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Abstract: The spatial resolution of current soil moisture (SM) products is generally low, consequently
limiting their applications. In this study, a deep belief network-based method (DBN) was used to
downscale the Soil Moisture Active Passive (SMAP) L4 SM product. First, the factors affecting soil
surface moisture were analyzed, and the significantly correlated ones were selected as predictors
for the downscaling model. Second, a DBN model was trained and used to downscale the 9 km
SMAP L4 SM to 1 km in the study area on 25 September 2019. Validation was performed using
original SMAP L4 SM data and in situ measurements from SM and temperature wireless sensor
network with 34 sites. Finally, the DBN method was compared with another commonly used machine
learning model-random forest (RF). Results showed that (1) the downscaled 1 km SM data are in
good agreement with the original SMAP L4 SM data and field measured data, and (2) DBN has a
higher correlation coefficient and a lower root mean square error than those of RF. The coefficients
of determination for fitting the two models with the measured data at the site were 0.5260 and
0.4816, with relative mean square errors of 0.0303 and 0.0342 m3/m3, respectively. The study also
demonstrated the applicability of the DBN method to AMSR SM data downscaling besides SMAP.
The proposed method can provide a framework to support future hydrological modeling, regional
drought monitoring, and agricultural research.

Keywords: deep learning; deep belief network; soil moisture; SMAP L4; Shandian River Basin

1. Introduction

Soil moisture (SM) is a key factor in the surface water cycle, affecting the water–
heat exchange in global surface processes [1,2]. It also has important effects on plant
productivity, soil biology, geochemistry, and surface hydrology [3,4]. The surface SM
product data estimated by satellite remote sensing technology have been widely used
in drought monitoring and climate modeling [5,6]. However, its application in regional
hydrology and agriculture is limited due to its low resolution, in which the spatial
resolution of SM products needs to be at least 1 km [6,7]. Considerable effort has
focused on developing SMD approaches to improve the spatial resolution of SM products
retrieved from satellites [6–12].

Microwaves are particularly sensitive to moisture, have a certain penetrability to the
surface, and are less affected by weather during data acquisition; thus, microwave remote
sensing has always been highly valued in monitoring the SM of the continent. The most
widely used SM products are the Advanced Microwave Scanning Radiometer(AMSR)-
Earth Observing System SM, Soil Moisture and Ocean Salinity(SMOS) SM, and Soil
Moisture Active Passive (SMAP) SM [7–14]. The feasibility and accuracy of these prod-
ucts have been verified for global application, but their resolutions are low, generally

Remote Sens. 2022, 14, 5681. https://doi.org/10.3390/rs14225681 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225681
https://doi.org/10.3390/rs14225681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7405-1113
https://doi.org/10.3390/rs14225681
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225681?type=check_update&version=1


Remote Sens. 2022, 14, 5681 2 of 15

tens of kilometers [13–22]. If the coarse spatial resolution of SM product data can be
improved by downscaling, then they will be more widely used.

Downscaling studies and products are well reviewed in the literature [6–8]. Various
downscaling methods or algorithms can be divided into empirical [9–15,22–32], semi-
empirical [33–35] and physical model based methods [36], of which the first method is the
most widely used. The principle of the empirical downscaling method is that a model is
first constructed based on coarse-scale SM data and high-resolution optical/infrared remote
sensing data. Then, high-spatial resolution data, which are used as predictors, are input
into the model to calculate the downscaled SM. The polynomial regression function is the
most commonly used empirical spatial downscaling relational model. The high-resolution
data used as predictors originate from optical and infrared remote sensing observations and
usually include land surface temperature (LST) and vegetation index (VI) [29]. In addition,
surface albedo (ALB), elevation and slope aspect, meteorological, evapotranspiration (ET),
and radar data have also been used in downscaling studies [24,29,36,37].

In recent years, much progress has been attained in geoscience modeling by using
artificial intelligence (AI), machine learning (ML), and deep learning (DL). DL is a subset of
ML, and ML is a subclass of AI. Undeniably, advanced ML methods should be employed
to solve problems in the earth sciences, as they enable researchers to solve many difficult
problems [38]. Moreover, ML algorithms can describe the nonlinear relationship between
SM and downscaling factors. Numerous researchers have attempted to downscale SM
data based on ML by using the random forest (RF) [12,23,39], support vector machine,
and artificial neural network [12,40,41]. These models have their own advantages and
disadvantages, and their applicability is usually affected by the selection of training data,
downscaling factors, and characteristics of study areas [8,12,39].

As DL methods can effectively discover more complex correlations between prediction
variables and input coarse-scale SM data [38,42], researchers have also explored DL-based
downscaling methods [39,43–45]. However, exploration in this area still needs to be devel-
oped. Therefore, a spatial DL-based method combined with the deep belief network (DBN)
is presented in this study for downscaling SMAP SM data.

The purposes of this study are as follows: (1) select factors that affect SM variations via
statistical analysis, which includes not only normalized difference vegetation index (NDVI)
and LST but also other spatial information features, such as relevant band data in Landsat
8 OLI data, wetness index (WI) obtained from Landsat 8-based Tasseled-cap Transform,
digital elevation model(DEM), slope and aspect, enhanced vegetation index (EVI), ALB,
and leaf area index (LAI); (2) train and test DBN in downscaling SM; and (3) compare the
performance of DL models with the RF model.

2. Materials and Methods
2.1. Study Area

The study area is located in the Shandian River Basin and surrounding watersheds
in North China, within an area of approximately 10,000 km2 (115.5–116.5◦E, 41.5–42.5◦N)
(Figure 1). It has a semi-arid continental climate, with a maximum inter-annual temperature
of approximately 36 ◦C and a minimum temperature of approximately −36 ◦C [19]. The
average annual rainfall and evaporation are approximately 375 and 1188 mm, respectively.
Precipitation is concentrated in summer from June to September, accounting for more
than 80% of the annual rainfall. Aeolian sandy soil is the main soil type, accounting for
approximately 50% of the total area, followed by 8% meadow soil. The terrain of the basin
is relatively flat and dominated by plains, hills, and depressions. The land cover types
include farmland, forest, grassland, shrubs, wetlands, water bodies, residential land and
bare land, of which the main types are farmland and grassland (Figure 1).
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Figure 1. Location and land cover type of the study area; Locations of 34 SMN-SDR stations noted
(solid triangle).

2.2. Research Data

The research data include SMAP SM products, AMSR-2 SM products, MODIS data
products, Landsat 8 OLI data, DEM elevation data, and SM field observation data, as listed
in Table 1. The original format of SMAP L4-SM data and MODIS data is HDF and converted
into TIFF format by using HEGTool (HDF-EOS and GeoTIFF conversion tools) from the
National Aeronautics and Space Administration (NASA) and then reprojected. The Landsat
data are preprocessed using the Google Earth engine (GEE) platform. All data are clipped
to the size of the study area after their projections are ensured to be consistent with the
coarse-scale SMAP and AMSR-2 data, and the water bodies of the images are masked.

Table 1. Description of datasets used in this study.

Dataset Description Variable

Landsat 8 OLI 30 m OLI multispectral image Visible-near infrared bands, Wet index
MOD11A2 1 km 8-day LST product LST
MOD13A2 1 km 16-day VI product NDVI, EVI
MCD43A3 500 m 16-day ALB product Albedo

MCD15A2H 1 km 8-day LAI product LAI
MOD16A2 1 km 8-day ET product ET

SMAP L4-SM 9 km SMAP SM SM
GMTED2010 1 km DEM data DEM

AMSR-2 10 km AMSR-2 SM SM
SMN-SDR In situ SM measurement SM

2.2.1. In Situ Observations

In 2018, an SM and temperature wireless sensor network with 34 sites was established
in the Shandian River Basin (SMN-SDR) [21,46]. The 34 sites (Figure 1) were designed
according to three scales: 100 km (large scale), 50 km (medium scale), and 10 km (small
scale) (http://data.tpdc.ac.cn/zh-hans/, accessed on 22 January 2022). At each station,
the SM and soil temperature were measured at different measurement depths of 3, 5, 10,
20, and 50 cm [20]. As the measuring depth of SMAP L4 was 0–5 cm, the top 3 cm in situ
measurements were used to verify the downscaled SM results.

2.2.2. Remotely Sensed SM Data

The remotely sensed SM data in this study were obtained from two passive microwave
sensors, namely, AMSR-2 and SMAP. The AMSR-2 onboard the GCOM-W satellite was

http://data.tpdc.ac.cn/zh-hans/
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launched in May 2012 and was used to continue the Aqua/AMSR-E mission (http://
suzaku.eorc.jaxa.jp/GCOM_W, accessed on 7 May 2022). The AMSR-2 L2 data with a
spatial resolution of 10 km and dated 25 September 2019 were downloaded from NASA
(https://earthdata.nasa.gov/, accessed on 7 May 2022).

Launched in 2015, SMAP is the latest satellite specially designed by NASA to
monitor SM by using the L-band, and it is considered to be the most sensitive band for
SM sensing. The good performance of the SMAP SM product has been confirmed by
multiple studies [16,47–49].

SMAP Level 4 products are model-derived data of the surface and root zone SM in
accordance with the SMAP Handbook, with a spatial resolution of 9 km and a temporal
resolution of 3 h (https://nsidc.org/data/smap, accessed on 1 February 2022). The SMAP
L4-SM data on 25 March, 25 May, 25 September, and 25 November 2019 were downloaded
and preprocessed. Among them, the SMAP L4-SM data on 25 September were used to
build the downscaling model, and the SM data on other dates were used to verify the
temporal validity of the model.

2.2.3. MODIS Data

The MODIS data products used in this study include LST (MOD11A2), VI (MOD13A2),
ALB (MCD43A3), LAI (MCD15A2), and ET (MOD16A2) (https://modis.gsfc.nasa.gov/,
accessed on 8 February 2022). The independent variables of LST, NDVI (extracted from
MOD13A2), EVI (extracted from MOD13A2), ALB, LAI, and ET in the study area were
obtained from the datasets, and all of them were resampled to 9 and 10 km by using the
nearest-neighbor method.

2.2.4. Topographic Data

DEM is a visual representation of ground elevation information, and other terrain
factors, such as slope and aspect, can be obtained from DEM. The DEM data (GETED2010)
used in this study was obtained from USGS and the US National Geospatial-Intelligence
Agency. GMTED has three different resolutions: 30 arc seconds (about 1 km), 15 arc seconds
(about 500 m), and 7.5 arc seconds (about 250 m). The 30 arc-second resolution GMTED
data were used to extract the slope and aspect.

2.2.5. Landsat 8 OLI Data

The Landsat 8 images of the study area from September 2019 to October 2019 were
downloaded in batches by using the GEE platform, with a spatial resolution of 30 m
(https://code.earthengine.google.com/, accessed on 30 January 2022). In addition to the
original Landsat band data, the wet index (WI) was obtained via tasseled cap transformation
and then used as an independent variable for soil moisture downscaling.

2.3. Proposed Methodology

The flowchart of the overall methodology is shown in Figure 2. The main steps are
as follows:

Step 1: Determine the environmental factors affecting SM and then prepare training
and test datasets for the model.

Step 2: Construct the DBN model and RF model. Evaluate the performance of the
models by analyzing the degree of agreement between the downscaled SM and in situ
observation data and original SMAP L4 SM data.

2.3.1. Selection of Predictors

The correlation between each affecting factor and the SMAP L4-SM data on 25 May,
and 25 September were calculated. Table 2 shows ALB, ET, Slope aspect, LST and selected
Landsat 8 OLI’s bands are negatively correlated with SM. By contrast, DEM, slope, NDVI,
EVI, WI, and LAI are positively correlated with SM. Each factor is correlated with SM at
a significant level of 0.01. Therefore, the red, green, blue, near-infrared, and short-wave

http://suzaku.eorc.jaxa.jp/GCOM_W
http://suzaku.eorc.jaxa.jp/GCOM_W
https://earthdata.nasa.gov/
https://nsidc.org/data/smap
https://modis.gsfc.nasa.gov/
https://code.earthengine.google.com/
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infrared bands of Landsat 8 OLI, DEM, NDVI, LST, EVI, WI, LAI, ALB_vis, and ALB_nir
were used as the downscaling predictors.

Figure 2. Flowchart of the study.

Table 2. Correlation of factors.

Blue Red Green NIR SWIR1 SWIR2 DEM Slope

R −0.43 −0.44 −0.44 −0.42 −0.48 −0.46 0.41 0.32

Aspect NDVI LST EVI WI ALB_vis ALB_nir LAI

R −0.20 0.69 −0.58 0.63 0.74 −0.69 −0.66 0.21

2.3.2. DBN-Based Method
DBN Model

DBN is a DL network formed by stacking multiple Restricted Boltzmann machines
(RBMs) and a backpropagation (BP) neural network (Figure 3a). When the correlation
between the input data is unknown, it can learn and construct a nonlinear relationship
between the input and output by referring to the feature values and labels of the input
dataset. DBN can also rearrange shallow features into deeper abstract features so that more
complex associations between features can be further excavated. The RBM in DBN consists
of a visible layer (visible unit) and a hidden layer (hidden unit), as shown in Figure 3b. The
output of the hidden layer of the previous layer of RBM is input into the next layer of RBM,
and this task is repeated several times. The output of the last RBM is input to the following
BP layer. The middle layers of the RBM are fully connected, while the adjacent layers are
not connected to each other [50].

DBN-Based Downscaling Procedure

A DBN-based downscaling model between the predictors and SM was established
and named Soil Moisture Downscaling-Deep Belief Network (SMD-DBN). Figure 4 shows
the model structure.
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Figure 3. Structure of the DBN model (a) and RBM (b).

Figure 4. SMD-DBN structure.

The procedure of constructing the SMD-DBN model can be described as follows.
The resampled low-resolution predictors and SMAP SM data are used as the training

set to train the DBN model. The training process of the SMD-DBN model includes RBM
pre-training and BP neural network back-propagation process. In the pre-training, an
unsupervised method is used to train each layer of RBM. The training process can be
regarded as a process of updating the weights and biases of the model. The pre-processed
data are input into the visible layer of the RBM, and the activation function is used to pass
the input data to the hidden layer to update the weights and biases by using the Gibbs
sampling contrast divergence algorithm. The BP process refers to the process of fine-tuning
the weights and biases. In the BP neural network, the Smooth L1 function is used as the
loss function to prevent the gradient from exploding during model training.

Both training accuracy and training speed are taken into account in the network
training. Some key parameter settings and results during the experiment are shown in
Table 3. Multiple experiments are required to determine the training parameters, including
the DBN hidden layer structure (hidden_layers_structure), number of sampling iterations
of the contrastive divergence algorithm (cd_k), number of RBM iterations (RBM_epochs),
RBM learning rate (RBM_learning_rate), number of BP algorithm iterations (BP_epochs),
BP algorithm learning rate (BP_learning_rate), training sample batch (batch_size), and the
drop factor (dropout). The final parameter settings are shown in Table 4.
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Table 3. Training parameters and results of the SMD-DBN model.

Hidden_Layers_Structure R2 RMSE RBM_Epochs BP_Epochs

[500] 0.4365 0.0452 50 200
[500, 500] 0.5581 0.0412 50 200
[800, 800] 0.5672 0.0400 50 200

[1000, 1000] 0.5743 0.0392 50 200
[1000, 1000] 0.6154 0.0374 50 400
[1000, 1000] 0.6355 0.0321 50 800
[1000, 1000] 0.6571 0.0296 100 800
[1000, 1000] 0.6816 0.0245 200 800
[1000, 1000] 0.7286 0.0219 400 800

Table 4. Training parameters of the SMD-DBN model.

Parameters Value

hidden_layers_structure [1000, 1000]
cd_k 1

RBM_epochs 400
RBM_learning_rate 0.1

BP_epochs 800
BP_learning_rate 0.1

batch_size 16
dropout 0.05

After a trained model is obtained, the high-resolution predictors (1 km) are input into
the trained model to obtain the predicted high-resolution SM data.

2.3.3. Evaluation Method

Three statistical metrics, namely, Pearson correlation coefficient (R), determination co-
efficient (R2), and root mean square error (RMSE), were used in the performance evaluation
of the method. R and R2 were used to evaluate the correlation and fitting effect between
the downscaling results and the original data or field measured data, respectively. RMSE
was used to evaluate the error of the downscaling results.

3. Results and Discussion
3.1. Evaluation of the SMD-DBN-Downscaled SM Data
3.1.1. Evaluation with Original SM and Field Measurement

A comparison between the downscaling of 1 km SM (Figure 5b) and original 9 km
SMAP SM data (Figure 5a) is shown in Figure 5. The blank part in Figure 5b represents the
result of using the water mask. Compared with the original coarse-scale SMAP SM, the
downscaled SMAP SM can maintain the consistency of the spatial variations of the original
SM and provide more detailed spatial information. Figure 6a shows the scatter diagram
and quantitative evaluation of the downscaled SM and its comparison with the original
SMAP SM at the SMN-SDR sites. The R, R2, and RMSE between the downscaled SM and
original SMAP L4 data are 0.8357, 0.6984, and 0.0210 m3/m3, respectively.

Then, the downscaled SM result was verified with in situ SMN-SDR SM data. Figure 6b
shows the scatter diagram and quantitative evaluation of the downscaled SM and its
comparison with SMN-SDR in situ measurements. The R, R2, and RMSE between the
downscaled SM and field measurements are 0.7253, 0.5260, and 0.0303 (m3/m3), respec-
tively. The results indicate that the downscaled result is in good agreement with the
field measurements. Compared with other downscaled SM products at 1 km resolution
as reviewed previously [6,7], SMD-DBN outperforms most similar methods, with their
R and RMSE values ranging from 0.41–0.73 and 0.049–0.131 (m3/m3). The accuracy of
SMD-DBN also exceeds that of a comparable approach used in the same study area, which
downscaled 9 km SMAP SM data to 1 km by using MODIS product (surface temperature
and normalized VI) data and an adaptive window downscaling method [14].
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Figure 5. Comparison of downscaling result and original SM data.

Figure 6. Scatter plot of SM from DBN downscaling versus original SMAP SM data (a) and SMN-SDR
in situ measurements (b).

3.1.2. Temporal Validation

The data date used for the training and validation of the SMD-DBN model are those
pertaining to 25 September 2019. In view of exploring the application performance of the
SMD-DBN model at other times, three different non-adjacent sites on different dates were
selected for evaluation. The selected dates were 25 March, 25 May, 25 July and 25 November
2019, forming a time series with an interval of two months starting from 25 September
when the model was established. The three stations are S2, M5, and L6, with the same
naming convention as the original experiment [20,41], where S, M, and L represent the
three scales of SMN-SDR, i.e., small, medium, and large sampling scales. Figure 7b,d,f,h
are the downscaling results of the SMD-DBN model. Figure 7a,c,e,g are the original images
of the low-resolution SMAP L4 SM product. The dates when the images were taken are
25 March, 25 May, 25 July and 25 November 2019, respectively.

Figure 8 shows a comparison of the time-series SM of the SMD-DBN model downscal-
ing results, original SMAP L4 data, and field measurements at S2, M5, and L6 stations. In
contrast to the trend of the original SMAP L4 data, the changing trend of SM in the time
series obtained by the SMD-DBN downscaling model is more consistent with that of the
field measured data.
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Figure 7. Comparison of original SMAP SM data (a,c,e,g) and corresponding downscaling result
(b,d,f,h) of different dates (25 March, 25 May, 25 July and 25 November 2019, note: white part is a
result of using the water mask).
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Figure 8. Time series SM data of station L6 (a), M5 (b), and S2 (c).

For the quantitative performance evaluation of the model in time series, the mean
absolute error (MAE) and mean relative error (MRE) between the downscaled results at
three stations and the corresponding original SMAP and field measured values of SMN-
SDR were calculated, respectively. As shown in Table 5, the MAE between downscaled
SM and SMN-SDR field-measured SM for the three stations (L6, M5, and S2) range from
0.0161 to 0.0257, with an average of 0.0207. The accuracy of the model downscaling results
does not fluctuate considerably over time.

Table 5. Evaluation of downscaling results of time series.

Station L6 M5 S2

SMAP SMN-SDR SMAP SMN-SDR SMAP SMN-SDR
MAE 0.0547 0.0257 0.0248 0.0161 0.0341 0.0203
MRE 18.54% 10.70% 9.91% 7.35% 12.25% 9.04%

3.2. Evaluation of SMD-DBN against SMD-RF

The RF algorithm is an integrated ML algorithm, and it can simulate the complex
nonlinear relationship between independent variables and dependent variables [51]. Many
previous studies have shown the suitability of RF algorithms for downscaling satellite
products compared with other ML methods [13,52–56]. Here, an SMD-RF model was
established to compare it with SMD-DBN. In particular, a nonlinear functional relationship
between the input feature variables and output SM was established based on multiple
decision trees, and the predictors used in the SMD-DBN model were used in the RF model.
The expression of SMD-RF is given by

SM = fRF(Red, Green, Blue, NIR, SWIR1, SWIR2, LST, NDVI, EVI, LAI, ALB, DEM, WI) (1)

For the SMD-RF model, five parameters need to be optimized: iteration times (n_estimators),
tree depth (max_depth), minimum sample number of leaf nodes (MIN_samples_split), min-
imum number of leaves required to split internal nodes (min_samples_leaf), and maximum
number of features used by each tree (max_features). The final values of each parameter
are shown in Table 6.

Table 6. Parameters of SMD-RF model.

Parameters Value

n_estimators 106
max_depth 14

max_features 0.1
min_samples_leaf 1
min_samples_split 3
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Figure 9 shows the downscaled SM from the SMD-RF model. Compared with the
original SMAP SM data (Figure 5b), the downscaling results of SMD-DBN and SMD-RF
models can both provide more detailed spatial information; however, while they have
similar trends, their local effects differ from each other.

Figure 9. Downscaled SM from SMD-RF (note: white part is a result of using the water mask).

The data and method used to verify the SMD-RF model are the same as those of the
SMD-DBN model. A performance comparison between SMD-DBN and SMD-RF is shown
in Table 7 and Figure 10.

Table 7. Accuracy evaluation of the two models.

Model Name
R R2 RMSE

SMAP SMN-SDR SMAP SMN-SDR SMAP SMN-SDR

SMD-RF 0.7571 0.6939 0.5732 0.4816 0.0235 0.0342
SMD-DBN 0.8357 0.7253 0.6984 0.5260 0.0210 0.0303

According to Table 8, SMD-DBN has a higher correlation with the in situ data (R)
and smaller error of prediction results (RMSE), indicating its higher accuracy and better
consistency with the original data compared with SMD-RF. Furthermore, Figure 10 shows
a higher dispersion degree of SMD-RF than that of SMD-DBN (Figure 6).

Figure 10. Scatter plot of SM from SMD-RF downscaling versus original SMAP SM data (a) and
SMN-SDR in situ measurements (b).
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Table 8. Comparison of the SMD-DBN downscaling result with original AMSR-2 SM and in situ
measurement data.

Model
R R2 RMSE

AMSR-2 SMN-SDR AMSR-2 SMN-SDR AMSR-2 SMN-SDR

SMD-DBN 0.8265 0.5356 0.6831 0.2631 0.0257 0.0321

3.3. Transfer of SMD-DBN to AMSR-2

In this study, the AMSR-2 SM product was selected to explore the applicability of
the SMD-DBN downscaling model to other data types. Figure 11 shows the downscaling
results of AMSR-2 SM products based on the SMD-DBN model, in which (a) represents the
original AMSR-2 image in the study area, and (b) represents the downscaling results of the
SMD-DBN model. The quantitative evaluation result is listed in Table 8.

Figure 11. Original AMSR-2 SM data (a) and SMD-DBN downscaling result (b).

The results showed that the downscaling results of AMSR-2 products have a high
correlation with the original data (R = 0.8265, R2 = 0.6831, RMSE = 0.0257 m3/m3), proving
the effectiveness of SMD-DBN model in downscaling the AMSR-2 SM products. How-
ever, the accuracy of AMSR-2′s downscaling results is much lower than that of SMAP
(R = 0.5356, R2 = 0.2631, RMSE = 0.0321 m3/m3). The deviation of AMSR-2 data from in
situ measurements may be attributed to the shallow penetration depth of the C/X band
used in AMSR-2 and the errors in auxiliary information [16,21,57].

4. Conclusions

Microwave sensor-based SMs are widely used because data acquisition is rarely
affected by atmospheric conditions, vegetation disturbances, and day–night cycles, but
the low resolution limits their application. Aiming at the practical needs of SM products
with high spatial resolution, this study presents the SMD-DBN model based on a deep
confidence network, improving the SMAP L4 SM data resolution from 9 to 1 km. In situ
observations from the new SM and temperature wireless sensor network (i.e., SMN-SDR)
were used to evaluate the performance of SMD-DBN.

The main conclusions are as follows:

(1) In terms of R, R2, and RMSE, the results obtained by the SMD-DBN model are in good
agreement with the SMN-SDR field measurements, both spatially and temporally. The
high spatial resolution SM map generated by this method has finer spatial information
than the coarse resolution dataset and is highly consistent with the original SM data.

(2) Compared with the widely used RF model, the proposed SMD-DBN model showed higher
predictive performance when evaluated against SMN-SDR monitoring observations.
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(3) The downscaling method in this study can be applied to other coarse spatial scale
remotely sensed SM dataset, such as AMSR-2. The SMD-DBN model has a good effect
on the downscaling of SM product data, including SMAP and AMSR-2.

The results of this study confirm the ability of the proposed method to effectively
provide high-resolution SM. As the SMAP L4 product provides SM data at a three-hour
time resolution on a global 9 km grid, the proposed method can obtain SM maps with high
spatial and temporal resolution. However, as near-infrared and visible remote sensing are
easily affected by cloud cover, some predictors (e.g., VI) cannot be obtained sometimes, and
downscaling models cannot be established. Future work can focus on solving the problem
of missing data caused by cloud coverage and similar factors to obtain downscaled SM.
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