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Abstract: Human activities have been stressing the ecological environment since we stepped into
the Anthropocene Age. It is urgent to formulate a sustainable plan for balancing socioeconomic
development and ecological conservation based on a thorough understanding of ecological environ-
ment changes. The ecological environment can be evaluated when multiple remote sensing indices
are integrated, such as the use of the recently prevalent Remote Sensing-based Ecological Index
(RSEI). Currently, most of the RSEI-related studies have focused on the ecological quality evolution
in small areas. Less attention was paid to the spatio-temporal heterogeneity of ecological quality in
large-scale urban agglomerations and the potential links with Land Use and Cover Change (LUCC).
In this study, we monitored the dynamics of the ecological quality in the Hangzhou Greater Bay Area
(HGBA) during 1995–2020, using the RSEI as an indicator. During the construction of the RSEI, a
percentile de-noising normalization method was proposed to overcome the problem of widespread
noises from large-scale regions and make the RSEI-based ecological quality assessment for multiple
periods comparable. Combined with the land use data, the quantitative relationship between the
ecological quality and the LUCC was revealed. The results demonstrated that: (1) The ecological
quality of the HGBA degraded after first improving but was still good (averaged RSEI of 0.638). It was
divergent for the prefecture-level cities of the HGBA, presenting degraded, improved, and fluctuant
trends for the cities from north to south. (2) For ecological quality, the improved regions have larger
area (57.5% vs. 42.5%) but less increment (0.141 vs. −0.195) than the degraded regions. Mountains,
downtowns, and coastal wetlands were the hot spots for the improvement and urbanization, and
reclamation processes were responsible for the degradation. (3) The ecological quality was improved
for forests and urban areas (4RSEI > 0.07) but degraded for farmland (∆RSEI = −0.03). As a result,
the ecological cost was reduced among human-dominant environments (e.g., farmland, urban areas)
while enlarged for the conversion from nature-(e.g., forests) to human-dominant environments.

Keywords: ecological quality; remote sensing-based ecological index (RSEI); Hangzhou Greater Bay
Area; land use and cover change (LUCC); exploratory spatial data analysis

1. Introduction

The ecological environment impacts all levels of human life and the sustainability
of society [1]. Human activities have been impacting the ecological environment since
humankind began populating the planet, and this process is speeding up. Over the past
half century, we have confronted numerous ecological environmental problems, such
as vegetation diminishment, water pollution, soil fertility decline, biodiversity loss, and
urban heat islands, under an unprecedented process of urbanization [2–4]. Therefore,
a sustainable plan balancing socioeconomic development and ecological conservation
based on a thorough understanding of the ecological environment is urgently needed [5–7].
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For China, the construction of an ecological civilization is a core part of the programs
of President Xi, thought of as socialism for a new era. The State Council consistently
emphasized the importance of ecological conservation in the 13th and 14th national Five-
Year Plans.

Ecological quality evaluation is a fundamental task that must be undertaken before
effective measures for ecological conservation can be implemented. Currently, remote
sensing technology is widely employed in ecological quality evaluation, as its advantages
of synoptic coverage and repeatability enable it to collect the spatial and temporal data
on a large scale [8]. Initial studies for ecological quality evaluation mainly used a single
remote-sensing-based index to reflect one aspect of the ecological status. For example, Jose
and William [9] used a vegetation index to measure vegetation coverage, Marie-Catherine
et al. [10] employed a water index to estimate water abundance, and Zeng et al. [11] used
surface temperature to evaluate the effect of urban heat islands. In fact, the ecological
environment is affected by many factors, and a single remote-sensing-based index can
hardly comprehensively represent all aspects of the ecological environment.

Under this condition, some methods integrating multiple remote-sensing-based in-
dices have been proposed. A typical example is the Ecological Index (EI), which integrates
five ecological factors of biological abundance, vegetation cover, water network density,
land degradation, and environment pollution, as a technical criterion of ecological assess-
ment for China [12]. However, the EI only provides a simple value to measure the ecological
condition for a region; thus, it cannot reflect regional heterogeneity of ecological quality.
Similar indicators that integrate multiple remote-sensing-based indices include the Forest
Disturbance Index (FDI) [13], Ecological Niche Modeling (ENM) [14], and the MODIS
Global Disturbance Index (MGDI) [15]. Although these indicators allow spatializing the
results, the challenges still lie in weight assignment. The weights are assigned differently
when subjective experience is involved, leading to different evaluation results.

Recently, Xu [16] proposed a Remote-Sensing-Based Ecological Index (RSEI), which
integrates the indicators of Greenness, Wetness, Dryness, and Heat to most intuitively reflect
the ecological conditions according to the Pressure–State–Response (PSR) framework [17].
More importantly, the Principal Component Analysis (PCA) method was used to determine
the weights automatically based on the contribution of each involved indicator. This is
helpful to avoid the uncertainty from empirical assignments [18,19]. The RSEI, which
overcomes the shortcomings of a single index and makes the aggregation of indices more
reasonable, has been accepted across a wide range of temperature zones and climatic
conditions [20–24].

Until now, the RSEI has been used in many regions worldwide. In China, it was
applied in Fuzhou [18], Xiamen [25], Wuhan [26] cities, and Xiong’an new area [27]. In
one of the typical studies, Xu et. al. [27] proposed the RSEI and predicted the ecological
effects from increasing population, paving the way for forthcoming regional planning of the
Xiong’an new area. In the USA, the land surface ecological status from Minneapolis, Dallas,
Phoenix, Seattle, and Chicago have been compared using the RSEI [28]. Moreover, urban
surface ecological crisis zones can also be recognized by the RSEI, which has been applied
in Madrid, Spain; Rome, Italy; Lyon, France; Hamburg, Germany; Ciechanow, Poland;
and Budapest, Hungary [29]. Most of the RSEI-related studies focus on the ecological
assessment in small areas of cities and districts. However, less attention has been paid to
the spatio-temporal heterogeneity of ecological quality for large-scale areas. For small areas,
the maximum–minimum normalization was used for normalization before the RSEI was
available. However, the performance of the maximum–minimum normalization may not
be satisfactory if widespread noises for large-scale regions are not considered. Large-scale
regions, such as greater bay areas, have often experienced rapid growth and are looking
for ways to implement high-quality development that coordinates economic development
with environmental safeguards [30]. In addition, most RSEI-related studies reveal the
evolutionary process of regional ecological quality, while the quantitative analysis of poten-
tial reasons was less explored [31,32]. In contrast, evaluating land use and cover change
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(LUCC) is the most intuitive way to measure how humans alter natural environments,
quantifying its impacts on regional ecological quality. Such studies benefit future urban
development.

This study used Hangzhou Greater Bay Area (HGBA), an important urban agglomera-
tion in the Yangtze River Delta, China, as the study area, (i) to reveal the spatio-temporal
heterogeneity during the ecological quality evolution over the past 25 years using an RSEI
with a percentile de-noising normalization; and (ii) to explore the quantitative relationship
between regional ecological quality and land use types and conversions. The percentile
de-noising normalization method we propose can reduce the impact of widespread noise
and pave the way for large-scale application of an RSEI-based ecological assessment,
and the findings are expected to provide useful guidance for high-quality socioeconomic
development for the HGBA, thus being a value to local authorities and policy makers.

2. Materials
2.1. Study Area

Hangzhou Greater Bay Area (HGBA, 118◦21′–123◦25′E, 28◦51′ –31◦53′N) is one of
the three major bay areas in China. The HGBA is located on the east coast of China and
consists of 6 prefecture-level cities—Jiaxing, Hangzhou, Shaoxing, Ningbo, Zhoushan in
Zhejiang Province and Shanghai Municipality (Figure 1). The HGBA has a subtropical
monsoon climate, with annual precipitation of 1709.0 mm and an average temperature of
17.8 ◦C [33,34].
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Figure 1. Location and terrain of Hangzhou Greater Bay Area (HGBA).

Profiting from a series of growth policies (e.g., the Belt and Road Initiative, the Yangtze
delta economic plan), socioeconomic development in HGBA has boomed in recent years.
During 1990–2019, the GDP for the HGBA increased from CNY 131 thousand billion to
CNY 7786 thousand billion, and the proportion of tertiary industry gradually increased
and surpassed the secondary industry [35,36]. However, the environmental problems (e.g.,
deforestation, air and water pollution, biodiversity loss) for the HGBA have become in-
creasingly prominent [37], which, in turn, restricts sustainable socioeconomic development.
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2.2. Datasets

In our study, two types of data were used—remote sensing data and auxiliary data. The
remote sensing data was Landsat C2L2 products, which were mainly used for generating
the RSEI and classifying land use types. The auxiliary data was GlobeLand30 data, which
was used for interpreting the class information of training and validation samples to assist
with land use classification.

2.2.1. Remote Sensing Data

We used the Landsat Collection 2 Level 2 (C2L2) product, which was downloaded free
of charge from the United States Geological Survey (USGS, https://earthexplorer.usgs.gov/
(accessed on 1 August 2022)). This product provides the surface reflectance for each
optical band after the pre-procession of geometric correction, radiometric calibration, and
atmospheric correction [38]. Unlike the product from previous versions, this product
provides a surface temperature band, which is deduced by the combinations of thermal
infrared bands, brightness temperature, atmospheric profiles, and emissivity data with the
assistance of multi-source remote sensing data [39].

A total of 20 Landsat C2L2 products with low cloud cover percent were collected
(Table 1). These products come from five periods (1995, 2000, 2007, 2015, and 2020) and four
swaths (118/038, 118/039, 118/040, and 119/039). To avoid the influence from vegetation
phenology, only the products acquired during late spring to early autumn (e.g., May to
September) were selected. However, because of frequent cloudy weather, it is not an easy
task to collect enough high-quality products for a specific period in the large coastal areas.
Therefore, for 1995 and 2007, we selected a product individually from the neighboring year
for ensuring the image quality and consistency in vegetation phenology.

Table 1. Details for Landsat C2L2 products used in our study.

Satellite/
Sensor

Path/
Row

Acquisition
Date

Cloud
Cover

Satellite/
Sensor

Path/
Row

Acquisition
Date

Cloud
Cover

Landsat-5 TM 118/38 1995-05-08 0.0% Landsat-5 TM 118/40 2007-07-28 1.0%
Landsat-5 TM 118/39 1995-08-12 0.0% Landsat-5 TM 119/39 2008-05-02 * 1.0%
Landsat-5 TM 118/40 1995-05-08 4.0% Landsat-8 OLI 118/38 2015-08-03 0.0%
Landsat-5 TM 119/39 1994-05-12 * 0.0% Landsat-8 OLI 118/39 2015-08-03 0.3%

Landsat-7 ETM+ 118/38 2000-09-18 0.0% Landsat-8 OLI 118/40 2015-08-03 0.7%
Landsat-7 ETM+ 118/39 2000-09-18 0.0% Landsat-8 OLI 119/39 2015-05-22 9.3%
Landsat-7 ETM+ 118/40 2000-09-18 0.0% Landsat-8 OLI 118/38 2020-08-16 0.0%

Landsat-5 TM 119/39 2000-09-17 0.0% Landsat-8 OLI 118/39 2020-08-16 0.3%
Landsat-5 TM 118/38 2007-07-28 0.0% Landsat-8 OLI 118/40 2020-08-16 12.2% **
Landsat-5 TM 118/39 2007-07-28 0.0% Landsat-8 OLI 119/39 2020-05-19 4.2%

* Because of the large area in our study, to ensure the image quality and consistency in vegetation phenology,
we selected the Landsat products from neighboring years. ** Although the cloud cover seems high, most of the
cloud-covered parts are not included in our study.

2.2.2. Auxiliary Data

The Globeland30 data (http://globeland30.org/ (accessed on 1 August 2022)) provides
global land use and cover data with a spatial resolution of 30 m [40]. This data includes
10 land use and cover types, namely, farmland, forest, grassland, bushland, wetland, water,
tundra, build-up, bare land, glacier, and permanent snow. The overall accuracy of this data
was reported as 85.8% with the Kappa coefficient of 0.82. In our study, the Globeland30
data from 2000, 2010, and 2020 were used for land use and cover classification and accuracy
assessment. By overlapping the Globeland30 data and the HGBA area, we found that
there was almost no bare land, tundra, glacier, or permanent snow. The grassland and
bushland were also rare and commonly appeared surrounding forest areas. Therefore, after
integrating grassland and bushland into forest, we determined the final land use types for
the HGBA as farmland, forest, wetland, water, and build-up.

https://earthexplorer.usgs.gov/
http://globeland30.org/
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The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Dig-
ital Elevation Model (ASTER GDEM) was downloaded free of charge from the USGS
website (https://earthexplorer.usgs.gov/ (accessed on 1 August 2022)). These data were
created from the entire ASTER level 1A archive of scenes acquired between 1 March 2000
and 30 November 2013, with a spatial resolution of 1 arc second. The agreement on both
temporal and spatial resolution with the Globeland30 make the ASTER GDEM suitable to
delineate the topography of the HGBA after the spatial resampling to 30 m.

3. Methods
3.1. RSEI Construction

The assumption of the RSEI is the PSR framework [41,42], which links pressures on
the environment caused by human activities and environmental state (condition) changes.
Based on the PSR framework, the indicators used for constructing the RSEI were selected
as follows. (1) Pressure is a general awareness that the LUCC has significant effects on the
ecological patterns within their boundaries and beyond [43]. The most notable pressure is
the LUCC from vacant land to built-up land. Thus, an indicator of Dryness representing
the intensity of building and soil bareness needs to be employed. (2) State is the Green-
ness, which is one of the most successful of many attempts to simply and quickly identify
vegetated areas to describe the status quo of the environment [44,45]. (3) Response incor-
porates Wetness and Heat, usually applied to indicate local climate changes in response to
environmental changes and concerns (i.e., humidity and temperature) [46,47].

Therefore, we first constructed remote-sensing-based indices to represent the above
four indicators (Greenness, Wetness, Dryness, and Heat). Then, a percentile de-noising and
normalization method was used to unify the dimension of each indicator after the removal
of outliers. Afterwards, the four indicators were used for the PCA transformation and
for obtaining the RSEI. The value of the RSEI ranges from 0 to 1, where 0 represents poor
ecological conditions and 1 represents good ecological conditions [16]. For common use,
it can be divided into 5 grades linearly with an interval of 0.2, namely Poor (0–0.2), Fair
(0.2–0.4), Moderate (0.4–0.6), Good (0.6–0.8), and Excellent (0.8–1.0), to further qualitatively
describe the ecological condition [27].

3.1.1. Index Calculation

The formula and description for each index are presented in Table 2, specifically:

Table 2. Formula and description for each remote-sensing index.

Index Formula Description

NDVI ρNIR−ρRed
ρNIR+ρRed

ρNIR and ρRed respectively denote the surface
reflectance from NIR band and red band in the Landsat
product [48].

WET

Landsat TM: 0.0315ρBlue + 0.2021ρGreem + 0.3102ρRed
+0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 ρBlue, ρGreem, ρRed, ρNIR, ρSWIR1, and

ρSWIR2 respectively denote the surface reflectance from
blue band, green band, red band, NIR band, SWIR1
band and SWIR2 band in the Landsat product [49–51].

Landsat ETM+: 0.2626ρBlue + 0.2141ρGreem + 0.0926ρRed
+0.0656ρNIR − 0.7629ρSWIR1 − 0.5388ρSWIR2

Landsat OLI: 0.1511ρBlue + 0.1973ρGreem + 0.3283ρRed
+0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2

NDBSI

NDBSI = SI+IBI
2

SI = (ρSWIR1+ρRed )−(ρNIR+ρBlue)
(ρSWIR1+ρRed )+(ρNIR+ρBlue)

IBI =
2ρSWIR1

ρSWIR1+ρNIR
−
(

ρNIR
ρNIR+ρRed

+
ρGreen

ρGreen+ρSWIR1

)
2ρSWIR1

ρSWIR1+ρNIR
+
(

ρNIR
ρNIR+ρRed

+
ρGreen

ρGreen+ρSWIR1

)

ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1 respectively denote
the surface reflectance from the blue band, green band,
red band, NIR band, and SWIR1 band in the Landsat
product [52].

LST λρ + α− 273.15

A linear conversion is used to stretch the data to real
surface temperature [38]. ρ is the temporal band in the
Landsat product; λ and a are 0.00341802 and
149, respectively.

https://earthexplorer.usgs.gov/
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The Normalized Difference Vegetation Index (NDVI), as one of the common indices to
reflect vegetation status, can accurately describe the coverage and growth of the surface
vegetation. Therefore, NDVI was used to represent Greenness in our study. Wetness is
the ecological indicator that measures the surface water condition, or moisture in soil
and vegetation. The WET component from the Tasseled Cap Transform (TCT) based on
original Landsat images was used to represent Wetness, since it has been proven to have
strong implications for land surface moisture. Artificial impervious surfaces and natural
bare soils are the two sources for surface dryness. Therefore, Dryness was measured by
the Normalized Difference Build-up and Soil Index (NDBSI), a combination of the Index-
Based Built-up Index (IBI) and the Soil Index (SI). Land Surface Temperature (LST) is a
useful index for reflecting Heat given it is closely related to the growth and distribution
of vegetation and the evaporation of surface water. In our study, the surface temperature
band from the Landsat C2L2 product was directly used to represent LST after a simple
conversion according to the Landsat user manual.

Given the RSEI is mainly used in terrestrial environments but less suitable for large-
scale water areas, the Modification of Normalized Difference Water Index (MNDWI) [53]
was employed to mask out water surfaces (e.g., rivers, lakes, seawater). All the indices
were calculated using the Band Math tool of the ENVI 5.3 software.

3.1.2. Percentile De-Noising and Normalization

Given the ranges for the original four indices were commonly variant, the weights
would be biased if the PCA transformation was directly implemented. Simultaneously,
for large areas, such as the HGBA, the noises incurred by poor image quality, tiny clouds/
shadows, or omitted water bodies, occurred in the original indices with high possibility.
Therefore, before the implementation of the PCA transformation, noise removal and index
normalization should be considered.

Commonly, the maximum and minimum values are used for normalization (i.e.,
maximum–minimum normalization). However, the noises with extremely high or low
values limited the validated data in a very narrow range with the most remaining range un-
used (Figure 2(a1–b2)), which heavily affected the performance of the maximum–minimum
normalization. Under this condition, we proposed a percentile de-noising normalization
method using the cutoff of α. For a specific index, the values from all the pixels falling in
the HGBA were ranked ascendingly, and the values exceeding the range between α% (the
lower boundary) and (100-α)% (the upper boundary) percentiles were regarded as noise.
The noise below the lower boundary was assigned to the lower boundary value, and the
noise over the upper boundary was assigned to the upper boundary. The α was set as 0.5
for almost all periods except 2015 when a certain number of tiny clouds existed. The cooler
temperatures in the cloud-covered areas lead to more noise in the LST (Figure 2(c1–d2)).
Therefore, we slightly adjusted the α to 1.5 in 2015 for the consistency of the percentile
values from adjacent periods. For example, if the α was set 0.5, the lower boundary in 2015
would be 3.9 ◦C, significantly lower than 24.4 ◦C in 2007 and 23.0 ◦C in 2020. When the α

was set tp 1.5, the lower boundary in 2015 increased 20.6 ◦C, which was comparable with
that in 2007 and 2020.
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Figure 2. Performance comparison between the maximum–minimum normalization and percentile
de-noising normalization: (a1,b1) original NDVI from two typical regions; (a2,b2) normalized NDVI
using the maximum and minimum values; (a3,b3) normalized NDVI after percentile (0.5) de-noising;
(c1,d1) original LST from two typical regions; (c2,d2) normalized LST using the maximum and
minimum values; (c3,d3) normalized LST after percentile (1.5) de-noising.

After modifying the noises, we used the lower and upper boundary values (also the
maximum and minimum values) from all the periods (1995, 2000, 2007, 2015, and 2020) for
index normalization (Equation (1)). The data range for each index after the normalization
was uniform between [0, 1], paving the way for the PCA transformation. More importantly,
the land use with different ecological conditions was clearly discriminated (Figure 2(a3,d3)),
in sharp contrast with that from maximum–minimum normalization.

NI(i) =
I(i)− ILB(i)

IUB(i)− ILB(i)
(1)

where NI(i) is the normalized index i (NDVI, Wet, NDBSI, LST) after noise removal;
I(i) is the original index i; and ILB(i) and IUB(i) are the lower and upper boundary for
the original index i and IUB(i) which were determined by all the periods. The whole
process of the de-noising and normalization was implemented using the Numpy package
in Python 3.6.

3.1.3. PCA Transformation and Analysis

The four indices after the normalization were used for the PCA transformation. The
PCA is a multi-dimensional data compression technique that can remove the correlation
among the original indices [54]. Moreover, the weights were calculated automatically
based on the contributions from each index, avoiding the uncertainty from manual assign-
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ment [18]. The first principal component was deemed as the initial RSEI (RSEI0), which can
be calculated using Equation (2).

RSEI0 = PCA1(NI(NDVI), NI(WET), NI(NDBSI), NI(LST)) (2)

where PCA1 represents the first principal component from the PCA transformation, and
NI(NDVI), NI(WET), NI(NDBSI), and NI(LST) denote the remote sensing indices after the
normalization. The percentage de-noising (0.5%) was also implemented on the RSEI0 to
avoid the influence from potential noises. To facilitate the comparison and grading, the
RSEI0 was further normalized to [0, 1] and generated the final one (RSEI) using Equation (3).

RSEI =
RSEI0 − RSEI0 min

RSEI0 max − RSEI0 min
(3)

where RSEI0 min and RSEI0 max denote the minimum and maximum value calculated from
all the periods from the RSEI0 after de-noising, for ensuring the temporal comparability.
We conducted the PCA transformation in the ENVI 5.3 software using the tool named
Forward PCA rotation New Statics and Rotate.

As shown in Figure 3, the loadings were uniformly greater than 0 for the indicators
of Greenness and Wetness, indicating that the Greenness and Wetness played a positive
role in the RSEI generation, and among the four indicators, the loading for the Greenness
always ranked first for each period, highlighting the utmost importance of vegetation in
an ecological environment. These results are in high agreement with our common sense.
The percentage eigenvalue of the PCA1 to the RSEI exceeded 80% for 2000 and 2020 and
was never less than 70% for the rest of periods. That means the PCA1 has integrated
the most information from the four indices, and its derived RSEI is likely reliable for
comprehensively representing the ecological environment.
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3.2. Land Use Classification and Assessment

We used the tool of Create Random Points of the ArcGIS 10.3 software for generating
training and validating samples for the land use classification (Figure 4). The number of
random points varied from 3000 to 5000 for each scene of the Landsat products based on
the coverage in the HGBA and the complexity for land use types. The Globeland30 data
was used for determining the land use type. Specifically, when the study period coincided
with the acquisition period of the Globeland30 data (e.g., 2000, 2020), the land use type
for the random point was directly interpretated from the Globeland30 data; otherwise, the
land use type was first interpreted from the Globeland30 data with the closest time to the
study period, then modified if the land use change was further detected by interpreting
the corresponding Landsat product. In our study, half of the random points (50%) were
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selected for training the classifier, the performance of which was validated by the rest of
the random points (50%).
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Figure 4. Distribution of the random points for training and validating the land use classification
of 2020. The dots represent the training points, and the crosses represent the validation points; the
Globeland30 data of 2020 is presented as the background.

The Support Vector Machine (SVM) algorithm was selected as the classifier. Based
on statistical learning theory, the SVM presents the unique advantages in solving small
samples, recognizing non-linear and high-dimensional patterns [55]. This algorithm distin-
guishes the classes with a decision surface that takes full advantage of the margin between
the classes. The surface is termed as optimal hyperplane, and the points of data closest
to the hyperplane are named as support vectors. The SVM has been widely applied in
classification mapping of land use because of its high accuracy [56,57]. Therefore, the SVM
algorithm with the radial basis kernel function was used for land use classification, and
this process was completed with the help of ENVI 5.3 software.

The confusion matrix [58] was adopted to evaluate the performance of land use
classifications. The overall accuracies of land use classifications in 1995, 2000, 2007, 2015,
and 2020 were 82.5%, 83.4%, 85.7%, 83.1%, and 78.2%, with an average of 82.6%, indicating
that the land use maps we classified can fairly reflect the real situation of land surface in
the HGBA. Table 3 presents the details on accuracy assessment from the best (2007) and
worst (2020) classification performance. The classification maps were used for evaluating
the variations in ecological conditions among land use and their conversions.
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Table 3. Accuracy assessments for the land use classifications of the HGBA in 2007 and 2020 (the
values in the brackets come from 2007, otherwise the values come from 2020).

Build-Up Farmland Forest Water Wetland User’s
Accuracy (%)

Build-up 518 (965) 206 (38) 26 (188) 20 (21) 7 (4) 66.7 (79.4)
Farmland 87 (19) 1133 (1655) 75 (251) 32 (3) 0 (2) 85.4 (85.8)

Forest 13 (249) 78 (210) 1546 (981) 8 (23) 0 (18) 94.0 (66.2)
Water 7 (13) 26 (15) 5 (40) 284 (289) 0 (2) 88.2 (80.5)

Wetland 0 (7) 1 (0) 1 (1) 0 (1) 87 (83) 97.7 (90.2)
Producer’s
accuracy (%) 82.9 (77.0) 78.5 (86.3) 93.5 (67.1) 82.6 (85.8) 92.6 (76.1) 66.7 (79.4)

Overall accuracy = 85.7% (78.2%), Kappa coefficient = 0.762 (0.690)

3.3. Exploratory Spatial Data Analysis

Exploratory spatial data analysis is a technique to detect spatial distribution patterns
or spatial dependence at different scales [59], mainly including the analyses of global and
local spatial autocorrelations.

The global spatial autocorrelation measures the degree and significance of the spatial
correlation among variables within the whole area [60], and the Global Moran’s I is a
common statistic for this autocorrelation (Equations (4) and (6)). Although facilitating to
determine any prominent spatial distribution pattern, the global spatial autocorrelation can
hardly tell which objects are similar (or different) to their neighborhood. To overcome this
difficulty, the local spatial autocorrelation is proposed to identify specific spatial correlation
patterns (High–High, Low–Low, High–Low, and Low–High) as well as the locations [61].
This autocorrelation is usually indicated by Local Moran’s I (Equations (5) and (6)).

I =
∑n

i=1 ∑n
j 6=1 wij(xi− x)(xj− x)

S2
(

∑i ∑j wij
) (4)

Ii =
(xi− x)∑n

j=1 wij(xi− x)

S2 (5)

S2 =
1
n ∑n

i=1(xi− x)2 (6)

where I is the Global Moran’s I, Ii is the Local Moran’s I, n is the number of grid units,
xi
(

xj
)

is the value of the variable at i(j) grid cells, wij is the normalized spatial weight
matrix, and S2 is the standard variance to measure how much the values at neighborhood
locations different from the mean.We selected a K-nearest neighbor model as the spatial
weight matrix in the GeoDa software. Both Global Moran’s I and Local Moran’s I were
calculated at 53 county-level cities in the HGBA, on the basis of the RSEI change during
1995–2020.

The exploratory spatial data analysis highlighted the hot spots for the changes in
ecological quality, where the topography would be further focused. Specifically, the topog-
raphy was divided into plain and mountainous areas with the GDEM and land use data.
The areas with the elevation lower than 200 m and mainly covered by build-up, farmland,
and wetland were delimited as the plains, while the areas with the elevation higher than
200 m and predominantly covered by forests were delimited as the mountains. Afterwards,
the area of the topography-related hot spots of ecological quality changes were accurately
calculated by means of spatial overlay. For example, when referring to the hot spots with
ecological quality improvements related in the mountains, we overlapped the mountainous
areas with the increased RSEI areas in the High–High clusters.
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4. Results
4.1. Spatio-Temporal Heterogeneity in Ecological Quality

The average RSEI in the HGBA during 1995–2020 demonstrated that the overall
ecological quality degraded after an initial improvement (Figure 5a). Specifically, during
1995–2000, the ecological quality improved as the average RSEI increased from 0.633 to
0.670. During 2000–2020, the ecological quality degraded, a rapid decline during 2000–2015
in particular, as the average RSEI value decreased from 0.670 to 0.619. During 2015–2020,
the ecological quality changed a little with a slight decrease of 0.003 in the average RSEI. In
general, the average RSEI in the HGBA was relatively high (0.638) with small fluctuations
(<0.1), indicating a good ecological condition. Although the overall ecological quality in
the HGBA changed a little numerically, the trend of spatial divergence became increasingly
obvious (Figure 6(a1–a5)). This was evidenced by the areas of the poor and excellent grades,
which increased 414 km2 (30.1%) and 3813 km2 (51.7%), respectively (Figure 6b). Moreover,
the standard deviation drastically increasing from 0.015 in 1995 to 0.074 in 2020 (Figure 5a)
also demonstrated the spatial divergence.
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changes for each prefecture-level city.

The average RSEI in the prefecture-level city of the HGBA demonstrated that the dis-
tinctly different processes for ecological quality changes are mainly related to the locations
of the cities (Figure 5b). The trend of ecological quality changes for each prefecture-level city
during 1995–2020 can be divided into three categories. (1) Shanghai and Jiaxing are located
in the northern part of the HGBA, and their ecological quality degraded significantly. In
the past 25 years, the average RSEI decreased 0.087 for Shanghai and 0.140 for Jiaxing
(Figure 5b). At the end of 2020, the RSEI for these two cities was lower than 0.6, meaning
a moderate ecological condition. Spatially, a gradually radial degradation pattern for the
ecological quality from the central urban areas to the neighboring areas can be clearly
observed (Figure 6(a1–a5)). (2) Hangzhou is located in the southwest of the HGBA, and
the ecological quality of the city improved in spite of some fluctuations. The average RSEI
increased from 0.629 to 0.679, demonstrating an increasingly good ecological condition
(Figure 5b). The overall rise in the RSEI for the most southwest areas of Hangzhou is the
main reason for this improvement (Figure 6(a1–a5)). (3) Shaoxing, Ningbo, and Zhoushan
are located in the south of the HGBA. The ecological quality for these cities first improved
then degraded, which was similar to that for the HGBA. In the past 25 years, the change of
average RSEI was not very large—it increased from 0.623 to 0.670 for Shaoxing, decreased
from 0.657 to 0.615 for Ningbo, and slightly decreased from 0.615 to 0.612 for Zhoushan
(Figure 5b) and always maintained a good ecological condition. Spatially, there was an
opposite trend that the ecological quality radially degraded in the north while uniformly
improved in the south for these cites (Figure 6(a1–a5)).



Remote Sens. 2022, 14, 5613 12 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

Spatially, there was an opposite trend that the ecological quality radially degraded in the 
north while uniformly improved in the south for these cites (Figure 6a1–a5). 

 
Figure 6. Spatial distribution of RSEI in the HGBA during 1995–2020: (a1–a5) spatial distri-
bution of the RSEI in 1995, 2000, 2007, 2015, and 2020, respectively; (b) area statistics for the grading 
RSEI (Poor: 0–0.2, Fair: 0.2–0.4, Moderate: 0.4–0.6, Good: 0.6–0.8, and Excellent: 0.8–1.0). 

4.2. Hot Spots of Ecological Quality Change 
By overlapping the RSEI from 1995 and 2020, we explored the hot spots for the RSEI 

changes in the HGBA (Figure 7a). In the past 25 years, the area for improved ecological 
quality reached 20,496.7 km2 (57.5%), with an average RSEI increase of 0.141, and the area 
for degraded ecological quality was 15,164.4 km2 (42.5%) with an average RSEI decrease 
of 0.195. There was an obvious spatial aggregation for the areas with both improved and 
degraded ecological quality. The areas with degraded ecological quality surrounded the 
coasts of the HGBA, while the areas with improved ecological quality were mostly dis-
tributed in the south or west regions far away from the coasts (Figure 7a). 
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of the RSEI in 1995, 2000, 2007, 2015, and 2020, respectively; (b) area statistics for the grading RSEI
(Poor: 0–0.2, Fair: 0.2–0.4, Moderate: 0.4–0.6, Good: 0.6–0.8, and Excellent: 0.8–1.0).

4.2. Hot Spots of Ecological Quality Change

By overlapping the RSEI from 1995 and 2020, we explored the hot spots for the RSEI
changes in the HGBA (Figure 7a). In the past 25 years, the area for improved ecological
quality reached 20,496.7 km2 (57.5%), with an average RSEI increase of 0.141, and the area
for degraded ecological quality was 15,164.4 km2 (42.5%) with an average RSEI decrease
of 0.195. There was an obvious spatial aggregation for the areas with both improved
and degraded ecological quality. The areas with degraded ecological quality surrounded
the coasts of the HGBA, while the areas with improved ecological quality were mostly
distributed in the south or west regions far away from the coasts (Figure 7a).
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Figure 7. Hotspot areas for the changes in ecological quality from 1995 to 2020: (a) RSEI changes from
1995 to 2020, 1–3 and 4–6 are typical regions with increased and decreased RSEI; (b) different spatial
correlations (High–High, Low–Low, and Low–High) reflected by local Moran’s I; (c1–c6), (d1–d6),
(e1–e6), and (f1–f6) are enlarged sub-figures corresponding to the 6 typical regions in (a) to present
RSEI changes, spatial correlations, land use types in 1995, and land use types in 2020.

On the basis of the Global Moran’s I, the scatter points were mainly distributed in the
first and third quadrants, indicating positive spatial correlations in the HGBA. Moreover,
the Global Moran’s I for each period was greater than 0.654, indicating a high degree of
spatial correlation. The Local Moran’s I based on 53 counties demonstrated that most cluster
patterns were High–High and Low–Low relations, with few Low–High relations (Figure 7b).
Specifically, the High–High relations appeared in parts of Hangzhou (Figure 7b4), central
Shanghai (Figure 7b5), and Chongming and Changxing Island (Figure 7b6). Most of the
Low–Low relations were widespread in Jiaxing (Figure 7b1,b2), with a few scattered in the
north of Shanghai and central Ningbo. For the Low–High relations t were located in the
north of Shanghai, intermediated between two High–High relations—central Shanghai and
Chongming Island.
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The formation of such spatial patterns was likely related to the land use change during
1995–2020. The rapid urbanization process led to the significant degradation in ecologi-
cal quality for 3397.6 km2 of the plain areas surrounding central cities (especially for the
suburbs of Jiaxing, Shanghai, and Ningbo), forming the Low–Low clusters. The decreases
in the RSEI for the Jiaxing downtown (Figure 7(a1–f1)) and the districts and counties
(Tongxiang, Xiuzhou, Jiashan, Jinshan, Pinghu, and Haiyan) (Figure 7(a2–f2)) can reach
0.161, which was evidence of the above process. The natural wetlands disappeared through
tidal flat reclamation was also the reason for ecological quality degradation. There were
540 km2 natural wetlands replaced by artificial wetlands in the south coasts of Hangzhou
Bay, resulting in a decreased RSEI of 0.254 (Figure 7(a3–f3)). In contrast, the most improve-
ments in ecological quality came from mountainous areas of Hangzhou (Yuhang, Gongshu,
Xihu, Jianggan Binjiang, and Fuyang), with an area of 2478.9 km2. A typical example was
the Lin’an District of Hangzhou where the RSEI near-evenly increased 0.119 and formed
High–High clusters (Figure 7(a4–f4)). Some central urban areas from prefecture-level cities
contributed to the improvement in ecological quality. For Huangpu, Xuhui, and Changning
Districts in Shanghai, the gradual configuration of green infrastructures after establishment
of built-up areas increased the RSEI of 0.136 (Figure 7(a5–f5)). Moreover, the regeneration
of coastal wetlands was another reason for the improvement. Over the last 25 years, the
coastal wetland rapidly extended seawards for east coasts of Chongming Island under
sufficient sediment from the Yangtze River. As a result, over 290 km2 coastal wetlands,
which are mainly located on the east coasts of Shanghai and Chongming Island, regrew
with an increase of 0.121 in the RSEI (Figure 7(a6–f6)).

4.3. Response of Ecological Quality to Land Use

We quantified the relationship between ecological quality and land use from the
perspective of different land use types and their conversions. During the past 25 years,
69.3% of the HGBA has not experienced land use change (Figure 8a). Among them,
forest (14,345.2 km2), farmland (9725.7 km2), and built-up (1785.9 km2) were the three
predominant land use types, the area of which accounted for more than 90.0% of the total.
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Dominated by the natural environment, forests commonly ranked in the Excellent or
Good grade of ecological quality (Figure 9a). Except for a small decrease during 2007–2015,
the average RSEI for forests increased from 0.72 in 1995 to 0.81 in 2020 with an increment of
14%, indicating a continuous improved ecological quality. Farmland and built-up areas,
as two human-dominated ecosystems, presented divergent trends for ecological quality.
The ecological quality of farmland mostly included the three grades of Fair, Moderate,
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and Good (Figure 9b). Despite an initial increase from 0.62 to 0.71 during 1995–2000, the
average RSEI substantially decreased to 0.59 in 2020, indicating an overall degradation
in ecological quality. On the contrary, the ecological quality for the built-up areas was
improved, with the most prominent period during 2000–2007. The average RSEI increased
from 0.22 in 1995 to 0.29 in 2020, with a huge increment more than 30% (Figure 9c). Note
that the overall ecological quality for the human-dominated ecosystem still degraded due
to the overwhelming proportion of farmland. As a result, the gap in ecological quality
between nature- and human-dominated environments became enlarged, as reflected by the
average RSEI increasing from 0.14 to 0.34.
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Simultaneously, the area for land use change in the HGBA in the past 25 years also
reached 12,875.9 km2, among which, the conversion between farmland and build-up
(48.0%) and the conversion between forest and farmland (28.1%) were the two typical
modes (Figure 8b). The ecological quality changes for the conversion between cropland
and built-up areas fluctuated, especially for the period of 2000–2007 when the range for
the RSEI changes reached 0.332 (Figure 9d). In spite of the fluctuations, the ecological
quality degradation for the conversion from farmland to built-up areas continued to slow,
as the average of the RSEI changes decreased from 0.207 to 0.066. That means the boundary
effect between farmland and build-up was weakening, and the ecological cost for the
conversion within human-dominant ecosystems became lower, due to the improvement for
built-up areas and the degradation for farmland (Figure 9b,c). In contrast, the ecological
quality degradation for the conversion from forest to farmland enlarged significantly, with
relatively small fluctuations (Figure 9e). The average of the RSEI changes increased from
0.050 to 0.091, with the maximum of 0.131 during the period of 2007–2015. This mainly
resulted from the ecological improvement for forest and the degradation for farmland
(Figure 9a,b), which pre-warned that the further development of forest resources should
be more cautious because the ecological cost for the conversion from forest to a human-
dominant environment, farmland in particular, has been becoming higher.

5. Discussion
5.1. Potential Reasons for Ecological Quality Change

As a core part of the Yangtze River Delta, the HGBA experienced rapid urbanization
during 1995–2020. Based on our classification maps, the built-up areas increased more
than three times from 2555.13 km2 to 8346.95 km2 in the past 25 years. Under such rapid
urbanization, it is interesting to find that the overall ecological quality for the HGBA
still maintained a high level (RSEI ≈ 0.62, a good grade), in spite of slight deterioration
(Figure 5a).

The ecological quality for forest improved continuously as the average RSEI increased
from 0.72 to 0.81 during 25 years, which was an important factor for ecological quality
maintenance of the HGBA (Figure 8a). This is likely related to global warming and carbon
dioxide (CO2) concentration. With the development of industrialization and urbanization,
regional carbon emission and its derived greenhouse effect gradually increase. Previ-
ous studies have reported that the fertilization effect of CO2 plays an important role in
large-scale “greening” of forests in China, especially for southeastern China [62]. This
phenomenon emerges owing to the fact that the increase of CO2 concentration will promote
the growth of plant roots, leaves, and stomata and secrete hormones, thus increasing vege-
tation biomass [63]. Therefore, the ecological quality for the southern and western HGBA
where forests were widespread improved globally in the past 25 years (Figure 7(a4–e4)).

Moreover, the ecological quality for the central urban areas of each prefecture-level city
also observed improved, Shanghai in particular (the RSEI increased 0.136) (Figure 6(a5–e5)
and Figure 8c). With the change of development concepts, urban planning has paid more
attention to building a favorable ecological environment for not only new towns but also
old towns through renovation [64]. As an important manner, the industrial structure for
central urban areas has been optimizing to gradually change the function from traditional
industry to modern service [65]. Recently, the ecological conservation and restoration
measurement such as urban parks and green spaces was another effective way to improve
the ecological quality for central urban areas [66–68].

However, the ecological quality for farmland presents an obvious degraded trend,
reflected by the RSEI value decreasing from 0.71 in 2000 to 0.59 in 2020 (Figure 7(a2–e2)
and Figure 9b), which is related to the non-agriculture and non-food phenomenon during
land use change [69]. Our classification maps revealed the sharp shrinkage of farmland
during 1995–2020. Urban expansion occupying parts of the high-quality farmland was the
main reason for this degradation. Moreover, most of the new reclaimed farmland comes
from forests and wetlands, easily leading to problems of land degradation caused by wind



Remote Sens. 2022, 14, 5613 17 of 21

erosion and secondary salinization [70]. Moreover, ill usage and poor management for
farmland was also the reason for deteriorating ecological quality [71].

Notably, compared to the rapid decrease in the RSEI during 2000–2015, the decrease in
the RSEI obviously slowed in the following 5 years with a slight decrease of 0.003 in the
average RSEI (Figure 5a). This may be closely related to a series of policies. In 2016, the
Chinese government proposed the 13th Five-Year Plan (2016–2020) as a national policy. In
this policy, the objectives for ecological conservation and the related countermeasures were
established [72]. The local policies were subsequently proposed by Zhejiang Province and
Shanghai Municipality such as the plan for institutional reform for promoting ecological
progress in 2017, and the delimitation of ecological red line in 2018 [73]. It turns out the
trend of ecological degradation can be restrained with the introduction of appropriate
regulatory measures.

5.2. Contributions and Limitations of Our Study

The contribution of our study embodies the two aspects. (1) We proposed a percentile
de-noising normalization method, which is important for large-scale application of the RSEI-
based ecological quality assessment. Previously, the maximum–minimum normalization
was used. However, for large-scale regions, widespread noises with extremely high or low
values limit the validated data in a very narrow range, heavily affecting the normalization
performance. The percentile de-noising normalization method can overcome this problem
and make the RSEI-based ecological quality assessment from multiple periods comparable.
(2) We quantified the relationship between ecological quality and LUCC, which is likely of
value to local authorities and policy makers. Most of the previous studies either revealed
spatio-temporal changes in regional ecological quality or predicted the future changes
in RSEI value using multiple regression models. Quantitative analysis for the reasons of
the changes in ecological quality were rare. The analysis on the LUCC-derived ecological
quality change as we have carried out may be the most direct and useful way for serving
urban future development in spite of its simplicity.

However, we evaluated the ecological quality for the HGBA with a relatively long
interval of ~5-years. The uncertainty from the observations with long time intervals mainly
comes from the two aspects. (1) The trend of regional ecological quality may be not very
accurate, especially for the key points. For example, the ecological quality of the HGBA
was deemed to reach the maximum in 2000 (Figure 5a); however, it is possible to achieve
this maximum for another year during 1996–2006 if the shorter time-interval observations
are used. (2) The relationship between the ecological quality and land use types was not
very favorable because of only five points (periods) (Figure 9a–c). If more periods were
involved, the performance for the relationship is expected to improve, and a more detailed
relationship can be obtained by sub-dividing it into different periods.

Notably, because of frequent cloudy weather, it is not an easy task to collect cloud-free
images for coastal areas. Given the area of the HGBA crosses four Landsat scenes, the
collection of the four images with near acquisition time is rather difficult. As a result,
the time interval of the adjacent observations and the difference of the acquisition time
among images is usually a trade-off. If the time interval become shorter (i.e., the number
of time series increases), the difference of the acquisition time may be larger. In our study,
although we used the 5-year time interval, the difference of the acquisition time in 1995 still
reached nearly 3 months (Table 1), and based on our experiment, some of the indices (e.g.,
NDVI) used for constructing the RSEI are affected by intra-annual phenology, leading the
unignorable difference in the RSEI. For example, the difference between the mean values of
the RSEI acquired in May and August is close to 10%, and this difference becomes more
prominent for the farmland, which is widespread in Jiaxing city. Therefore, after careful
consideration, we selected the time interval of ~5-years with the difference of acquisition
time less than 3 months, for a consistent and comparable RSEI from each scene.

Moreover, there may be some limitations for the RSEI. First is the sensitivity to the
time span of the image acquisition date [74,75]. Since some involved indicators are affected
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by intra-annual phenology, the differences for the RSEI can hardly be ignored when the
images with the time interval are over a season. Second, is the indicative significance. The
RSEI, composed of multiple single indices, can comprehensively measure the general trend
of overall ecological quality, while the index itself may be more ambiguous compared to
other indicators such as area or temperature. Third is the rationale for the selected indices
and weights. This is an inevitable issue for ecological assessment. For example, whether
only NDVI can thoroughly reflect the Greenness of regional ecological quality is worthy
of discussion. Recently, some other remote-sensing-based indices were also proposed to
deal with the different surface conditions. For example, Yang et al. [30] substituted the
NDVI for the Vegetation Cover (VC) and Vegetative Health Index (VHI) and proposed
a Comprehensive Ecological Evaluation Index (CEEI), which may have the advantage
in evaluating the Greenness over the RSEI. Sun et al. [76] proposed a time-series RSEI
(ts-RSEI) that can be used for conducting comparable ecological quality assessment at any
time interval. Moreover, Musse et al. [77] combined remote sensing and census data and
developed an Urban Environmental Quality Index (UEQI), which has been widely used
in evaluating the quality of urban ecosystems. In the future, we will further explore the
suitability of the above indices for ecological assessment in the HGBA.

6. Conclusions

Large-scale ecological monitoring and assessment to reveal the regional heterogeny
is important for implementing effective environmental management. Recently, the RSEI
has been proven reliable for evaluating the ecological environment by means of integrating
multiple remote sensing indices. In this study, we proposed a percentile de-noising method
to overcome the problem of widespread noises from large-scale regions. Simultaneously,
instead of normalizing remote sensing indices by scene, we normalized them by all the
periods involved to ensure the consistent and comparable RSEI for long-term monitoring.
On the basis of this, the dynamics of the ecological quality in the Hangzhou Greater Bay
Area (HGBA) during 1995–2020 were tracked using the modified RSEI.

(1) The ecological quality of the HGBA was good but divergent for each prefecture-
level city. The ecological quality degraded for the northern cities, maintained for the
southern cities, and improved for the southwest city. (2) The areas of mountains, down-
towns, and coastal wetlands were the hot spots for the improvement of ecological quality,
and urbanization and tidal flat reclamation were the main reasons for the degradation of
ecological quality. (3) As the ecological quality improved for forests and urban areas but
degraded for farmland, the ecological gap has become lower among human-dominant
environments but higher between the conversion from nature- to human-dominant en-
vironments. These findings can provide useful guidance for high-quality socioeconomic
development for the HGBA.

For the broader large-scale RSEI-based applications, a shorter time-interval is sug-
gested to identify the general trend and turning points of ecological quality more accurately,
which is expected to be achieved by incorporating more images from different satellites.
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