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Abstract: Satellite remote sensing can measure large ocean surface areas, but the infrared-based sea
surface temperature (SST) might not be correctly calculated for the pixels under clouds, resulting in
missing values in satellite images. Early studies for the gap-free raster maps of satellite SST were based
on spatial interpolation using in situ measurements. In this paper, however, an alternative spatial gap-
filling method using regression residual kriging (RRK) for the Geostationary Korea Multi-Purpose
Satellite-2A (GK2A) daily SST was examined for the seas around the Korean Peninsula. Extreme
outliers were first removed from the in situ measurements and the GK2A daily SST images using
multi-step statistical procedures. For the pixels on the in situ measurements after the quality control,
a multiple linear regression (MLR) model was built using the selected meteorological variables such
as daily SST climatology value, specific humidity, and maximum wind speed. The irregular point
residuals from the MLR model were transformed into a residual grid by optimized kriging for the
residual compensation for the MLR estimation of the null pixels. The RRK residual compensation
method improved accuracy considerably compared with the in situ measurements. The gap-filled
18,876 pixels showed the mean bias error (MBE) of −0.001 ◦C, the mean absolute error (MAE) of
0.315 ◦C, the root mean square error (RMSE) of 0.550 ◦C, and the correlation coefficient (CC) of 0.994.
The case studies made sure that the gap-filled SST with RRK had very similar values to the in situ
measurements to those of the MLR-only method. This was more apparent in the typhoon case: our
RRK result was also stable under the influence of typhoons because it can cope with the abrupt
changes in marine meteorology.

Keywords: Geostationary Korea Multi-Purpose Satellite-2A (GK2A); sea surface temperature (SST);
regression residual kriging (RRK); spatial gap-filling

1. Introduction

Sea surface temperature (SST) is a crucial variable for the atmosphere–ocean inter-
action and plays a vital role in exchanging heat, momentum, and moisture between the
atmosphere and the ocean. Because SST data are used in climate modeling, global heat
balance, weather forecasting, and marine ecosystem monitoring [1–3], many efforts have
been made for spatially continuous SST data with higher accuracy [4].

The accuracy of in situ SST observations from ships, drifting buoys, moorings, and
Argo floats is quite reliable, but they are point-based measurements sparsely distributed
in space [4]. On the other hand, satellite remote sensing can measure large ocean surface
areas using infrared sensors [5]. However, the infrared-based SST might not be correctly
calculated for the pixels under clouds, aerosols, and dust, resulting in missing values in
satellite images [6–9]. Although microwave sensors have the advantage of penetrating
through clouds, the coarse spatial resolution over 10 km is not appropriate for regional-
scale studies. Alternatively, spatial gap-filling for the infrared SST products at a spatial
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resolution of 1 or 2 km can be more effective for examining local-scale changes at various
intervals of the day, month, season, and year [5].

Early studies for the gap-free raster maps of satellite SST were based on spatial
interpolation using in situ measurements and National Oceanic and Atmospheric Admin-
istration (NOAA) SST [10]. Various types of kriging could help a faster interpolation for
gap-filling of moderate resolution imaging spectroradiometer (MODIS) SST [11]. Further,
a reconstruction process using empirical orthogonal function (EOF) and the advanced
very high-resolution radiometer (AVHRR) SST was developed due to its feasibility, not
requiring priori knowledge for correlation functions [12–14]. However, these reconstruction
methods had limited accuracy for the sparse data along the coasts due to the mixed pixel
problem and coarse resolution of the satellite data. To overcome this, a hybrid method
combining EOF and kriging was proposed for a more realistic gap-filling of AVHRR and
MODIS SST [15]. This hybrid method can effectively make up the EOF-only method by
coping with sparse data. More recent studies presented an artificial neural network (ANN)
approach [16] based on the non-linear relationships between SST and marine meteorology
variables, which is an initial stage for the spatial gap-filling of SST products.

The residual is the difference between a true and a modeled value and inevitably occurs
in statistical models such as kriging, EOF, and ANN. It is simply calculated as actual minus
predicted value. The mean absolute error (MAE) or root mean square error (RMSE) may
be a proxy measure of the residual, and the previous studies showed the RMSE between
0.680 ◦C and 0.950 ◦C [11–13,15]. The residuals are the shortage of a model against in situ
observations and indicate the uncertainties that should be reduced to improve the reliability
of a model. Regression residual kriging (RRK) is a method to enhance the model accuracy
by the compensation of the residual based on the spatial autocorrelation in the residuals [17].
For the residual compensation, RRK creates a continuous residual surface from the point
residuals remaining after the estimation model. The residual compensation is conducted
by adding a residual surface to an estimated raster, which produces a corrected result and
improved accuracy [18]. Previous studies based on RRK have been carried out for the
spatial gap-filling of the raster data and the spatial interpolation of the point measurements,
such as soil properties and air pollution [17,19–24]. The RRK was used to improve the
estimation of forest stock volume from Landsat 8 and Sentinel-2 images and produced
a more accurate result (RMSE = 49.68 m3 ha−1) than Multiple Linear Regression (MLR)
(RMSE = 57.39 m3 ha−1) [17]. The case of mapping nitrogen dioxide (NO2) concentrations
using RRK [19] showed a normalized RMSE of 0.94%, a relatively lower error than MLR
(0.95%). In a soil moisture gap-filling study [21], the RMSE of RRK was 6.7%, whereas that
of MLR was 7.0%. An experiment for soil reaction (pH) mapping [24] showed that RRK
was more precise than the ordinary kriging (OK) by 1.81%.

Meanwhile, recent advances in satellite remote sensing have enabled multiple geo-
stationary satellites worldwide, covering America, Europe, and Asia. The Geostationary
Korea Multi-Purpose Satellite-2A (GK2A) was launched on 5 December 2018, and has been
providing various meteorological products, including SST, at intervals of 10 min on a 2 km
grid [25]. However, a spatial gap-filling method to create continuous raster data is not
established yet. The objective of this study was to develop a spatial gap-filling framework
for GK2A daily SST using RRK for the seas around the Korean Peninsula. It is the first chal-
lenge for the SST from geostationary satellites that can minimize the uncertainty of the SST
estimate using RRK by residual compensation. For quality control, extreme outliers were
removed from the in situ measurements and the satellite images for SST by using statistical
procedures. Then, a regression model was built for the valid SST pixels using multiple
meteorological variables. The irregular point residuals from the regression model were
converted into a raster surface by optimized kriging for use in the residual compensation.
The regression estimates calculated for the invalid SST pixels were then corrected by the
residual compensation. The accuracy statistics of the proposed gap-filling method by RRK
were presented to show the performance of our approach for the high-quality gap-free
raster map of daily SST.
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2. Study Area

The study area is around the Korean Peninsula between 30.5◦N to 40.5◦N and 122.5◦E
to 132.5◦E. Figure 1a shows a map of East Asia including the study area. Figure 1b
shows the locations of the 137 in situ SST measurements by the Korea Meteorological
Administration (KMA) and the Korea Hydrographic and Oceanographic Agency (KHOA)
used for the reference data. Green points are the locations of 82 KMA stations, and red
points denote the locations of KHOA stations. They are used as reference data for the
validation of GK2A SST gap-filling. Figure 1c shows the locations of nine stations used
for the performance evaluation, particularly for the far seas more than 30 km from the
coastline (Ongjinsocheongcho, Incheon, Seohae 170, Seohae 206, Sinangageocho, Ulsan,
Pohang, Uljin, and Donghae).
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Figure 1. (a) A map of East Asia including Korean Peninsula, where the blue rectangle indicates
the study area (30.5–40.5◦N and 122.5–132.5◦E): (b) 137 stations for in situ SST measurements by
the Korea Meteorological Administration (KMA) and the Korea Hydrographic and Oceanographic
Agency (KHOA) used as reference data for the validation of GK2A SST gap-filling and (c) nine
stations for the performance evaluation, particularly for the far seas outside 30 km from the coastline.

3. Data

Table 1 summarizes the data used in our experiment between 1 January and 31 De-
cember 2020. The SST regression model for spatial gap-filling includes GK2A SST for a
target variable and the local data assimilation and prediction system (LDAPS) data, and
the operational sea surface temperature and ice analysis (OSTIA) climatology value as
explanatory variables. The in situ SST measurements were used for accuracy validation.
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Table 1. Summary of the data used in this study.

Data Use Spatial
Resolution

Temporal
Resolution

Aggregation
Method

GK2A SST Target variable 2 km Daily Daily product itself

LDAPS Explanatory
variables 1.5 km 3 h Daily average of

3-h data

OSTIA SST Explanatory
variables 0.05◦ Daily Mean of 14-year

data for every day

In situ SST Validation
reference Point 1 h Daily average of

1-h data

3.1. GK2A SST

GK2A with an advanced meteorological imager (AMI) shows better performance than
its predecessor, the Communication, Ocean, and Meteorological Satellite (COMS) with
a meteorological imager (MI) [26]. It has 16 spectral bands with a spatial resolution of
approximately 2 km and the temporal resolution of 10 min (Table 2).

Table 2. GK2A channel information including the center of wavelength, bandwidth, and spatial
resolution.

Category Channel No. Center of
Wavelength (µm)

Bandwidth
(µm)

Resolution
(km)

Visible

1 0.47 0.43–0.48 1

2 0.51 0.50–0.52 1

3 0.64 0.63–0.66 0.5

Near Infrared

4 0.86 0.85–0.87 1

5 1.37 1.37–1.38 2

6 1.61 1.60–1.62 2

Water Vapor

7 3.83 3.74–3.96 2

8 6.20 6.06–6.42 2

9 6.90 6.89–7.01 2

Infrared

10 7.30 7.26–7.43 2

11 8.60 8.44–8.76 2

12 9.60 9.54–9.72 2

13 10.40 10.25–10.61 2

14 11.20 11.08–11.32 2

15 12.30 12.15–12.45 2

16 13.30 13.21–13.39 2

The GK2A level 3 daily SST product is provided by National Meteorological Satellite
Center (NMSC) [27] since July 2019. A multi-band SST algorithm was employed to retrieve
SST using the brightness temperature of four thermal infrared bands (8.6, 10.5, 11.2, and
12.3 µm) and several empirical coefficients [28], as expressed in Equation (1):

SST = C1T10.5 + C2(T10.5 − T12.3) + {C3(T10.5 − T8.6) + C4(T10.5 − T11.2)}(secθ − 1) + {C5(T10.5 − T8.6)+
C6(T10.5 − T11.2) + C7(T10.5 − T12.3)}TFG + C8

(1)

where C∗ is the empirical coefficient derived by using in situ measurements; θ is the
viewing zenith angle; TFG is the first guess SST; T8.6, T10.5, T11.2, and T12.3 are the brightness
temperature of each wavelength. This algorithm can be applied to both day and night and
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minimize the possible day–night discontinuities [29]. The daily SST data between 1 January
and 31 December, 2020 was used for our experiment.

3.2. LDAPS Data

LDAPS data were used as explanatory variables of our spatial gap-filling model for the
invalid pixels of the GK2A daily SST product. LDAPS is based on the unified model (UM)
designed by the United Kingdom (UK) Met Office. LDAPS produces a local-scale forecast
and reanalysis around the Korean Peninsula and helps overcome the spatial resolution
and time-scale limitations of the global and regional models. The data is provided eight
times (00, 03, 06, 09, 12, 15, 18, and 21 UTC) per day on a 1.5 km grid for the 70 vertical
levels up to 40 km [30] based on a three-dimensional variational (3DVAR) data assimilation
technique [31] (Figure 2). Table 3 shows the candidates for the explanatory variables
from LDAPS for our SST gap-filling: specific humidity, air temperature, skin temperature,
relative humidity, maximum wind speed, and precipitation. The eight-times data were
aggregated as daily averages to match the GK2A daily SST.
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Figure 2. Summary of the global, regional, and local forecasting models by KMA.

Table 3. Candidate explanatory variables from LDAPS for the spatial gap-filling of GK2A daily SST.

Abbreviation Description Units

SH Specific humidity 1.5 m above ground kg/kg

AT Air temperature 1.5 m above ground K

ST The temperature at the ground or water surface K

RH Relative humidity 1.5 m above ground %

MWS Maximum wind speed (1-h maximum) 0 m above ground m/s

PR 1-h average precipitation at ground or water surface kg/m2/s

3.3. OSTIA SST Climatology Data

The daily value of OSTIA SST was aggregated for 14 years (2007 to 2020). This was
used as an additional explanatory variable to reflect the long-term SST trend for spatial
gap-filling. OSTIA SST is a globally gridded gap-filled 0.05◦ data provided by UK Met
Office since 2007 [32]. We aggregated the daily SST for 14 years to create daily climatology
data for the Korean Peninsula.



Remote Sens. 2022, 14, 5265 6 of 25

3.4. In Situ SST Measurements

We prepared the validation reference for our spatial gap-filling model from the in
situ SST measurements by KMA and KHOA. The hourly data was observed from the
ocean meteorological buoys at a depth of 0.6 m and 0.3 m [33] and the ocean wave buoys
that monitor local wave heights at a depth of about 0.3 m [33,34]. The hourly in situ
measurements provided by KMA and KHOA were aggregated to the daily average to
match GK2A daily SST.

4. Methods
4.1. Overview

Figure 3 shows the proposed spatial gap-filling method consisting of pre-processing,
MLR modeling, RRK modeling, and accuracy validation. The preprocessing for the GK2A
SST images includes coordinate reference system (CRS) transformation, land/sea masking,
and outlier removal. In the MLR modeling step, we selected appropriate explanatory
variables by considering the correlation with GK2A SST and a multicollinearity test. An
MLR model was built using the dataset on the in situ measurement points and then applied
to the null pixels to get the estimates. In the RRK modeling step, the irregular MLR residual
pixels were converted to a continuous surface by optimized kriging. The residual raster
was added to the MLR estimate raster for the residual compensation to produce a gap-free
SST map. Finally, the accuracy validation with the in situ SST was conducted to evaluate
the gap-free raster maps of the GK2A daily SST.

4.2. Quality Control of In Situ Measurements

Measurement errors of buoys are due to various causes, such as strong tides, structural
turbulence, adhesion of marine species, and defects in observation sensors. Outliers gener-
ally refer to the data that exists in a small proportion of the entire dataset and have very
exceptional values compared with the other data. In this study, if the measurement error
of the in situ SST was found by quality control (QC), it was regarded as an outlier to be
removed. We performed QC for the in situ SST using two statistical techniques and proce-
dures. First, the daily OSTIA SST with high accuracy around the Korean Peninsula [35–37]
was compared with the in situ SST. For the entire time series of 366 days at each station,
the standard derivation of the difference between the in situ SST and the OSTIA values
was calculated as (σ(di f f )). If the difference (|in_situ−OSTIA|) between the in situ SST
(in_situ) and the OSTIA values (OSTIA) exceeded the 12σ(di f f ), it was considered an
outlier and removed from the dataset. Next, a spike test recommended by Integrated Ocean
Observing System (IOOS) was performed [38]. The annual standard deviation of the in situ
SST for each station was calculated as (σ(obs1year)). If the difference (

∣∣∣in_situ− neighbors
∣∣∣)

between the in situ SST (in_situ) and the mean of ±7 days’ values (neighbors) exceeds
σ(obs1year), it was considered an outlier. Out of 48,151 observations from 137 stations,
20 cases from 14 stations (0.04%) were removed as outliers (Table 4). Indeed, the outliers
are dependent on the threshold value of the outlier detection algorithm. In this experiment,
we set a somewhat strict threshold value so that relatively few outliers were found. Even
though the number of outliers was not many, they should be detected and removed because
they had seriously inappropriate values compared with neighboring values. Figure 4
shows a time series of the daily SST at the Seocheon and Udo stations as an example of the
outlier detection.
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Figure 3. Flow chart of the spatial gap-filling method proposed in this study.

Table 4. Overview of in situ SST observations. A total of 20 cases from 14 stations were removed as
outliers, and 48,131 observations from 137 stations were finally used.

Organization Data Name Temporal
Resolution

Outlier Removal Finally Used Data

No. of Stations No. of Data No. of Stations No. of Data

KMA
Ocean meteorological buoy 1 h 1 1 21 7486

Ocean wave buoy 1 h 8 9 61 21,381

KHOA

Tidal station 1 h 2 3 30 10,864

Ocean observation buoy 1 h 3 7 23 7762

Ocean research station 1 h 0 0 2 638

Sum - - 14 20 137 48,131
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4.3. Pre-Processing of GK2A SST

The CRS of GK2A SST was converted from Lambert conformal conic (LCC) to World
Geodetic System 1984 (WGS84) for the CRS unification of all data needed for the matchup
database. We distinguished the sea pixel using a land/sea mask created from an electronic
navigation chart (ENC) provided by the KHOA. Outlier detection was also conducted
for the GK2A SST that may be contaminated by cloud or land pixels [39]. We detected
extreme outliers showing very different values from the neighboring pixels [40,41] using
the deviation from spatial autocorrelation trend (DSAT) method [42]. Usually, the similarity
of data values increases as the distance of the locations decreases [43]. Such a spatial
autocorrelation is found in SST, and an extreme deviation from the spatial autocorrelation
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trend can be regarded as an outlier for the satellite SST images. Figure 5 shows the logic
of the DSAT method. A spatial autocorrelation pattern is expressed by a Moran scatter
plot (MSP) that shows the relationship between the z-score of a target pixel and the mean
z-score of the neighboring eight pixels [44]. The DSAT for each pixel can be calculated
as the deviation from the 1:1 line of the MSP. If the DSAT exceeds a given threshold
(kσ(DSAT)), it is regarded as an outlier pixel. The search radius for calculating the mean
z-score of the neighbors was set to 25 × 25 pixels, considering the spatially homogeneous
characteristics of SST. The constant for filtering extreme outliers was set to 12 through many
times iterations.
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4.4. MLR Modeling

MLR is used to model the relationship between the GK2A SST and meteorological
factors. An MLR model having k explanatory variables (x1, x2, · · · , xk) can be expressed
as Equation (2).

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (2)

where y is a target variable, x1, x2, · · · , xk are k explanatory variables that affect the target
variable, β1, β2, · · · , βk are regression coefficients corresponding to each explanatory
variable (x1, x2, · · · , xk), β0 is the intercept and ε is the error term. GK2A SST was set
to the target variable, and the meteorological factors from LDAPS and OSTIA data were
used as explanatory variables such as specific humidity, air temperature, skin temperature,
relative humidity, maximum wind speed, precipitation, and daily SST climatology value.
Figure 6 shows the correlation between all candidate explanatory variables including GK2A
SST of the 27,099 pixels on the in situ measurement points in 2020. Precipitation and relative
humidity were excluded because they had a low correlation with GK2A SST. Temperature
variables had a high correlation with GK2A SST, but air and skin temperature were excluded
because they could not pass the multicollinearity test with the variance inflation factor (VIF)
exceeding 10. Finally, specific humidity, maximum wind speed, and daily SST climatology
value were selected as explanatory variables of the MLR model. Figure 7 shows the scatter
plot of the relationships between GK2A SST and selected explanatory variables.
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Figure 6. Correlation matrix between variables: bivariate scatter plots below the diagonal, histograms
on the diagonal, and the Pearson correlation coefficients above the diagonal. In bivariate scatter plots,
the x-axis refers to the variable located at the top of the matrix, and the y-axis refers to the variable
located to the right of the matrix (GK2A = GK2A SST (◦C), SH = Specific humidity (kg/kg), AT = Air
temperature (◦C), ST = Skin temperature (◦C), RH = Relative humidity (%), MWS = Maximum wind
speed (m/s), PR = Precipitation (kg/m2/s), and OSTIA = OSTIA daily SST climatology value (◦C)).

4.5. Regression Residual Kriging

RRK is an estimation model that combines a regression model and the residual com-
pensation using kriging of the regression residuals [18]. RRK consists of four steps: (1) MLR
modeling, (2) calculation of point residuals, (3) creation of the residual raster using an
optimized kriging, and (4) the residual compensation by adding the residual raster to the
MLR estimation raster [17,22]. RRK can be briefly expressed as

ẑ = ϕ0 +
n

∑
i=1

ϕixi(s) +
m

∑
j=1

λiε(si) (3)

where ϕ0 and ϕi are the estimated values by regression model, xi is an explanatory variable
that explains target variable variation, n is the number of observations, λi is kriging weight,
and ε is the kriged model residual at observation locations [17].

Regarding the third step, the MLR residuals on the irregular points were interpolated
by the optimized kriging based on the variogram optimization using weighted least squares
(WLS) method [45]. This is to find the optimal combination of the variogram parameters
such as the variogram model (spherical, exponential, Gaussian, Matern, and Steins), range,
sill, and nugget through iterative simulations to minimize the difference between an
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experimental and a theoretical variogram [46] (Figure 8). Figure 9 shows the RRK process for
spatial gap-filling with the example of 10 April 2020. (a) and (b) denote SST images before
spatial gap-filling and after MLR modeling. (c) is point residuals for each measurement
station and (d) shows the raster residual surface created by the optimized kriging using
WLS method. (e) is a gap-free SST map produced by the residual compensation.
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Figure 7. Scatter plot of the relationships between GK2A SST and (a) LDAPS specific humidity,
(b) LDAPS maximum wind speed, and (c) OSTIA daily SST climatology value. 27,099 pixels were
matched to the in situ measurement points in 2020.
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empirical and theoretical variograms.
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4.6. Accuracy Evaluation

Accuracy evaluation for the gap-free raster maps of the GK2A daily SST was conducted
using the in situ SST. Four common statistical indices were used to quantify the accuracy:
Mean Bias Error (MBE), MAE, RMSE, and Correlation Coefficient (CC).

MBE =
1
n

n

∑
i=1

(xi − yi) (4)

MAE =
1
n

n

∑
i=1
|xi − yi| (5)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (6)

CC =
∑n

i=1(xi − x)(yi − y)
(n− 1)sxsy

(7)

where x refers to SST estimates, y refers to in situ measurements, x and y are the means
of x and y, respectively. sx and sy refer to the standard deviations of x and y, and n refers
to number of the data. Positive MBE represents an overestimation whereas negative MBE
indicates an underestimation of the model prediction. MAE measures the mean of the
absolute magnitude of the errors in the estimation. RMSE, a quadratic measure for the
average size of the error, is useful when evaluating relatively large errors. The CC indicates
the correlation between in situ measurements and model estimates: 1(−1) indicates an
extremely positive (negative) relationship between two data.

5. Results and Discussion
5.1. Removal of Outlier Pixels

As a result of the outlier detection using DSAT for the 366 images of GK2A daily SST
product in 2020, 3668 outlier pixels (0.007%) were detected out of a total of 52,400,000 pixels.
Figure 10 shows the scatter plots for the in situ and the GK2A SST before and after the
outlier removal using DSAT. The MBE, MAE, and RMSE were quite decreased, and CC
was slightly increased after the outlier removal, indicating the effectiveness of the outlier
detection technique using DSAT.
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Figure 11 shows the example SST maps before and after outlier detection on 1 June
2020. The color bars for SST in this paper are officially used by KMA. The annual minimum
SST of the sea area around the Korean Peninsula is approximately−3 ◦C, and the maximum
SST is approximately 32 ◦C. So, 35 ◦C is an extremely high temperature for the study area,
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and purple was used to distinguish it from the other pixels. Outlier pixels colored in black
had quite different values from the neighbor pixels (Figure 11b,d). Most of the outlier pixels
were found near the coastline. Because GK2A has a spatial resolution of 2 km, some pixels
may have slightly contaminated radiance values, particularly around the complex coastline
or near the islands. MODIS and OSTIA SST also have the same problem because of the
coarse spatial resolution of 1 km and 0.05◦, respectively [47]. In this context, the outlier
removal can be essential for the QC of all SST products.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 25 
 

 

Figure 11 shows the example SST maps before and after outlier detection on 1 June 
2020. The color bars for SST in this paper are officially used by KMA. The annual mini-
mum SST of the sea area around the Korean Peninsula is approximately −3 °C, and the 
maximum SST is approximately 32 °C. So, 35 °C is an extremely high temperature for the 
study area, and purple was used to distinguish it from the other pixels. Outlier pixels 
colored in black had quite different values from the neighbor pixels (Figure 11b,d). Most 
of the outlier pixels were found near the coastline. Because GK2A has a spatial resolution 
of 2 km, some pixels may have slightly contaminated radiance values, particularly around 
the complex coastline or near the islands. MODIS and OSTIA SST also have the same 
problem because of the coarse spatial resolution of 1 km and 0.05°, respectively [47]. In 
this context, the outlier removal can be essential for the QC of all SST products. 

 
Figure 11. GK2A SST maps before and after outlier detection on 1 June 2020. (a,b): The mean SST of 
the three outlier pixels is 36.01 °C, whereas the mean SST of the other pixels (𝑛 = 322) is 17.18 °C. 
(c,d): The mean SST of the eight outlier pixels is 6.72 °C, whereas the mean SST of the other pixels 
(𝑛 = 541) is 20.54 °C. 

5.2. Gap-Filling Accuracy Using MLR and RRK 
The MLR model for the spatial gap-filling of GK2A daily SST around Korean Penin-

sula was built, as shown in Equation (8): 𝐺𝐾2𝐴 = 𝛽଴ + 𝛽௖௟௜௠𝐶𝑙𝑖𝑚 + 𝛽ௌு𝑆𝐻 + 𝛽ௐெௌ𝑊𝑀𝑆 + 𝜀 (8) 

where the target variable 𝐺𝐾2𝐴  denotes GK2A SST, and the explanatory variables 𝐶𝑙𝑖𝑚, 𝑆𝐻, and 𝑊𝑀𝑆 indicate the OSTIA daily SST climatology value, LDAPS specific hu-
midity, and LDAPS maximum wind speed, respectively. 𝛽௖௟௜௠, 𝛽ௌு, and 𝛽ௐெௌ are regres-
sion coefficients corresponding to each explanatory variable. 𝛽଴ is the intercept and 𝜀 is 
the error term. The regression coefficients were all significant with p < 0.01. The coefficient 
of determination (𝑅ଶ) was 0.965, indicating that the meteorological factors can explain the 
GK2A SST variation very appropriately (Table 5). 

Figure 11. GK2A SST maps before and after outlier detection on 1 June 2020. (a,b): The mean SST
of the three outlier pixels is 36.01 ◦C, whereas the mean SST of the other pixels (n = 322) is 17.18 ◦C.
(c,d): The mean SST of the eight outlier pixels is 6.72 ◦C, whereas the mean SST of the other pixels
(n = 541) is 20.54 ◦C.

5.2. Gap-Filling Accuracy Using MLR and RRK

The MLR model for the spatial gap-filling of GK2A daily SST around Korean Peninsula
was built, as shown in Equation (8):

GK2A = β0 + βclimClim + βSHSH + βWMSWMS + ε (8)

where the target variable GK2A denotes GK2A SST, and the explanatory variables Clim, SH,
and WMS indicate the OSTIA daily SST climatology value, LDAPS specific humidity,
and LDAPS maximum wind speed, respectively. βclim, βSH , and βWMS are regression
coefficients corresponding to each explanatory variable. β0 is the intercept and ε is the
error term. The regression coefficients were all significant with p < 0.01. The coefficient of
determination (R2) was 0.965, indicating that the meteorological factors can explain the
GK2A SST variation very appropriately (Table 5).
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Table 5. Summary of the MLR model for the pixels where GK2A SST and the in situ SST measurements
existed in 2020.

Explanatory Variables β Coefficient p-Value R2 N

Constant 2.525 <0.01

0.965 27,099
OSTIA daily SST climatology 0.824 <0.01

LDAPS specific humidity 62.459 <0.01

LDAPS maximum wind speed −0.024 <0.01

The MLR estimates were derived for gap-filling of the 18,876 pixels where GK2A
had null values, and the in situ SST measurements existed. The accuracy statistics were
calculated for the gap-filled 18,876 pixels (Figure 12). The MLR gap-filling showed the
MBE of 0.541 ◦C, RMSE of 1.699 ◦C, and the CC of 0.951 before applying the RRK. Then,
the RRK was applied to the same 18,876 pixels and produced the MBE of −0.001 ◦C,
RMSE of 0.550 ◦C, and the CC of 0.994, which was a much improved result by the residual
compensation. Additional accuracy statistics were calculated for the whole pixels, including
the original and the gap-filled pixels on the 45,975 in situ measurement points (Figure 13).
The MLR modeling had the MBE = 0.341 ◦C, RMSE = 1.341 ◦C, and CC = 0.970, and the
RRK modeling produced the MBE = 0.119 ◦C, RMSE = 0.858 ◦C, and CC = 0.987 (Table 6).
It is remarkable that the RRK gap-filling showed higher accuracy (CC = 0.994) than the
original GK2A data.

Table 6. Accuracy statistics of GK2A SST estimate by MLR and RRK.

Type N MBE MAE RMSE CC

MLR
Gap-filling estimates 18,876 0.541 1.215 1.699 0.951

Both original data and
gap-filling estimates 45,975 0.341 0.896 1.341 0.970

RRK
Gap-filling estimates 18,876 −0.001 0.315 0.550 0.994

Both original data and
gap-filling estimates 45,975 0.119 0.526 0.858 0.987
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Figure 12. Scatter plots for the in situ SST and estimated SST by (a) MLR, and (b) RRK. The number
of validation (N = 18,876) is for the pixels where GK2A had null values, and the in situ measurements
existed in 2020.



Remote Sens. 2022, 14, 5265 16 of 25Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 25 
 

 

  
Figure 13. Scatter plots for the whole in situ measurement points (N = 45,975). (a) including both 
MLR estimates and original data, and (b) including both RRK estimates and original data. 

Figure 14 shows the GK2A SST maps before and after applying MLR and RRK mod-
eling with the example of 18 March, 31 August, and 3 November, 2020. In both maps, the 
overall gap-filling results look similar. However, the MLR gap-filling had more significant 
differences (from 1.0 to 2.0 °C lower) from the neighboring pixels, showing a bit of dis-
continuity around the border of the gap-filled pixels (35°N and 130°E on 31 August 2020). 
On the other hand, the RRK presented a more natural and continuous spatial pattern 
around the gap-filled pixels with fewer differences from the neighboring pixels. In Figure 
15, the Tongyeong station on 20 July 2020, had an in situ SST of 21.30 °C, and the MLR 
and RRK estimates were 23.41 °C and 21.28 °C, respectively. The MLR gap-filling was 
about 2 °C overestimated, whereas the RRK result was almost the same as the in situ SST. 
The distribution of estimates around the Tongyeong station was also more reasonable in 
the RRK model results reflecting the residual trend with the surrounding in situ SST. 

Figure 13. Scatter plots for the whole in situ measurement points (N = 45,975). (a) including both
MLR estimates and original data, and (b) including both RRK estimates and original data.

Figure 14 shows the GK2A SST maps before and after applying MLR and RRK mod-
eling with the example of 18 March, 31 August, and 3 November, 2020. In both maps,
the overall gap-filling results look similar. However, the MLR gap-filling had more signifi-
cant differences (from 1.0 to 2.0 ◦C lower) from the neighboring pixels, showing a bit of
discontinuity around the border of the gap-filled pixels (35◦N and 130◦E on 31 August
2020). On the other hand, the RRK presented a more natural and continuous spatial pat-
tern around the gap-filled pixels with fewer differences from the neighboring pixels. In
Figure 15, the Tongyeong station on 20 July 2020, had an in situ SST of 21.30 ◦C, and the
MLR and RRK estimates were 23.41 ◦C and 21.28 ◦C, respectively. The MLR gap-filling was
about 2 ◦C overestimated, whereas the RRK result was almost the same as the in situ SST.
The distribution of estimates around the Tongyeong station was also more reasonable in
the RRK model results reflecting the residual trend with the surrounding in situ SST.

5.3. Gap-Filling Accuracy for the Far Seas

The null pixel ratio of the GK2A daily SST in 2020 is summarized in Table 7. We
conducted another accuracy test for the in situ measurements in the far seas using the
daily SST images with a null pixel ratio of less than 0.4 because most images (72.68%)
had a null pixel ratio of less than 0.4. Nine stations (Ongjinsocheongcho, Incheon, Seohae
170, Seohae 206, Sinangageocho, Ulsan, Pohang, Uljin, and Donghae) that are more than
30 km away from the coastline were selected as the validation reference (Figure 1c). Table 8
shows the accuracy statistics of the MLR gap-filling (MBE = 0.285 ◦C, RMSE = 1.581 ◦C,
and CC = 0.964) and RRK gap-filling (MBE = −0.094 ◦C, RMSE = 0.401 ◦C, and CC = 0.997),
respectively. The accuracy of RRK was very high in the far seas, showing a concentrated
scatter plot on the 1:1 line (Figure 16). Figure 17 shows the GK2A SST maps before and after
gap-filling around the Incheon station on 17 March 2020. The in situ measurement was
6.09 ◦C, and the MLR and RRK estimates were 6.54 ◦C and 6.18 ◦C, respectively. The RRK
gap-filling rarely showed under- or over-estimation tendencies in both near and far seas,
indicating that the residual compensation was adequate to supplement the MLR modeling.
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March, 31 August, and 3 November, 2020. (a,d,g) denote images before spatial gap-filling. (b,e,h) gap-
free SST after MLR, and (c,f,i) gap-free SST after RRK.
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Figure 15. GK2A SST maps before and after the MLR and RRK gap-filling around the Tongyeong
station on 20 July 2020. (a) The location of the Tongyeong station in the study area. (b) denote images
before spatial gap-filling. (c) gap-free SST after MLR, and (d) gap-free SST after RRK. The RRK
showed a more reasonable result similar to the in situ measurement.



Remote Sens. 2022, 14, 5265 19 of 25

Table 7. Null pixel ratio of GK2A daily SST in 2020.

Null Pixel Ratio Number of Images Percentage

0.0 to 0.1 117 31.97

0.1 to 0.2 67 18.31

0.2 to 0.3 51 13.93

0.3 to 0.4 31 8.47

0.4 to 0.5 41 11.20

0.5 to 0.6 18 4.92

0.6 to 0.7 18 4.92

0.7 to 0.8 18 4.92

0.8 to 0.9 5 1.37

0.9 to 1.0 0 0

Total 366 100

Table 8. Accuracy statistics of the MLR and RRK gap-filling using the GK2A SST images with the
null pixel ratio less than 0.4 in the far seas (outside 30 km buffer).

Type N MBE MAE RMSE CC

MLR 252 0.285 1.225 1.581 0.964

RRK 252 −0.094 0.229 0.401 0.997
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on 17 March 2020. (a) The location of the Incheon station in the study area. (b) denote images before
spatial gap-filling. (c) gap-free SST after MLR, and (d) gap-free SST after RRK.

5.4. Influence of Typhoons

A typhoon is an extreme meteorological event that can cause an abrupt change in
SST. Table 9 shows the typhoons that affected the Korean Peninsula between August and
September 2020 [48]. Maysak and Haishen passed through the East Sea from the end of
August to the beginning of September. Strong winds in the typhoons caused an upwelling
and vertical mixing of seawater, which resulted in a decrease in SST [49,50]. In situ SST at
Donghae station sharply decreased about 4–5 ◦C from 26.13 ◦C on 2 September to 21.52 ◦C
on 3 September due to the typhoons. The SST was continued with an average of 20 to
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21 ◦C for the time being (Figure 18). Figure 19 shows the GK2A SST maps before and after
the MLR and RRK gap-filling for Donghae station on 4 September 2020. The in situ SST
was 21.43 ◦C, and the MLR estimate was 22.93 ◦C showing a 1.50 ◦C overestimation. This
may be the limitation of linear modeling and the need for nonlinear modeling such as
machine learning and neural networks. Change detection algorithms such as jumps upon
spectrum and trend (JUST) [51], breaks for additive season and trend (BFAST) [52], and
continuous change detection and classification (CCDC) [53] may be utilized for abrupt
change detections and better trend estimations. On the other hand, the RRK model showed
a better estimate of 21.38 ◦C with only a 0.05 ◦C difference from the in situ measurement.
If nonlinear regression models based on artificial intelligence techniques are combined
with the RRK method, it can appropriately handle unexpected cases such as extreme
weather events.

Table 9. Information on typhoons that affected the Korean Peninsula from August to September 2020.

Track of Typhoon No. Name Formation and Extinction (UTC)
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Figure 19. GK2A SST maps before and after the MLR and RRK gap-filling around the Donghae
station on 4 September 2020. (a) The location of the Donghae station in the study area. (b) denote
images before spatial gap-filling. (c) gap-free SST after MLR, and (d) gap-free SST after RRK. The
RRK result was stable under the influence of typhoons because it can cope with the abrupt changes
in marine meteorology.

6. Conclusions

In this paper, a spatial gap-filling of GK2A daily SST in 2020 was conducted using
RRK for the seas around the Korean Peninsula. Extreme outliers were first removed from
the in situ measurements and from the GK2A daily SST images using multi-step statistical
procedures. For the pixels on the in situ measurements after the quality control, an MLR
model was built using the selected meteorological variables such as daily SST climatology
value, specific humidity, and maximum wind speed. The irregular point residuals from the



Remote Sens. 2022, 14, 5265 23 of 25

MLR model were transformed to a residual grid by an optimized kriging for the residual
compensation for the MLR estimation of the null pixels. The RRK residual compensation
method produced greatly improved accuracy compared with the in situ measurements.
The gap-filled 18,876 pixels showed the MBE of −0.001 ◦C, the MAE of 0.315 ◦C, the RMSE
of 0.550 ◦C, and the CC of 0.994. The case studies made sure that the gap-filled SST
with RRK had very similar values to the in situ measurements than those of the MLR-
only method. In terms of RMSE, the RRK result was 68% improved than the MLR-only
(1.69–0.550)/1.699. This was more apparent in the typhoon case: our RRK result was also
stable under the influence of typhoons because it can cope with the abrupt changes in
marine meteorology. An essential implication of this study is that the proposed method
can be used as an operational framework for the gap-free GK2A daily SST product. In
terms of time dimension, we used just one image for gap-filling. The gap-filling value was
derived from multiple meteorological variables at the same time. Considering the temporal
correlation of SST, multiple temporal images can be also used in a future work.
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