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Abstract: Forests are the most important part of terrestrial ecosystems. In the context of China’s
industrialization and urbanization, mining activities have caused huge damage to the forest ecology.
In the Ulan Mulun River Basin (Ordos, China), afforestation is standard method for reclamation
of coal mine degraded land. In order to understand, manage and utilize forests, it is necessary
to collect local mining area’s tree information. This paper proposed an improved Faster R-CNN
model to identify individual trees. There were three major improved parts in this model. First, the
model applied supervised multi-policy data augmentation (DA) to address the unmanned aerial
vehicle (UAV) sample label size imbalance phenomenon. Second, we proposed Dense Enhance
Feature Pyramid Network (DE-FPN) to improve the detection accuracy of small sample. Third,
we modified the state-of-the-art Alpha Intersection over Union (Alpha-IoU) loss function. In the
regression stage, this part effectively improved the bounding box accuracy. Compared with the
original model, the improved model had the faster effect and higher accuracy. The result shows that
the data augmentation strategy increased AP by 1.26%, DE-FPN increased AP by 2.82%, and the
improved Alpha-IoU increased AP by 2.60%. Compared with popular target detection algorithms,
our improved Faster R-CNN algorithm had the highest accuracy for tree detection in mining areas.
AP was 89.89%. It also had a good generalization, and it can accurately identify trees in a complex
background. Our algorithm detected correct trees accounted for 91.61%. In the surrounding area of
coal mines, the higher the stand density is, the smaller the remote sensing index value is. Remote
sensing indices included Green Leaf Index (GLI), Red Green Blue Vegetation Index (RGBVI), Visible
Atmospheric Resistance Index (VARI), and Normalized Green Red Difference Index (NGRDI). In the
drone zone, the western area of Bulianta Coal Mine (Area A) had the highest stand density, which
was 203.95 trees ha−1. GLI mean value was 0.09, RGBVI mean value was 0.17, VARI mean value
was 0.04, and NGRDI mean value was 0.04. The southern area of Bulianta Coal Mine (Area D) was
105.09 trees ha−1 of stand density. Four remote sensing indices were all the highest. GLI mean value
was 0.15, RGBVI mean value was 0.43, VARI mean value was 0.12, and NGRDI mean value was 0.09.
This study provided a sustainable development theoretical guidance for the Ulan Mulun River Basin.
It is crucial information for local ecological environment and economic development.

Keywords: unmanned aerial vehicles; tree; object detection; quantification of remote sensing

1. Introduction

Vegetation covers approximately 70% of the Earth’s land surface. It is one of the most
important components of ecosystems [1]. Forest has higher levels of multiple ecosystem
services value than grassland [2]. Trees can alleviate ecological problems caused by liquefied
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petroleum fuels, industrialization, and coal burning. In ecological restoration area, the forest
requires little maintenance. It can create stable nutrient cycles, energy flows, feedback loops,
and biodiversity. In surface ecosystems, forests can increase landscape diversity, enhance
landscape connectivity, and accelerate soil renewal [3]. Forest can also improve the soil
quality [4]. For example, it increases effectively the organic matter content of the topsoil [5].
In the local carbon cycle, forests supplement the sequestration potential of depleted carbon
dioxide [6]. They store carbon in the xylem, root system and mycorrhiza. It also creates
suitable soil condition [7]. Under the influence of coal mining and urbanization [8], forest
ecosystem was affected seriously [9]. The ecological restoration project of the damaged
coal mine areas include soil backfill and afforestation. However, the backfill soil and
the original soil are different; the tree growth situations were different [10]. In order to
reduce the environment pollution, the Ministry of Natural Resources of China issued an
opinion to incorporate mine ecological restoration planning into the national land and space
planning system in 2019 [11]. Vegetation information, such as tree location and canopy
condition [12], is critical in local mine ecological restoration. Traditional tree management
in mining recovery area consists of three steps: dividing the forest into different sections,
selecting different tree species in each random room, and manual investigation of tree
growth [13]. This is a time-consuming and labor-intensive work [14]. The obtained sample
number is small.

The opening of low-altitude airspace has changed traditional research methods. In
recent years, UAV technology has great progress. In the ecological environment application,
UAV remote sensing provides an efficient way to collect large-area surface information [15].
It is also used widely in forestry [16] resource surveys [17]. Zarco-Tejada et al. used fluo-
rescence, temperature, and narrowband indices acquired by an unmanned aerial vehicle
platform to detect water stress [18]. Popular UAV forestry applications are plant identifi-
cation [19], invasive species detection [20], canopy detection [21], and vegetation disease
monitoring [22]. Wallace et al. used a UAV lidar system in forest ecosystem [23]. Feng
et al. performed urban vegetation mapping with UAV remote sensing [24]. Sferlazza
et al. used UAV to study the basal area of virgin forests [25]. UAV multi-temporal images
could analysis riparian forest species classification and health [26]. Qiu et al. proposed a
new individual tree crown delineation method [27]. Steven et al. used machine learning
methods to classify deciduous tree species [28]. These studies provided convenient [29]
monitoring methods for forests [30–32]. It guides the forest ecological policy effectively in
the mining area. How to locate tree accurately in remote sensing image is the key point in
UAV applications.

The development of deep learning (DL) provides a solution to this problem. Target
detection algorithms have been one of the core problems of computer vision [33]. The goal
is to find all regions of interest (ROIs) in the image. Then determine their category. Trees
have different appearances, different shapes, and poses in drone images. These are affected
by lighting condition and material coverage. These problems can make smaller trees more
difficult to detect [34]. There are two main kinds of target detection algorithms. The main
difference between these is whether they can generate a regional proposal network. Ross
Girshick first proposed the two-stage R-CNN [35] in 2014. Subsequent developments
are SPP-Net [36], MR-CNN [37], Fast R-CNN [38], and Faster R-CNN [39]. One-stage
has YOLOv1 [40], YOLOv2 [41], YOLOv4 [42], SSD [43], RetinaNet [44], FCOS [45], etc.
Lin et al. applied the Feature Pyramid Networks (FPN) [46] to solve small objective
detection problems. In 2019, Guo et al. [47] proposed AugFPN to decrease the semantic gap
between features at different stages. Qiao et al. proposed the recursive FPN structure in
2020 [48]. This kind of structure increased global features and perceptual fields. Zhang et al.
proposed [49] the D-FPN structure in 2021, improving the feature extraction capability of
the Faster R-CNN. However, these methods do not take into account the range distribution
of the label in the feature extraction process. The scale imbalance and spatial imbalance
exist in small targets. This will affect the final training results. In addition, the up-sampling
process in FPN of these methods is relatively simple. Important information in the image
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may be lost. The hierarchical feature extraction function of feature network inevitably leads
to the compression of small elements. At higher convolution stage, the model easily blends
small objects with the background. These shortcomings make it difficult to detect young
trees. FPN [46] provides a lateral path connection to fuse multi-scale features. PANet [50]
performed a secondary fusion on FPN, and Bi-FPN [51] added cross-scale connectivity
to PANet. However, these structures reduce the presence of low-level features. To solve
these problems, we proposed an improved Faster R-CNN model. This paper makes the
following contributions:

Multi-strategy fusion data augmentation is used to balance bounding boxes;
DE-FPN structure is developed for image feature extraction;
Modified generalized function is used in the regression stage to improve the detec-

tion accuracy.
This paper organized as follows. In Section 2, it shows the study area and the im-

proved Faster R-CNN model. In Section 3, it shows the results of the model experiments.
Sections 4 and 5 are the discussion and conclusion sections, respectively.

2. Data and Method
2.1. Study Area

The Ulan Mulun River Basin locates in the southeast region of Ordos, China (Figure 1).
The river originated from the desert area of Ikezhao League [52]. The Ulan Mulun River’s
length is 132.5 km and drainage area is 6375 square kilometers. The longitude of the basin
ranges from 109.98◦ to 110.28◦E and the latitude ranges from 39.27◦ to 39.42◦N [53]. It
belongs to the north temperate arid continental climate. The annual average temperature
was 6.2 ◦C. The precipitation [54] is mainly concentrated in July, August and September.
The precipitation accounted for about 70% of the annual precipitation. The Ulan Mulun
River Basin is an important energy base in the Ordos [55]. In the middle of the sub-basin is
the world’s largest single-well mine, the Bulianta Coal Mine. The recoverable reserves are
1.224 billion tons, and the coal field area is 106.43 square kilometers [52]. See Figure 1 for
the location.
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2.2. Data

The experimental data was captured by UAV. Flight areas show in Figure 1a–d. The
green box represents the training dataset region, and the gray box represents the validation
dataset region. The four flight areas named as Area A, Area B, Area C, and Area D,
respectively. Area A located in the western region of the Bulianta Coal Mine. Area B was
far from the Bulianta Coal Mine. Area C located in the northwestern region of the coal
mine. Area D located in the southern region of the coal mine. DJI Phantom 4 Multispectral
(P4M) UAV acquired images in August 2021. The weather was cloudless with an excellent
atmospheric window. P4M sensor included 6 × 1/2.9′′ CMOS. One color sensor for RGB
imaging and 5 monochrome sensors for multispectral imaging. Lenses could record solar
irradiance automatically to compensate light. It could replace whiteboard calibration.
This study mainly used a color sensor lens of RGB. UAV images calibrated procedures as
follows: keypoints extraction, keypoints matching, camera model optimization, GPS/GCP
geolocation, 3D texture mesh creation, digital surface model creation, orthomosaic creation,
reflectance map creation, and index map creation. These processes produced four large-
scale composite images. Then we cropped for 576 images by Python [54]. The expert made
labels by LabelImage in PascalVOC format. Label shows in Figure 1c,d. Other parameters
are shown in Table 1.

Table 1. DJI P4M parameters.

Parameters Value

Individual sensors total pixels 2.12 million
Individual sensors effective pixels 2.08 million

FOV 62.7◦

Focal length 5.74 mm
Aperture f/2.2

Average ground sampling distance 5 m
Spatial resolution 0.01 m

Flight time 10:00 A.M.–15:00 P.M.
Flight height 30 m

2.3. Improved Faster R-CNN Framework

The Faster R-CNN achieved end-to-end object detection [56]. The algorithm structure
showed in Figure 2. Main structure included 4 parts, feature extraction module, Region
Proposal Networks (RPN), Region of Interesting Pooling (ROI Pooling), and classification.
The feature extraction module was light green, RPN was dark green, ROI Pooling was light
cyan, and classification was light pink. First, the image was fed into the feature extraction
network. The high-dimensional feature map was extracted through the deep learning
convolutional neural network. Second, abstract data flow into the RPN structure [57]. RPN
computed the approximate object bounding box location. After the feature map through a
3 × 3 convolutional layer and an activation function, there were two 1 × 1 convolutional
paths. One of the paths went through two reshape operations and one softmax judgment.
Another path connected a 1 × 1 boosted dimensional convolution kernel and a simple
two-category judgment. RPN used bounding box regression to correct the anchor location.
In ROI Pooling [58], information filled into subsequent fully connected layers. In the
classification and regression module, the algorithm determined the final object bounding
box through proposal and feature map. The dark pink area was the innovation of our
proposal. The programming language was python3.6, and the deep learning framework
was pytorch1.5.
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2.4. Multi-Strategy Fusion Data Augmentation

The drone image size was 1600 × 1300. In the training dataset, all labels were divided
into 5 classes. This was based on the size of the detection frame. These five categories were
0–100, 101–200, 201–300, 301–400, 401–1000. The statistical results of the labeled dataset of
UAV images showed in Figure 3a. The first four categories ranged from 0 to 400, accounting
for 98.88%. There was an obvious problem of sample feature imbalance. We used data
augmentation based multi-strategy fusion to balance the bounding boxes. In the first step,
we cropped the image and blended the patches [59] to form new sample data. In the
second step, random erasing [60] was performed. We masked image with gray blocks or
Gaussian noise. Noise could reduce overfitting during training and improve generalization
performance. In the third step, we put images into the generative adversarial network
(DAGAN) [61] to generate new samples. In the final step, the expert marked acquired
samples. We ensured that the sample number varied by no more than 10%. These methods
compensated for the irrationality of large data samples. The workflow showed in Figure 3b.
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2.5. DE-FPN Structure

Feature pyramid networks have excellent performance in building hierarchical repre-
sentations. We designed the dense enhance FPN (DE FPN) structure. The DE-FPN structure
was shown in Figure 4a. DE-FPN not concatenated feature maps directly into the FPN
structure. Convolution operations were used to enhance hierarchical features before the
data stream into the FPN. {C2 C3 C4 C5} had {4 3 2 1} convolutional layers, respectively.
These operations balanced the differences between abstract features. Padding and the
stride were 1. We developed multiscale dilated convolution (MDC) in up-sampling in
Figure 4b. MDC dilated the convolution with four different dilation factors. By traversing
all modes of each filter, it formed a convolutional array of fused features. MDC enriched
the sampling pattern in up-sampling. The Dilation Convolution Module (DCM) included
three dilated convolution operations. The dilation rates were 1, 2, and 3, respectively.
The F-layer features fused with the P-layer image features. Global Context Block (GCB)
provided learnable semantic fusion between different layers. We designed the Feature
Pyramid Network to improve detection accuracy by GCB [62]. The convolutional layers
connected the P-layers by DCM. The convolutional layer connected the F-layers by GCB.
Convolution layers connected to other F-layers by MDC. The F-layers performed MDC in
the up-sampling connection. High-level semantic information fused in the F and P layers.
This structure generated global features in each layer via GCB. It established effective
long-range dependencies. It reduced the gap of large semantics. At the same time, the P
information layer had the advantage of multiple receptive fields.
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2.6. Modified Generalized Function

In the Faster R-CNN regression detection stage, IoU loss function was main part.
In this study, we abandoned the conventional narrow IoU loss function, and we used
the generalized function Alpha-IoU [63]. The Alpha-IoU loss function used the Box-Cox
transformation, and the parameter α obtained by the maximum likelihood method. In
the first step, it computed Z(α)

i and introduced the Jacobi determinant. In the second step,
it needs to calculate its residual sum of squares. Third, repeated these steps. We used
the alpha curve to acquire the minimum value. The fourth step calculated β̂(α̂), where P
represented the regularization term. He et al. [63] applied a simplified Lα−IoU = 1− IoUα

formulation in object detection research. Considering the generality of the indicator, we
adopted the original formula. Replaced α1 with α1 +

1
α1

. An inverse function was added
in the exponent term to minimize the minimum closed convexity.

Lα−IoU =
(1− IoUα1+

1
α1 )

α1 +
1
α1

+ Pα2
(
B, Bgt),α1,α2 ≥ 0, (1)

Alpha-IoU improved the bounding box regression accuracy with adaptive reweight-
ing. When α was between (0, 1). It reduced localization accuracy and produced poorly
performing detection frames. α was closely related to the size of the loss function. He
et al. [63] suggested α equal to 3. We tested the value of α on the UAV dataset. The
result showed that the object detection model performed better when α was 2.7. We set
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a multi-stage IoU [64] threshold of (0.5, 0.6, 0.7). The weight of each stage set to (0.75, 1,
0.25) [65].

2.7. Hyperparameters and Backbone

The learning rate was 0.0001, the weight decay coefficient was 0.0005, and the learning
decay rate was 0.1. We used a linear decay function. It became one-tenth of its original
value after a fixed period. We trained the model on a virtual machine with an NVIDIA
Tesla V100 GPU. GRID driver version was 470.57.02, the CUDA version was 11.4 and it had
32 G RAM. The operating system was Ubuntu 18.04, and the framework was Pytorch 1.9.

We tested seven backbone models, VGG11, VGG16, VGG19 [66], ResNet18, ResNet34,
ResNet50 [67] and MobileNetV2 [68]. In VGGNet, four full connection layers were removed
and the parameters of the first two layers frozen. In the ResNet model, we frozen the first
convolutional layer and the first basic block structure. We opened the rest of the network
for forwarding and backward propagation. Two IR layers frozen. Dropout and linear layers
were removed in MobileNet V2. These networks all used transfer learning to initialize the
pre-training parameters. The transfer learning dataset was the ImageNet dataset.

2.8. Aerial Photography Area

In Equation (2), H is the flight height, ƒ is the focal length of the camera lens [69], GSD
is the ground resolution, and a is the pixel size. This formula can be used to calculate the
surface area in an UAV image. If we sum up all the trees in the image, we can acquire
the total number of trees in the flight area. Further, we can estimate the stand density in
four areas.

H = (ƒ × GSD)/a, (2)

2.9. Remote Sensing Indexes

We applied orthorectification correction by Pix4d mapper and computed remote
sensing indexes. It is convenient to achieve vegetation information extraction from UAV
images. G is the green band, R is the red band, and B is the blue band.

The GLI [70] is an alternative index to the NDVI. It shows in Equation (3).

GLI = (G − R + G − R)/(G + R + G + R), (3)

RGBVI [71] is an unsupervised classification method to classify vegetation from other
land covers. It shows in Equation (4).

RGBVI = (G × G − R × B)/(G × G + R + B), (4)

VARI [72] shows in Equation (5)

VARI = (G − R)/(G + R − B), (5)

NGRDI [73] is a normalization index that consisting green band and red band. It
shows in Equation (6)

NGRDI = (G − R)/(G + R), (6)

3. Results
3.1. Modules Effectiveness Evaluation

Ablation experiment results are shown in Table A1. The result showed that three
improvements can improve the target detection accuracy. In multi-strategy image aug-
mentation, ResNet34 showed the most significant increase 2.78% in AP, while VGGNet11
only increased by 0.39%. The best backbone network was ResNet34 with DE FPN strategy,
which increased by 4.28%. However, in ResNet18, AP decreased by 2.13%. In the improved
Alpha-IoU result, ResNet18 performed best, with an AP increase of 4.73%. Among the
dual improvement combinations, the most significant AP improvements are multi-strategy
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image enhancement and DE FPN. It increased by 6.37% in ResNet34. The combination of
DE FPN and Alpha-IoU showed the most significant improvement in ResNet18. It was
5.04%. The most significant AP improvement among the three strategies is ResNet50. It
increased to 89.89%. It showed that among seven backbone networks, ResNet50 was the
best backbone. The tree detection accuracy was the highest, and the detection error was
the smallest.

We compared the training curve and the loss rate curve (The top half of Figure 5). The
detection result graph showed in the upper part of Figure 5. It could be seen that the loss
rate decreases gradually as the number of epochs increased. After 15 epochs, the overall
learning rate stabilized. The ResNet had a lower overall loss rate than the MobileNet V2
and VGGNet. The possible reason was the advantage of the residual structure. The loss
rate of VGGNet11 was the largest among the 7 models. The value was 0.86. ResNet50 had
the lowest loss rate of 0.41. It was 0.45 lower than VGGNet11.
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Figure 5a–g showed the detection result of tree in the UAV RGB image. These areas
were planted woods. Overall, most of the trees were successfully detected. Green boxes
represented the tree detection result. In Figure 5d, MobileNet V2 had the problem of
overlapping detection frames. In Figure 5g, ResNet50 detected two trees at the edge of the
red box, which was not captured by the other models. We concluded that Faster R-CNN
had the best performance when ResNet50 was backbone. This model had the best learning
ability and comprehensive tree detection result.

In the coal mine area, young tree had a shape that closed to low shrubs. Some mature
trees had overlapping crowns. It brought certain difficulties to the target detection model.
In order to test the detection algorithm performance under extreme conditions, we selected
two UAV images for experiment. Figure 6(1-a) was a low tree image, which was very
similar to surface shrubs in appearance. Figure 6(2-a) was an image that canopy overlaid
with trees and shadows. In the scene of low trees, ResNet50 localized all the trees accurately
and did not overlap the detection box. Other methods were less able to detect incomplete
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trees. Such as four small trees in the upper left corner of the image. MobileNet V2 and
ResNet18 misidentified bushes. In Figure 6(2-a), ResNet50 had excellent performance in
tree recognition. The identification result of VGG11, VGG16, MobileNet V2, ResNet18 and
ResNet34 had certain flaws. The detection frame was only located in a partial area of the
tree, and not detected the complete tree. VGG19 exaggerated the tree detection range in
shaded areas.
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ResNet18 ((1-g),(2-g)) ResNet34 ((1-h),(2-h)) ResNet50.

3.2. Module Evaluation

In this part, we used ResNet50 as the backbone network. It was important to further
test model performance with popular method. The result showed in Table 2. RE was the
abbreviation of the Random Erasing [60], and RIC was the abbreviation of Random Image
Cropping [59]. Deep Learning DAGAN was superior to geometric data enhancement.
DAGAN [74] improved AP by 0.82. The combination of deep learning and traditional data
enhancement technique improved detection accuracy. The experimental result also proved
the effectiveness of the multi-strategy data enhancement method. The FPN structure
bridged the gap of insufficient semantic information in the detection process [46]. In the
FPN comparison experiment, we tested several other FPN variants on tree. There were
EnFPN [75], AugFPN [76] and iFPN [77]. It showed that UAV image feature extraction was
the core process, DE-FPN could obtain more valuable semantic information. The DE-FPN
focused more on the tree’s high-dimensional features and enhanced generalization. In
the loss function section, we compared it with mainstream target detection loss functions.
There were DIoU [78], GIoU [79] and CIoU [80]. In the mining tree dataset, GIoU had the
lowest accuracy, and our improved Alpha-IoU contributed 1.78% more. The results showed
in Table 2.
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Table 2. Improved module evaluation.

Method ∆AP

DA

RE 0.16
RIC 0.31

DAGAN 0.82
RE + RIC + DAGAN 1.26

FPN

EnFPN 1.99
AugFPN 2.13

iFPN 2.44
DE-FPN 2.82

IoU Loss

DIoU 1.33
GIoU 0.82
CIoU 2.21

Alpha-IoU 2.60
∆AP means the variation of AP.

3.3. Accuracy Comparison with Other Models

We compared the improved Faster R-CNN with some mainstream target detection
models. The backbone was ResNet50. The experiment focused on the impact of different
algorithmic design structures. The test dataset was all labeled UAV images. The results
showed in Table 3. Overall, as the score threshold increased gradually from 50 to 70, the
algorithms showed a decreasing trend of AP. The model robustness enhanced. As the
feature screening threshold raised, it would increase the identifying difficulty of the ROI
area. The results showed that the improved Faster R-CNN outperformed other models.
It was 8.47% higher than the Mask R-CNN model and 5.23% higher than the anchorless
one-stage detection model CenterNet511. The AP of the improved Faster R-CNN was
6% higher than that of YOLO v5. AP60 was 9.31% higher than that of YOLO v5. In the
transformer, we chosen DETR and ViDT. The improved Faster R-CNN had an increase of
3.83% and 4.22%, respectively.

Table 3. Target detection model comparison.

Model Backbone AP AP50 AP60 AP70

Faster R-CNN ResNet50 89.89 98.93 90.43 60.60
Mask R-CNN [81] ResNet50 81.42 87.76 82.26 59.04

TridentNet [82] ResNet50 79.70 81.25 85.89 50.27
YOLO v3 [83] DarkNet-53 85.18 90.47 89.51 52.02
YOLO v4 [84] CSPDarkNet-53 78.85 82.93 81.84 54.67
YOLO v5 [85] ResNet50 83.89 93.58 84.77 51.29

SSD [86] ResNet50 82.24 90.25 83.54 52.99
FCOS [87] ResNet50 83.71 92.43 85.46 50.55

CenterNet511 [88] Hourglass104 84.66 91.00 87.32 55.02
EFLDet [59] BRNet-ResNet50 86.08 90.38 89.83 58.17
DETR [89] ResNet50 86.06 94.74 86.63 58.73
ViDT [90] ViT 85.67 91.28 88.29 58.39

The AP comparison result showed that the improved Fast R-CNN and EFLDet have the
first and second precision in the 9 algorithms, respectively. In order to test the generalization
performance of the two algorithms, we selected a drone image with a large number of trees.
The results showed in Figure 7. The flying height of the drone was 50 m. It can be found
that there are 7 undetected trees for the two algorithms. Blue box represented undetected
trees. Missing trees accounted for 8.3% of the total. Improved Faster R-CNN detected
correct trees accounted for 91.61% of the total, while EFLDet only accounted for 59.52%. It
showed that the improved Faster R-CNN algorithm has better generalization in detecting
trees in mining areas.
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3.4. Stand Density

To apply the improved algorithm in practice, we also designed a counting system. In
the upper left corner of the UAV image, program marked the statistical result of the detected
tree (Figure 8). After batch processing, improved Faster R-CNN identified and counted
trees in all images. Same tree in adjacent images had been removed. When the flight height
was 30 m, the GSD value of P4M was 1.5873 cm/pixel. A single image field length was
1600 × GSD/100 = 25.3968 m. The field width was 1300 × GSD/100 = 20.6349 m. It could
be calculated that the shooting area was about 524 square meters. Then we calculated stand
density. The results showed in Table 4. Area A had the largest number trees at 1539, and area
C had the fewest trees at 602. The density was the tree number divided by corresponding
experimental area. Area A was 203.95 trees ha−1. Area C was 79.78 trees ha−1. The order
of stand density was A > B > D > C.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 21 
 

 

number of trees. The results showed in Figure 7. The flying height of the drone was 50 m. 
It can be found that there are 7 undetected trees for the two algorithms. Blue box repre-
sented undetected trees. Missing trees accounted for 8.3% of the total. Improved Faster R-
CNN detected correct trees accounted for 91.61% of the total, while EFLDet only ac-
counted for 59.52%. It showed that the improved Faster R-CNN algorithm has better gen-
eralization in detecting trees in mining areas. 

 
Figure 7. (a) UAV image. (b) Improved Faster R-CNN detection result image. (c) EFLDet detection 
result image. Green boxes represent trees detected by the algorithm. The blue boxes represent trees 
that were not detected by either algorithm. Red boxes are detected by one of the algorithms and not 
detected by the other. 

3.4. Stand Density 
To apply the improved algorithm in practice, we also designed a counting system. In 

the upper left corner of the UAV image, program marked the statistical result of the de-
tected tree (Figure 8). After batch processing, improved Faster R-CNN identified and 
counted trees in all images. Same tree in adjacent images had been removed. When the 
flight height was 30 m, the GSD value of P4M was 1.5873 cm/pixel. A single image field 
length was 1600 × GSD/100 = 25.3968 m. The field width was 1300 × GSD/100 = 20.6349 m. 
It could be calculated that the shooting area was about 524 square meters. Then we calcu-
lated stand density. The results showed in Table 4. Area A had the largest number trees 
at 1539, and area C had the fewest trees at 602. The density was the tree number divided 
by corresponding experimental area. Area A was 203.95 trees ha−1. Area C was 79.78 trees 
ha−1. The order of stand density was A > B > D > C. 

 
Figure 8. Application of tree identification and counting system in UAV images. The upper left
corner is the number of trees.



Remote Sens. 2022, 14, 5545 12 of 22

Table 4. Stand Density in UAV images of four region.

A B C D

Number of Tree 1539 971 602 793
Area (ha) 7.546 7.546 7.546 7.546

Stand Density (trees ha−1) 203.95 128.68 79.78 105.09

3.5. Remote Sensing Indices Results

Remote sensing indices could eliminate tree shading and highlight the shape of the
canopy. In Figure 9, the dark blue areas were bare ground. The red and yellow were
vegetation. Remote sensing indices of the trees and grassland had obvious variability. The
tree average remote sensing indices in the bounding box were calculated as the quantitative
remote sensing actual value for a single tree. We took this value into subsequent calculations.
The tree GLI index was distributed between 0.06 and 0.22. Bare ground value was below
the 0.01, and grassland value was between 0.01 and 0.10 generally. In the RGBVI, tree
values were generally between 0.16 and 0.77. It had a wide range of variation. Bare ground
values were below 0.10. Grassland values were between 0.10 and 0.20. The VARI index
provided lower values for the tree, it was between 0.01 and 0.25. Negative values were in
bare ground and grassland. The value of grassland was greater than that of bare land. The
tree’s NGRDI index ranged from 0.02 to 0.19. The numerical characteristics of bare ground
and grassland were similar in the VARI index.
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We calculated remote sensing index for all trees in the imagery. Duplicate trees had
removed in adjacent images. Table 5 showed the statistical results of the four remote
sensing indices. Area A had the smallest GLI mean value at 0.09. Area D had the largest
GLI mean value at 0.15. The mean value of GLI was D, C, B and A in descending order.
Area A had the smallest RGBVI mean value at 0.17. Area D had the largest RGBVI mean
value. The order of RGBVI mean values from large to small was D > C > B > A. Area A had
the smallest VARI mean value. Area D had the largest VARI mean value at 0.12. The order
of the VARI mean values from large to small was D > C > B > A. The NGRDI of the four
regions showed the same trend, it was D > C > B > A.
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Table 5. Remote sensing indexes results of trees in UAV images of four region.

GLI RGBVI VARI NGRDI

A
Min 0.06 0.16 0.02 0.03
Max 0.15 0.22 0.06 0.05

Mean 0.09 0.17 0.04 0.04

B
Min 0.07 0.21 0.01 0.02
Max 0.17 0.49 0.08 0.07

Mean 0.10 0.27 0.05 0.05

C
Min 0.07 0.16 0.01 0.02
Max 0.16 0.51 0.12 0.18

Mean 0.12 0.34 0.07 0.08

D
Min 0.06 0.21 0.02 0.03
Max 0.22 0.77 0.25 0.19

Mean 0.15 0.43 0.12 0.09

4. Discussion

There were few designed network architectures for tree detection [91]. Tree detection
by unmanned aerial vehicle is always a challenging task. This is mainly due to the limited
amount of pixel and spectral information in remote sensing data. In this paper, we added
three improvements to the Faster R-CNN framework. This algorithm could address the
problem of tree detection in mining areas.

4.1. Advantages of an Improvement Strategy

In the data reading phase, general research focused on single data augmentation.
Zhang et al. used transformation modes of left-right flipping, and up-down flipping in
Faster R-CNN. This method could solve the problem of small amount of data [92]. Liang
et al. used GANs to produce mixed images [93]. It is a generally accepted that enormous
dataset result in better deep learning models [94]. We proposed a multi-strategy fusion
data augmentation method to increase sample richness. This method combined geometric
augmentation with an adversarial learning mechanism. We introduced Gaussian noise
and gray blocks to increase model generalization ability. The current convolutional neural
network revolution was the product of large, labeled datasets. The algorithm performance
of visual tasks increased linearly with the training data’s order of magnitude [95]. In the
process of random clipping, we ensured the integrity of the object’s contour. This method
eliminated incomplete objectives. These incomplete objectives may mislead the model
learning process. The overfitting phenomenon occurred when the neural network did not
learn the high frequency features. Zero-mean Gauss Noise had data points at all frequencies,
effectively distorting excessive high-frequency features. This also meant the low-frequency
components were distorted. However, the neural network itself can overcome this problem.
Multi-strategy data augmentation incorporated these advantages. Table 2 demonstrated
the effectiveness of this strategy. AP increased in 0.37–2.77. In the process of detecting
mining area trees, object detection algorithms must overcome viewpoint, lighting, occlusion,
background, foreground, and scale issues. Data augmentation’s purpose was to bake
translation invariance into the dataset. Even if the feature learning was unbalanced, the
model could learn the critical information of the tree.

The FPN structure could deal with the multi-scale change problem [49]. In this paper,
we further developed the DE-FPN structure. This structure used different convolutional
layers to balance the information feature strength at different stages. In Table 2, the AP of
DE-FPN was 0.83% more than that of the original FPN. This result met our expectations.
As the core step of feature extraction, DE-FPN improved the AP the highest value. EnFPN
fused the information of spatial and channel features through a simple dilated convolution.
AugFPN [47] reduced feature map information loss through residual feature augmentation.
MDC tends to join different texture features and contexts while aggregating location
features. This could solve the up-sampling single problem. It also ensured the stability of
multi-level target information transmission. DE-FPN reduced the semantic gap between



Remote Sens. 2022, 14, 5545 14 of 22

different scale features. Dense convolutions also established dependencies at different
levels and strengthened global visual understanding during learning. DE-FPN alleviated
the problem that high-level semantic features would lose top-level semantic information
gradually during the transfer process. It restored multi-dimensional low-resolution images
to high-resolution and established full context dependent. This way could realize the
feature enhancement of tree. At the same time, it improved the foreground and background
recognition ability of the algorithm.

In the Alpha-IoU loss function, we adjusted the calculation formulae and parameter
value. Recent findings suggested that eliminating the feature offsets of inference ROIs
could improve the performance prediction branch [96]. This function avoided driving all
positive examples to learn the highest possible classification score. In the training process,
the location loss gradient of target detector was dominated by outliers. These outliers
were example of poor positioning accuracy [97]. The improved loss function was able
to suppress the outlier gradient to a bounded value. Preventing the gradient exploding
effectively during training [96].

4.2. Advantages of Improved Faster R-CNN

Afforestation was the most effective technique to restore all ecosystem function in
damaged sites [98]. Lou et al. measured loblolly pine tree canopy with UAV imagery
via deep learning [98]. However, the tree growth stages were similar, and the detection
difficulty was low. Wang et al. detected dead trees through a lightweight network but
did not detect mature trees. Its model structure was also relatively simple [99]. The
drone data in this study considered trees of different maturity stages, geographic locations,
and morphologies. It was different from other datasets. Dataset increased the algorithm
detection difficulty. In the mining area, the lush shrubs were similar to the tree canopy in
UAV images, it was difficult to distinguish by relying solely on manual interpretation. As
shown in Figure 7.

The yellow circles were shrubs. It was easily interpreted as trees by human visual
inspection. They had similar texture characteristics to trees, and less color difference.
Some shrubs are misjudged easily in shadow. For example, in Figure 10 middle right
part, the tree brightness was very close to the grass brightness. Since the image of solar
lighting conditions was similar. However, no misidentification occurred. This showed the
superiority of the improved Faster R-CNN algorithm. Detecting bounding boxes required
rich details to learn subtle features automatically. Augmented bottom features used to
locate trees and distinguish foreground from background. Partially occluded trees could
identify if a sufficient set of training samples exists.
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4.3. Comparison with Transformer

The convolutional neural network structure in the Faster R-CNN algorithm had many
excellent characteristics, which were naturally suitable for the CV field. Its translation
invariance introduced an excellent inductive bias into object detection tasks. It enabled
transferability between different levels and resolutions [100]. In ViT, hierarchical informa-
tion mixed with local and global information. In contrast, ResNet adhered strictly to the
global feature extracting process from local feature. After all, the convolutional neural net-
work only paid attention to the local information network structure. In image information
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processing, its computing mechanism made it difficult to capture and store long-distance
dependency information. The long-path dependency mechanism in this study overcame
this problem [101]. The self-attention mechanism defect was that the model would focus
too much on its position when encoding the current position information. The learnable
embedding in BERT or ViT would bias the overall representation of specified embedding
information. In the downstream task, when image resolution increased (that was, when
the image length and image width increased), if the patch size remained unchanged, the
number of patches obtained would increase (Noted new patch number after the resolution
increased was N’). However, during pretraining, the position embedding number was
the same as patch obtained (Noted the patch number was N). The extra N’-N position
embeddings were undefined or meaningless. The MDC proposed refined the extraction
process. Due to the nonlinear function in CNN, there was a complex and usually high-order
interaction between two spatial locations. It was beneficial to improve modeling ability
of the visual model [102]. This could achieve the expected results efficiently by using
a convolution-based framework: Different from the simple design of self-attention, the
convolution-based implementation avoided the quadratic complexity of self-attention. The
design increased the channel width progressively. During spatial interaction execution,
it enabled higher-order interaction with limited complexity. Translation equivariance in-
troduced a beneficial inductive bias to the algorithm’s primary visual ability. CNN used
static convolutional kernel to adjacent aggregate features, the Vision Transformer [103]
applied multi-head self-attention to generate weights to mix spatial tokens dynamically.
However, quadratic complexity hindered the application of Vision Transformers, especially
in downstream tasks. These tasks included segmentation and detection that required higher
resolution feature map. The recent success of visual Transformers depended on the correct
spatial interaction modeling. In this study, we proposed an efficient way to perform spatial
interaction through simple operations. Such as convolutional and fully connected layers.
For high-resolution [104], the self-attention layer was computationally expensive. It was
only suitable for data scenarios with smaller spatial dimensions. Meanwhile, CNN was
effective on both high-performance GPUs and edge devices. In contrast, Transformer’s
special attention mechanism could not obtain acceleration from the hardware level.

4.4. Evaluation of Ecologyical Effects

The important tree detection feature was the crown morphological. However, the
canopy in the UAV image was poorly differentiated from the surrounding features. It
was difficult to distinguish small trees from low shrubs. In contrast with general target
detection tasks, the vegetation remote sensing index was a special growth indicator [105].
Remote sensing was a unique and non-destructive means. It provided a perspective that
we could understand the plant growth situation [106]. The vegetation remote sensing index
could assess the tree’s productivity and physiological properties. It was a spectral indicator
of photosynthesis intensity and plant metabolism intensity. In study area, the greater tree
density had the lower the remote sensing value. Forest density and the remote sensing
index showed an opposite trend. Plant reflectance was mainly related to water content,
pigment level and canopy structure [107]. Healthy vegetation was rich in chlorophyll.
Chlorophyll reflected more green light and absorbed red and blue light. Tree remote
sensing indices were sensitive to pigment composition and pigment absorption reflectance.
The size of the pigment pool varied somewhat during the growing season. It changed
with tree growth condition. The stand density in area D was higher than that in area C,
but the remote sensing index in area D was the highest. This possible reason was that the
tree planting project in the D area was earlier. The tree planted in area D were 2017. The
vegetation root system was developed, the surrounding artificial activities were less, and
the local ecology became stable. The tree planted in area C were 2019. Their diameter at
breast height was smaller than that in area D. The tree canopy area was also smaller in
area C, so the remote sensing index may be also lower. In area A, tree planted last year,
and most of the area was young forest. In the surrounding environment, human activities
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were intense, and industrial dustfall was serious. There also was a certain gap between the
backfill soil texture and the original soil texture. These reasons may lead to the decline of
remote sensing indicators. In temperate forests, tree phenology marked the leaf’s seasonal
growth. It showed great variability across the canopy. It also related the photosynthetic
seasonality, hydrological regulation and nutrient cycling in forest ecosystems [108]. By
calculating remote sensing indices for each tree in the mine area, it is possible to quantify
accurately tree growth situation. The remote index woken other ground types. The tree
spectral response was similar to grass. However, the tree had a dense canopy and absorbed
more lightness. Trees had a higher remote sensing index than grassland [109]. Low vertical
depression could lead to insufficient absorption of sunlight, and the remote sensing indices
value would be lower. The remote sensing index distinguished well between vegetation
and bare ground. Enhanced the tree’s display and eliminated unimportant information.
This method provided remote sensing support and geospatial information data to improve
the mining area ecological quality. It was of great significance to promote the healthy
development of watershed ecological environment. This method provided a reliable
reference for quantitative environmental remote sensing in the future.

5. Conclusions

This paper proposed an improved Faster R-CNN model. The most important findings
of our study were as follows: (1) In the improved Faster R-CNN algorithm, when the
backbone network was ResNet50, the detection accuracy of trees in the mining area is
the highest. AP value was 89.89%. (2) The improved Faster R-CNN algorithm had better
generalization performance. It detected correct trees accounted for 91.61% in the test image.
(3) The improved Faster R-CNN was less affected by other surrounding green vegetation
in the natural environment. (4) In our study area, the stand density showed opposite trend
with remote sensing index. In the western part of Bulianta Coal Mine, the stand density
was the highest at 203.95 trees ha−1. However, the remote sensing index was the lowest.
GLI mean value was 0.09, RGBVI mean value was 0.17, VARI mean value was 0.04, and
NGRDI mean value was 0.04. In the southern part of Bulianta Coal Mine, the stand density
was low, and the remote sensing index was the highest. GLI mean value was 0.15, RGBVI
mean value was 0.43, VARI mean value was 0.12, and NGRDI mean value was 0.09.
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Appendix A

Table A1. AP values of different Backbone and improved methods in Faster R-CNN.

Backbone DA DE-FPN Alpha-IoU AP AP50 AP60 AP70

VGG11

71.54 77.70 74.59 40.87√
71.94 79.31 74.04 41.36√
75.16 84.22 74.94 48.89√
71.63 79.64 73.87 38.66√ √
74.74 84.17 75.17 44.74√ √
72.18 81.18 73.21 41.09√ √
74.25 80.76 77.56 41.45√ √ √
75.85 86.52 75.53 45.13

VGG16

73.27 85.27 72.11 41.88√
75.76 86.84 76.28 40.45√
73.94 83.49 75.02 40.92√
73.98 89.43 70.68 40.84√ √
76.81 90.83 72.11 53.55√ √
74.71 87.79 71.54 48.16√ √
75.75 89.55 74.27 40.30√ √ √
77.65 97.77 70.15 47.27

VGG19

75.07 87.94 70.47 54.88√
76.70 88.41 75.82 45.09√
74.89 90.99 70.80 42.95√
73.89 87.76 70.69 45.07√ √
76.14 94.92 71.04 40.19√ √
77.53 97.86 71.63 40.14√ √
76.40 91.58 71.93 48.78√ √ √
78.29 88.92 77.65 48.96

ResNet18

75.03 85.69 72.99 51.22√
75.40 86.95 72.60 51.93√
72.89 84.85 70.91 44.99√
79.76 94.11 75.56 53.48√ √
75.42 86.43 71.39 58.54√ √
80.07 90.98 77.33 58.24√ √
80.26 92.26 79.90 45.64√ √ √
80.80 90.57 80.23 53.77

ResNet34

71.87 82.19 69.90 48.77√
74.64 89.13 70.87 46.28√
76.15 87.90 72.92 53.82√
75.92 84.82 76.38 47.33√ √
78.23 87.79 79.55 44.29√ √
76.53 86.40 75.22 52.11√ √
73.84 84.44 73.08 45.09√ √ √
79.58 87.83 81.62 46.66

ResNet50

81.93 93.66 81.20 49.61√
83.18 96.18 82.49 46.98√
84.50 93.99 84.34 56.68√
84.53 91.04 86.60 56.68√ √
82.11 91.43 80.93 58.87√ √
83.77 93.21 84.19 53.78√ √
86.70 94.64 87.72 58.78√ √ √
89.89 98.93 90.43 60.60
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Table A1. Cont.

Backbone DA DE-FPN Alpha-IoU AP AP50 AP60 AP70

MobileNet V2

56.37 70.76 52.28 29.58√
56.82 71.18 52.75 30.01√
58.29 72.93 53.41 33.88√
58.74 72.61 53.41 38.44√ √
59.18 72.55 55.11 35.38√ √
58.65 71.72 54.12 37.57√ √
59.85 73.65 55.86 34.39√ √ √
60.78 74.05 56.96 36.26
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