies are due to the tropical environment of Central
America (low coherence and high atmospheric noise) as well as the difference in radar
wavelength. Indeed, long wavelength sensors such as L-band are less sensitive to detecting
small displacements.

4.4.2. Velocity Errors for Long-Term Signals

Analysis of the persistent linear trend at seven EARS volcanoes shows that velocity
uncertainties are inversely proportional to the duration of the time series. For the 5-year
observation period, the typical LOS velocity uncertainty in the EARS was ∼0.1 cm/yr and
related to uncorrelated noise, that is consistent with results from two previous Sentinel-1
studies conducted in Japan and Turkey [3,43]. Our results are also in good agreement with
theoretical simulations, looking at the effect of tropospheric delays, which demonstrates
that a detection level of 0.1 cm/yr can be achieved for Sentinel-1 time series having regularly
sampled data for a period longer than 5 years [64].

Small phase biases due to the variation in scattering properties of sub-resolution
scatterers caused by moisture changes and vegetation growth can propagate through time
series of multi-looked interferograms causing a significant bias in velocity maps [65–67].
Although the EARS is mostly arid and sparsely vegetated, this effect could explain some of
the uncertainties in our velocity estimates, particularly for volcanoes with multiple land
cover types as the impact of the phase errors varies across the scene.
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Most InSAR studies do not explicitly consider the choice of reference frame as a source
of uncertainty. Here, we demonstrate that this choice is not trivial and can induce variations
up to 1 cm/yr on the LOS velocity derived. From our study, we show that the average
error is ∼0.5 cm/yr for the EARS, which is five times larger than the errors associated
with noise. Therefore, the use of an external dataset (e.g., GNSS data) for referencing
Sentinel-1, e.g., [3,45], is crucial to be able to study strain accumulation and partitioning in
the EARS, where extension rates range from ∼2 mm/yr in Malawi to ∼6 mm/yr in the
Main Ethiopian Rift [68].

5. Conclusions

Here, we provide a framework to produce routinely Sentinel-1 InSAR time series of
displacements from LïCSAR products that is adapted to semi-arid volcanic environment.
We apply our methodology to the EARS for the period 2015–2020. Among the 64 volcanic
centres, sixteen show large signal-to-noise ratio with the amplitude of the cumulative
displacements exceeding three times the temporal noise of the time series (Figure 9).

By performing a regional statistical analysis of the time series, we found that the
average limit of detection in the EARS region is around 3 cm (2σ). Therefore, we expect to
detect linear trend with rates larger than 0.5 cm/yr with an uncertainty of 0.1 cm/yr after a
5-year period.

We automatically classify the deformation signals as ‘linear’, ‘sigmoidal’ or ‘hybrid’.
Although this classification in three classes does not reflect the diversity of magmatic
processes, the automatic fitting provides an easy way to discriminate between steady
deformation (linear), slowly varying deformation rate (large sigmoid with τ > 0.5 yr) and
short-term pulses of deformation (tight sigmoid with τ < 0.5 yr). Such information can be
used during real-time monitoring to detect anomalies in the time series by comparing the
“real” ground displacements with the “predicted” displacements derived from the trend.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14225703/s1. Table S1: List of the 30 volcanoes processed in
the Afar region. For each of them, we indicate the latitude, the longitude, the mean coherence, the
phase-elevation correlation and the velocity uncertainty due to the selection of the reference point.
Table S2: List of the 16 volcanoes processed in the Main Ethiopian Rift. For each of them, we indicate
the latitude, the longitude, the mean coherence, the phase-elevation correlation and the velocity
uncertainty due to the selection of the reference point. Table S3: List of the 17 volcanoes processed in
the Kenya-Tanzania rift. For each of them, we indicate the latitude, the longitude, the mean coherence,
the phase-elevation correlation and the velocity uncertainty due to the selection of the reference point.
Figure S1: Quality check of LïCSAR products over Fentale volcano. For each interferogram, we plot
the mean coherence (blue crosses) and the fraction of unwrapped pixels (red crosses). Among the
294 interferograms processed, six of them have values much lower than the common trend (yellow
circles). Figure S2: Number of interferograms processed per volcano for the three regions: (a) Afar,
(b) MER and (c) Kenya-Tanzania. Blue and red bars indicate the proportion of interferograms selected
and rejected, respectively. The selection is based on the two criteria, mean coherence and fraction of
unwrapped pixels, as described in Figure S1. Figure S3: Boxplots of the elevation for each volcanic
area processed (0.5◦ × 0.5◦) for (a) Afar, (b) MER and (c) Kenya-Tanzania. Dashed lines show the
range of elevation (between the minimum and maximum values) and blue rectangles indicate the
interquartile range (between 25th and 75th percentiles). Red vertical lines correspond to the median
elevation and black triangles indicate the maximum elevation of the volcanic edifice. Numbers in
brackets indicate the volcano’s height evaluated as the difference between the median value and
the edifice’s elevation. Figure S4: Examples of automated time series produced for (a–c) three non-
deformed volcanoes: Adwa, Gedamsa and Korosi and (d–f) three deformed volcanoes: Kone, Olkaria
and Tullu Moje. Black and red dots show the time series for the point A (baseline in non volcanic area)
and the point B (signal in the volcanic area), respectively. The temporal standard deviation of the
baseline (σA) characterises the level of noise whereas the magnitude of the cumulative displacement
(|AB|) characterises the amplitude of the signal. Figure S5: Seasonnal signals superposed to linear
trend observed in the volcanoes (a) Nabro, (b) Alutu and (c) Haledebi.
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