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Abstract: This study investigated an asbestos mine restoration project using Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyperspectral data. The distribution of an abandoned asbestos mine
(AAM) and treatment area were analyzed before and after the remediation based on the spectral
indices for detecting naturally occurring asbestos (NOA) indicators and encapsulation. The spectral
indices were developed for NOA, host rock, and encapsulation by logistic regression models using
spectral bands extracted from the random forest algorithm. The detection models mostly used VNIR
spectra rather than SWIR and were statistically significant. The overall accuracy of the detection
models was approximately 84%. Notably, the detection accuracy of non-treated and treated areas
was increased to about 96%, excluding the host rock index. The NOA index detected asbestos in the
mine area as well as those in outcrops outside of the mine. It has been confirmed that the NOA index
can be efficiently applied to all cases of asbestos occurrence. The remote sensing data revealed that
the mine area was increased by ~5% by the remediation, and the treatment activity reduced asbestos
exposure by ~32%. Moreover, the integrative visualization between the detection results and 3D
high-resolution images provided an intuitive and realistic understanding of the reclamation project.

Keywords: naturally occurring asbestos (NOA); abandoned asbestos mine; mine remediation; AVIRIS
hyperspectral data; binary logistic regression; image classification; spectroscopy

1. Introduction

Naturally occurring asbestos (NOA) minerals can be classified into serpentine
(chrysotile) and amphibole (actinolite, amosite, anthophyllite, crocidolite, and tremolite)
groups. They are known to cause serious health damage to human body systems, as forms
of lung diseases, such as mesothelioma and pneumoconiosis [1–4]. Due to their harmful
impact, the production/distribution of asbestos minerals is banned in many countries
under strict environmental regulations [5].

The Environmental Protection Agency (EPA) in the United States has been extensively
managing asbestos-related sites with significant attention to abandoned asbestos mines
(AAM). Systematic cleanup activities have been regulated as a national priorities list (NPL).
Due to the significance of NOA in both environment and ecology, a survey of NOA in
both natural and mine environments is a critical procedure to prevent its dispersion. EPA
has introduced mine cleanup strategies according to the type of mining processes, such as
open pit, dredging, and underground to minimize exposure [6]. Major mine remediation
includes chemical, physical, and thermal treatment to limit the mobility of contaminants [6].
Therefore, the assessment of the remediation work in terms of NOA exposure before and
after the remediation is critical.
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Traditionally, field-based conventional surveys have been the main protocol for NOA
surveys, which include sampling, pre-processing, microscopic observation, and mineralog-
ical analysis. Thus, it requires considerable time, cost, and labor, and is hard to understand
the spatial distribution of NOA with a small amount of point-based sampling [7]. A hy-
perspectral imaging system (HIS) in visible-near infrared (VNIR: 400 to 1400 nm) to short
wave infrared (SWIR: 1400 to 2500 nm) regions could be an alternative solution for asbestos
mineral exploration, offering prompt detection of complete spatial coverage. HIS can be
mounted on multi-latitude platforms, including close-range, ground, UAV, airborne, and
spaceborne remote sensing. Notably, the HIS approach could detect spectral characteristics
of NOAs promptly at a low cost [7–10].

Previous studies on hyperspectral remote sensing for asbestos mapping have mainly
focused on investigations of building materials (e.g., asbestos-cement (AC)) in a residential
area. Multispectral infrared visible imaging spectrometer (MIVIS) data have been mainly
used for the detection of AC based on classification algorithms, including spectral angle
mapper (SAM) and spectral feature fitting (SFF) [5,11–13]. They mapped AC roofs, a
mixture of asbestos-containing (e.g., chrysotile and crocidolite) material in cement, with
80~90% accuracy based on ground samples. Additionally, Krówczyńska (2020) and Raczko
(2022) tried to identify AC-roofing using convolutional neural networks (CNNs) based on
high-resolution aerial photos [14,15]. They proved a detection level at an accuracy ranging
from 87 to 93%.

In 2004, a joint survey between the United States Geological Survey (USGS) and the
California Geological Survey (CGS) used the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) for NOA mapping and focused on imaging NOA-bearing rocks within a
vegetated area based on the mineral spectral characteristics [2]. They used the Tetracorder
system, a hyperspectral classification program developed by USGS, to identify the potential
of NOA occurrences, such as serpentine- and tremolite–actinolite-bearing rocks [2,16–18].

Although previous studies have investigated remote sensing for the asbestos survey,
there is no study on the remediation assessment of AAM. The previous studies only
focused on AC roof monitoring. However, the AC studies could not be applicable for
AAM detection due to differences in spectral characteristics. Furthermore, the limited
number of case studies on NOA could not be used for AAM monitoring as they did not
consider the remediation area. Indeed, the critical aspect of AAM remediation is to decide
if the treatment could prevent NOA dispersion efficiently. The remediation commonly
uses an encapsulated-solidification method to cover the AAM exposure, and, thus, it is
important to figure out the distribution of AAM itself rather than the identification of
individual NOA rocks and minerals. The AAM detection requires an understanding of
geological characteristics composing the mine area. In other words, it would be critical to
derive an indicator of NOA materials, including asbestos minerals and host rocks. Then,
an assessment of the persistence of the NOA traces after the treatment must be conducted.

This study investigated an AAM restoration project on the Jefferson Lake mine, CA,
US, using airborne hyperspectral remote sensing data. The distribution of AAM and
solidification area were analyzed before and after the remediation process. The spectral
indices for the detection of the NOA indicator (NOAI hereafter) and the encapsulation
(CAP hereafter) were developed and validated for the AAM remediation monitoring. This
is the first study on the assessment of AAM remediation projects and expects to contribute
as a reference for future remediation projects and maintenance.

2. Materials and Methods
2.1. Study Area

This study investigated an AAM restoration project on Jefferson Lake mine (owned
by Jefferson Lake Asbestos Corporation) to assess mine cleanup activities. The Jefferson
Lake mine, located in Calaveras county, had been one of the largest asbestos producers,
operated from 1962 to 1987 [19] (Figure 1).
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Figure 1. Location (upper) and regional USGS geology map (bottom) of the study area.

2.1.1. Geology

The geology of the study area is composed of four main rock units (Figure 1). Late
Proterozoic to Early Jurassic ultramafic rock, as the host rock of the asbestos mine, is
located at the center of the study area. The host rock is surrounded by Triassic to Late
Jurassic slate–graywacke. The rock units were intruded by Jurassic intrusive rock. The
later Miocene to Pleistocene sandstone–conglomerate covers the bedrocks as unconformity
(Figure 1).

The host rock of the Jefferson Lake mine is a metasomatized ultramafic rock [20].
The host rock is mainly composed of iron–magnesium silicate minerals, such as olivine
and pyroxene, and partially altered amphibolite, dunite, peridotite, and serpentinite [19].
The asbestos minerals in the mine are formed by the serpentinization of the ultramafic
rocks (Figure 1) [19,21]. This process alters the original iron–magnesium minerals to
water-bearing magnesium silicate minerals, such as antigorite, chrysotile, and lizardite, the
serpentine asbestos mineral group [19,22].

2.1.2. Mine Cleanup Activity of the Study Area

After a ban on asbestos materials, the NOA mines in CA have been assessed by
environmental quality investigations [19]. The open pit of Jefferson Lake mine (also called
Copperopolis chrysotile mine and/or Calaveras mine) was used as an asbestos disposal
site for mine reclamation [19,23]. As the high-resolution satellite images in Figure 2 show,
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the piles of tailings were distributed around the open pit location, and Areas I and II are
the main reclamation sites. The reclamation is visible in the 2017 image, while the 2016
image shows the pre-reclamation condition. The major reclamation took place with paved
preparation and finished in 2018 (Figure 2).
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and 2018, showing remediation activities (background satellite images and zoomed-3D views are
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The high-resolution images show that treatment sites 1 and 2 were completely changed
and encapsulated for both areas (Figure 2). Notably, Area II is confirmed as the main tailing
pile site with mining facilities (Figure 2). The EPA’s remediation and cleanup protocol
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for AAM officially follows a solidification method for minimum surface exposure with
encapsulation to prevent dispersion of asbestiform [6]. In Figure 2, the AAM remediation
activities using encapsulated solidification are finished for the study site in 2018.

The overall AAM site measures 2 km in diameter with a major mining open pit located
at the center (Figure 2). The area of AAM was about 1.73 km2 and that of the open pit
was 0.23 km2 in 2016, and the AAM area had been extended to 1.81 km2, a 5% increase,
including the treatment area due to reclamation activities in 2018 (Figure 2).

2.2. AVIRIS Data

AVIRIS is an airborne hyperspectral sensor which has operated since the late 1980s.
This study used a radiometrically corrected AVIRIS Level 2 product to map asbestos
exposure and encapsulation operation. The atmospheric correction was conducted by
the Atmosphere Removal Algorithm (ATREM) developed by Gao et al. (1993) [24,25].
It retrieves a scaled surface reflectance by modeling the absorption due to atmospheric
effects [26]. Furthermore, an empirical line method is used to correct the surface reflectance
using reference targets measured in the field [26]. AVIRIS data used in this study are
summarized in Table 1.

Table 1. AVIRIS data description used in this study.

Product ID
(Acquisition Date)

Spectral
Resolution

Number of
Bands

Wavelength
(nm) GSD (m) Scanning

Type

Nominal
Altitude

(km)

Swath
(km)

f140602t01p00r07
(2 June 2014)

~10 nm 224 366 to 2495
14.5

Whisk broom 20 11f180621t01p00r05
(21 June 2018) 14.4

This study selected AVIRIS data acquired in 2014 and 2018 for comparative analysis
before and after the treatment. Ground sample distance (GSD) was unified at 14.4 m by
image resampling, and geometric calibration, UTM projection, and clipping for the open
pit area were applied to the images to make a consistent-spatial comparison.

2.3. Multi-Range Spectral Feature Fitting (MRSFF)

In the study area, the asbestos occurrences originated from the serpentinization of
dunite–peridotite (mainly composed of olivine and pyroxene). Serpentinization could
form lizardite, chrysotile, and antigorite as secondary minerals [22,27]. To analyze possible
mineral candidates and spectral characteristics representing the AAM area, reference
spectra were collected from USGS spectral library 7. The collected reference spectra were
grouped to develop a host rock indicator (HRI hereafter) and an NOA indicator (NOAI
hereafter), where HRI is comprised of olivine (forsterite–fayalite series) and pyroxene
(augite) and NOAI represents lizardite, chrysotile, antigorite, and serpentine [28]. The
reference numbers of the spectra are summarized in Appendix A. The reference spectra
were averaged and resampled to the AVIRIS bandpass and transformed into continuum-
removed (CR) reflectance to enhance absorption features. The bad bands from 1260 to
1560 nm and 1740 to 1956 nm were excluded for spectral analysis and model development.

The HRI and NOAI mineral spectra were used for end-member extraction from AVRIS
data by multi-range spectral feature fitting (MRSFF). The SFF is commonly used to detect
image pixels closest to reference spectra based on spectral similarity (a least-square fitting
model). MRSFF is an enhanced SFF method appropriate for the detection of a subtle
spectral feature with better accuracy [29]. It uses the weighted least-squares method for the
multi-wavelength ranges where weighting is given based on a minimum error (RMSE) [29].

The NOAI spectrum collected from the USGS spectral library showed distinct strong
absorptions at about 2100, 2300, and 2400 nm (Figure 3). The absorption features in SWIR
regions are manifested by Al-, Fe-, and Mg-OH chemical bonds associated with alteration
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minerals (Figure 3) [30–33]. On the other hand, HRI relatively showed a flattened spectral
pattern in SWIR, but a broad absorption by ferric/ferrous components (Fe2+ and Fe3+) in
the VNIR is observed (Figure 3). The distinctive differences between NOAI and HRI explain
that the asbestos-forming materials can be spectrally differentiated in a mixture with host
rock compositions in the AAM area. Based on these spectral differences, the weighted-
multi ranges for MRSFF were considered to extract end-member pixels. In Figure 3, the
wavelength ranges marked in blue and orange color blocks indicate the major spectral
features’ regions for differentiating NOAI and HRI, as well as the multi ranges for MRSFF.
The multi ranges are 753 to 879, 908 to 1263, and 2247 to 2436 nm for HRI and 2067 to 2197
and 2237 to 2426 nm for NOAI (Figure 3). They overlap each other at ~2300 nm but do
not overlap in the VNIR ranges. This infers that both VNIR and SWIR regions should be
included in separating NOAI and HRI.
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Figure 3. Averaged continuum removed reflectance distributions of reference spectra collected from
USGS spectral library. Dashed and solid lines indicate HRI and NOAI. Blue and orange color blocks
are multi ranges of MRSFF to extract HRI and NOAI classes, respectively. The ranges also coincided
with the major absorptions by ferric/ferrous, Al-, Fe-, and Mg-OH chemical bonds.

MRSFF results produce RMSE and scale images. The scale factor indicates an abun-
dance of target spectral features where greater scale values represent stronger absorptions.
In other words, the low RMSE and high scale factors indicate the closest matching of the
target material’s spectral signature. We extracted end-member pixels for HRI and NOAI by
selecting those at the top 10% scale factor values and lower 10% RMSE values. Moreover,
the remediation areas defined as CAP class were extracted from visual inspection of the
high-resolution images. Then, the surface features, except for HRI, NOAI, and CAP, such as
bare soil, vegetation, road, and stream, were delineated as the other class (Others hereafter).
As a result, a total of 403, 218, 676, and 8680 pixels were extracted from 2018 AVRIS data
representing the NOAI, HRI, CAP, and Others classes, respectively.

2.4. Band Selection and Model Development

To develop the spectral indices for NOAI, HRI, and CAP, we selected responsive
spectral bands using a random forest (RF hereafter) algorithm. The RF classification
algorithm is an ensemble of classification trees where a majority vote from each tree assigns
the class to each case [9,34,35]. It is based on bagging and bootstrapping for generating



Remote Sens. 2022, 14, 5572 7 of 18

trees by repeating the randomized formation of variable sets [9,36]. Notably, the RF yields
important variables for the classification indicated by the Gini and out-of-bag (OOB) error
value. The lower errors indicate the more important variable for classifying with the best
split [35,37]. Based on the RF algorithm report, we selected the top 30 spectral bands with
the lowest OOB errors for developing spectral indices with the BLR model [9].

Based on the spectral bands sensitive to class differentiation, the spectral indices
were derived from BLR which calculates the probability of an event based on a binary
operator [38]. The probability is defined as:

Probclass =
e(C+β1×1+β2x2+β3x3+···+βnxn)

1 + e(C+β1x1+β2x2+β3x3+···+βnxn)
(1)

where Probclass is the probability of the target class occurrence, C indicates the constant
value of the equation, βn is the coefficient of the predictor variables, and xn is the wave-
length band selected from the regression. The probability is exponentially calculated by
ranging from 1 to 0. In this study, the binary logic for class occurrence is determined by a
probability higher than 0.5 [9].

The suitability of BLR models was assessed by the Hosmer–Lemeshow test, Wald
statistics, and R2 values of Cox–Snell (CS) and Nagelkerke (N). The Hosmer–Lemeshow
test is a goodness of fit (prediction) test based on an evaluation of the p-value. This test
divides the samples into deciles and assesses the statistical significance of the model by the
probability of matching between observed and predicted values. The R2 of Cox and Snell
(2018) and Nagelkerke (1991) can be expressed as (2) and (3), respectively [39–41]:

R2
CS = 1 −

(
L1

L0

)2/n

(2)

R2
N =

R2
CS

1 − L0
2/n

(3)

where n is the sample size, L0 and L1 represent the likelihoods of the fitted and the null
model (intercept only), and CS and N indicate Cox–Snell and Nagelkerke. The ratio
calculation closing to 1 means a high explanatory power of the model. We selected the best
logistic equation with the highest R2 and prediction accuracy [9,42].

The logistic regression models were developed based on 70% of pixels for each class
(282, 152, and 473 pixels for NOAI, HRI, and CAP). The remaining 30% of the pixels (121,
66, and 203 pixels for NOAI, HRI, and CAP) were used for validation. Separately from the
validation-set, a test-set for cross-validation of the models was constructed by extracting
50% of the class pixels (121, 66, and 338 pixels for NOAI, HRI, and CAP). The accuracy of
the models was assessed by the confusion matrix of both the validation and test dataset.
The image processing and model development were conducted by R 3.5.3, ArcGIS Pro,
ENVI 5.6.2, IDL 8.5, and SPSS 26.

3. Results and Discussion
3.1. Spectral Characteristics of AAM and Remediation Area

The extracted end-member image pixels for HRI, NOAI, and CAP classes are compared
in Figure 4a. In comparison with HRI and NOAI in Figure 3, the absorptions in ~450 to
470 nm have been not detected and small absorptions are shown as higher band depth in
the absorption. The difference might be originated from the effects of the data precision
and various mineral assemblages in the natural environment.
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collected from 2018 AVIRIS data. (a) presents the extracted end-members of HRI, NOAI, and CAP
classes. (b) showed Others class, including vegetation, bare soil, road, and stream. Blue and orange
color blocks indicate the major absorption ranges of HRI and NOAI, respectively. These block ranges
have been used as the weighted-multi ranges in MRSFF.

As defined previously, the NOAI and HRI classes comprise AAM. NOAI and HRI
share similar absorption locations in the SWIR region. In the VNIR region, although
none of them have strong absorption features, the curves have different shapes. Similar
spectral characteristics in SWIR can be explained by occurrence patterns in real cases, where
NOA and host rock compositions occur as a mixture. On the other hand, the distinctive
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VNIR spectral characteristics of HRI indicate a more abundant host rock composition than
the NOAI effect. This means that the spectrum of HRI indicates predominant host rock
composition but a co-existed small amount of NOA containing Al-, Fe-, and Mg-OH can
spectrally affect the SWIR region because these chemical bonds are infrared-active. Indeed,
Jeong et al. (2016) have discussed that the spectral features of multiple minerals can coexist
in a single spectrum, and the detection of minerals with a weaker spectral characteristic
than infrared-active minerals (e.g., alteration and asbestos minerals) should integrate VNIR
characteristics as supplementary information [30]. It implies that both VNIR and SWIR are
useful to separate NOAI and HRI. The CAP class also has a strong absorption at ~2300 nm
and shows a similar absorption pattern to the NOAI in the SWIR region (Figure 4a). Again,
in the VNIR region, the CAP class showed a different spectral trend in ~600 to 1200 and
~1600 to 1700 nm (Figure 4a). These spectral differences between the NOAI and CAP classes
would enhance remediation monitoring. Moreover, compared to the NOAI, HRI, and CAP
classes, although the Others class, including vegetation, stream, road, and bare soil, has
common absorption positions and shapes at ~1200 and ~2300 nm, they showed a different
pattern over whole spectral regions (Figure 4b). This gives a prospect that the Others class
can be spectrally isolated from NOAI, HRI, and CAP classes.

3.2. Binary Logistic Regression Models
3.2.1. Classification Models

The RF algorithm reported variables’ Gini values (Figure 5). The top 30 bands with the
highest Gini value reduction were selected, which are mainly distributed over the VNIR
region, except ~1600 to 1700 nm from the SWIR region (Figure 6). This result confirms
the conclusion from the visual spectral analysis in Section 3.1 that the VNIR bands are
useful for AAM remediation monitoring. In general, VNIR bands provide better spectral
and spatial resolutions because of their high N/S ratio and strong energy flux in a natural
environment. This finding will facilitate building sensors for AAM reclamation monitoring
at multiple platforms, such as UAV, aerial, and space-borne. It is especially important for
projects using satellite systems because of the far distance and atmospheric degradation.
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Figure 5. Prediction error rates (OOB) of input classes (y-axis on the left) and importance of variables
(30 bands with B# (AVIRIS band number), y-axis on the right). On the left, the x-axis indicates the
number of trees (ntrees).

The parameter-ntrees are selected at 100 because the error rates became non-incremental
when ntrees > 100 (Figure 5). The error rates are 0.07, 0.26, 0.03, and 0.00 for the NOAI,
HRI, CAP, and Others, respectively (Figure 5). Overall, the HRI had the lowest accuracy,
while other classes are more separable.
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The step-wise selection of the logistic regression variables for each of the classes, NOAI,
HRI, and CAP, determined the best models for each, which used 9, 7, and 4 spectral variables
picked from the 30 candidates with statistical suitability (p-value < 0.05) (Tables 2–4). Both
NOAI and HRI models employed both VNIR and SWIR variables, whereas the CAP model
only used VNIR variables (Tables 2–4).

Table 2. NOAI logistic model parameters derived from BLR and Wald test.

Band NO. Wavelength (nm) β S.E. Wald Df p-Value

B5 405 373.559 58.167 41.244 1 0.000
B10 453 −716.856 187.971 14.544 1 0.000
B12 473 −1230.725 235.065 27.412 1 0.000
B16 511 1691.958 171.184 97.691 1 0.000
B19 541 −184.665 61.111 9.131 1 0.003
B134 1622 561.510 152.744 13.514 1 0.000
B138 1662 −668.925 150.974 19.631 1 0.000
B139 1671 −572.095 170.551 11.252 1 0.001
B143 1711 665.147 99.788 44.430 1 0.000

Constant - 4.547 1.036 19.247 1 0.000
β = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square values; Df = degree of freedom;
p-value = statistical probability level (<0.05).

Table 3. HRI logistic model parameters derived from BLR and Wald test.

Band NO. Wavelength (nm) β S.E. Wald Df p-Value

B5 405 −134.266 29.586 20.595 1 0.000
B19 541 100.338 23.719 17.896 1 0.000
B81 1120 316.375 60.251 27.573 1 0.000
B96 1262 −525.518 63.409 68.686 1 0.000
B138 1661 −647.859 76.692 71.362 1 0.000
B145 1731 437.208 130.221 11.272 1 0.001
B147 1751 409.582 138.745 8.715 1 0.003

Constant - −3.432 0.571 36.156 1 0.000
β = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square values; Df = degree of freedom;
p-value = statistical probability level (<0.05).
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Table 4. CAP logistic model parameters derived from BLR and Wald test.

Band NO. Wavelength (nm) β S.E. Wald Df p-Value

B6 414 −899.369 204.914 19.263 1 0.000
B8 434 1284.501 267.707 23.022 1 0.000

B13 482 855.106 200.755 18.143 1 0.000
B19 541 −1088.831 132.396 67.635 1 0.000

Constant - −17.949 1.468 149.396 1 0.000
β = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square values; Df = degree of freedom;
p-value = statistical probability level (<0.05).

Table 5 shows the goodness of fit of the models. The NOAI and CAP showed statistical
significance in the power of explanatory (R2) and probability levels (p-value) (the higher
both values are indicates well statistical determination [9,43]), but the HRI model has
relatively lower R2 in CS.

Table 5. The model summary and evaluation result.

Class
Pseudo-R2 Hosmer and Lemeshow Test

Cox and Snell (CS) Nagelkerke (N) χ2 Df p-Value

NOAI 0.235 0.819 1.709 8 0.989
HRI 0.124 0.656 3.690 8 0.884
CAP 0.370 0.947 0.742 8 0.999

The overall accuracy of the three detection models was 84.10% for validation data and
84.41% for calibration data with a kappa coefficient of 0.74 for both cases (Table 6). However,
the HRI model showed a low producer’s accuracy resulting from the misclassification of
HRI class to NOAI class (Table 6). Although the producer’s accuracy may be unacceptable,
the combination of NOAI and HRI would be still useful for the detection of AAM. Indeed,
most AAMs consist of NOAs and host rocks in terms of geological distribution. The logistic
regression results are similar to the RF results by showing that the HRI class could have
much lower accuracy than the other two classes. This result might be caused by differences
in spectral characteristics for NOAI and HRI minerals in the VNIR region and indicates
that it may provide statistical error to detect host rock composition in the mixture with
NOA. If the HRI is excluded, the detection of NOAI and CAP showed an accuracy higher
than 94% (Table 7). Because the main objective of this study is to monitor the AAM area
and remediated area, the model accuracies are commendable (Table 7).

Table 6. Confusion matrix of the validation and test dataset for NOAI, HRI, and CAP classification
models applied to 2018 AVIRIS.

Dataset Class Producer’s
Accuracy (%)

User’s
Accuracy (%)

Commission
Error (%)

Omission
Error (%)

Validation-set
NOAI 89.26 78.26 21.74 10.74
HRI 31.82 84.00 16.00 68.18
CAP 98.03 94.76 5.24 1.97

Overall accuracy: 84.10% (328/390 pixels)
Kappa coefficient: 0.74

Test-set
NOAI 85.57 80.00 20.00 14.43
HRI 43.12 78.33 21.67 56.88
CAP 97.04 96.19 3.81 2.96

Overall accuracy: 84.41% (547/648 pixels)
Kappa coefficient: 0.74
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Table 7. Confusion matrix of the validation and test dataset for NOAI and CAP classification models
applied to 2018 AVIRIS.

Dataset Class Producer’s
Accuracy (%)

User’s
Accuracy (%)

Commission
Error (%)

Omission
Error (%)

Validation-set
NOAI 91.74 96.52 3.48 8.26
CAP 98.03 100.00 0.00 1.97

Overall accuracy: 95.68% (310/324)
Kappa coefficient: 0.91

Test-set
NOAI 90.55 95.79 4.21 9.45
CAP 97.04 100.00 0.00 2.96

Overall accuracy: 94.62% (510/539 pixels)
Kappa coefficient: 0.89

Using Appendix B, the Others class BLR model and accuracy are presented in
Tables A1 and A2, respectively. The accuracy showed ~99% for the Others class. This
corresponded with the error rate in RF and spectral independence in the VNIR-SWIR area.
It implies that the other materials in the study area would not affect the monitoring of
AAM cleanup activity.

3.2.2. Spatial Assessments of the Remediation

We applied the logistic regression models from the last section to the 2014 and 2018
AVRIS data for detecting the AAM area (Figure 7). NOAI and HRI areas were mainly
detected within the AAM boundary for both 2014 and 2018 data (Figure 7a,b). Notably,
three areas (A, B, and C) outside of the AAM boundary were detected as NOAI and HRI
class distribution (Figure 7a,b). Areas B and C are associated with spillways. Indeed, the
New Melones Lake spillway was reported as one of the NOA occurrence areas in Calaveras
county located in the Sierra Nevada metamorphic belt [19,44]. It confirms that the NOAI
model can detect NOAs not only in the AAM area but also in naturally occurring areas.
The overlay of the classification results on high-resolution images shows that areas A, B,
and C have outcrop exposures as the host rock of the mine (Figure 8a,c,e). In addition, the
models successfully excluded vegetation, pond, bared surface, and shaded areas (Figure 7),
which can also be confirmed by high-resolution images (Figure 8b,d,f).
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AVIRIS data). The red, blue, and yellow classes are assigned to NOAI, CAP, and HRI models,
respectively. Areas I and II in a rectangle are specifically remediated regions. Yellow arrows indicate
non-classified locations by models, which are composed of a pond, vegetation, and shaded-bared
surfaces. A white arrow indicates the New Melones Lake spillway in (c). The classes in A, B, and C
regions represent class distributions outside of the mining area.
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are NOAI, CAP, and HRI classes. (a,c,e) Represent class distributions near outcropped rock sur-
faces. (b,d,f) Present the representative areas that are not class-assigned by the model applications.
Backgrounded satellite images represent June 2013 and May 2018 for (b) and (a,c–f), respectively.

Although the HRI model has low accuracy, it did not affect the derivation of the AAM
area as well as the naturally occurring area. The CAP model detected the remediated
area very effectively (Figures 7 and 9). The model mostly highlighted the remediated area
with minimal error pixels in both 2014 and 2018 data. The integration of detection results
and high-resolution images would provide reader-friendly visualization for 2D and 3D
reporting (Figure 9).
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the overall area of AAM was increased by reclamation activities (Table 8). Notably, the 
distribution of NOAI in the AAM area had been treated by the reclamation activity reduc-
ing the NOAI distribution by 31.56% from 1.27 km2 to 0.87 km2 (Table 8). The reduced area 
is mostly detected as CAP class in 2018, and it is confirmed from the high-resolution im-
ages (Figures 7 and 9). Moreover, this study has proven the ability of hyperspectral imag-
ing for detecting NOAI not only in AAM but also in natural outcrop occurrences. This is 
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tion satellite hyperspectral sensors, including EnMap, HISUI, PRISMA, and EMIT, and 
will contribute to providing efficient ways to make strategies/plans for mine remediation. 

Figure 9. Showing 3D high-resolution satellite image-based (Google Earth) views for the same
locations of pre- (a,c) and post-treatments (c,d). Red, blue, and yellow color classes are the output of
classifications from NOAI, CAP, and HRI BLR models, respectively. The background satellite images
in (a,c) and (b,d) represent June 2013 and May 2018. The remediated areas are marked as Areas I and
II with an arrow and text.

The quantitative analysis of detection results between 2014 and 2018 revealed that
the overall area of AAM was increased by reclamation activities (Table 8). Notably, the
distribution of NOAI in the AAM area had been treated by the reclamation activity reducing
the NOAI distribution by 31.56% from 1.27 km2 to 0.87 km2 (Table 8). The reduced area is
mostly detected as CAP class in 2018, and it is confirmed from the high-resolution images
(Figures 7 and 9). Moreover, this study has proven the ability of hyperspectral imaging for
detecting NOAI not only in AAM but also in natural outcrop occurrences. This is evidence
for airborne or satellite-based hyperspectral NOA detection and reclamation assessment.
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We expect that follow-on research will be conducted based on current-generation satellite
hyperspectral sensors, including EnMap, HISUI, PRISMA, and EMIT, and will contribute
to providing efficient ways to make strategies/plans for mine remediation.

Table 8. Spatial assessments of NOAI, HRI, and CAP BLR model applications in both 2018 and
2014 AVIRIS data. The calculation of the mining area only is made inside Jefferson Lake’s open pit
mining boundary.

Class

2018 2014

Model Classification Mining Area Only Model Classification Mining Area Only

Number of
Pixels

Extent
(km2)

Number of
Pixels

Extent
(km2)

Number of
Pixels

Extent
(km2)

Number of
Pixels

Extent
(km2)

NOAI 4603 0.96 4198 0.87 6395 1.33 6131 1.27
HRI 700 0.15 511 0.11 367 0.08 174 0.04
CAP 2301 0.48 2273 0.47 1 0.00 1 0.00

Total 7604 1.59 6982 1.45 6763 1.41 6306 1.31

4. Conclusions

This study introduced spectral indices for the detection of NOA and reclamation treat-
ment based on AVRIS hyperspectral image processing for an open-pit AAM in California.
The AAM is a past producer of chrysotile, one of the NOAs, and the remediation activities
were confirmed by time series analysis of high-resolution satellite images. To assess the
remediation effects, the NOAI and HRI classes constituting the AAM area were defined
by the MRSFF method. The CAP and Others classes representing the treatment area and
other external objects were constructed by visual inspection of the high-resolution satellite
images. An RF algorithm was used to select the top effective spectral variables for the
detection of NOAI, HRI, and CAP, and the variables were further selected to construct
the best BLR models for each class. The results showed that variables in VNIR are more
useful than SWIR for discrimination between non-treated and treated areas. The overall
detection accuracy for the three classes combined was about 84%. When the classes were
aggregated into a two-class scenario for non-treated and treated, the accuracy increased to
96%. Moreover, we have proven the ability of hyperspectral imaging for detecting NOAI
not only in AAM but also in natural outcrop occurrences.

Our case study site has an AAM area increased by reclamation activities. Notably,
treated by the reclamation activity, NOAI has reduced by about 32%. The reduced area was
mostly detected as CAP class, which was confirmed by the high-resolution images.
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Appendix A

The reference number of the mineral spectra collected from the USGS spectral library:
olivine (NMNH137044.a; NMNH137044.b; GDS70.a; GDS70.b; GDS70.c; GDS70.d; GDS71.a;
GDS72.b; HS285.4B; HS420.3B; KI3005; KI3054; KI3188; KI3189; KI3291; KI3377; KI4143);
pyroxene (HS119.1B; HS119.2B; HS119.3B; HS119.4B); chrysotile (ML99-12A; ML99-12C;
HS323.1B); antigorite (NMNH96917.a; NMNH96917.b; NMNH96917.c; NMNH96917.d;
NMNH96917.e; NMNH96917.f); lizardite (NMNHR4687.a; NMNHR4687.b; NMNHR4687.c;
NMNHR4687.d); serpentine (HS318.2B; HS318.3B; HS318.4B; HS8.2B; HS8.3B; HS8.4B).

Appendix B

Table A1. Others class logistic model parameters derived from BLR and Wald test.

Band NO. Wavelength (nm) β S.E. Wald Df p-Value

B5 405 −314.451 139.724 5.065 1 0.024
B17 521 −257.223 61.485 17.502 1 0.000
B96 1263 112.147 27.289 16.889 1 0.000

Constant - 19.694 4.823 16.671 1 0.000

Model evaluation result: Pseudo-R2 = 0.536 and 0.996 for CS and N; p-value of Hosmer and Lemeshow
test = 1.000.

Table A2. Confusion matrix of the validation and test dataset for the Others class classification model
applied to 2018 AVIRIS.

Dataset Class Producer’s
Accuracy (%)

User’s
Accuracy (%)

Commission
Error (%)

Omission
Error (%)

Validation-set Other 100.00 100.00 0.00 0.00

Overall accuracy: 100.00% (2604/2604 pixels)

Test-set Other 99.98 100.00 0.00 0.02

Overall accuracy: 99.98% (4339/4340 pixels)
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