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Abstract: Dynamic monitoring of building environments is essential for observing rural land changes
and socio-economic development, especially in agricultural countries, such as China. Rapid and
accurate building extraction and floor area estimation at the village level are vital for the overall
planning of rural development and intensive land use and the “beautiful countryside” construction
policy in China. Traditional in situ field surveys are an effective way to collect building information
but are time-consuming and labor-intensive. Moreover, rural buildings are usually covered by
vegetation and trees, leading to incomplete boundaries. This paper proposes a comprehensive
method to perform village-level homestead area estimation by combining unmanned aerial vehicle
(UAV) photogrammetry and deep learning technology. First, to tackle the problem of complex
surface feature scenes in remote sensing images, we proposed a novel Efficient Deep-wise Spatial
Attention Network (EDSANet), which uses dual attention extraction and attention feature refinement
to aggregate multi-level semantics and enhance the accuracy of building extraction, especially for
high-spatial-resolution imagery. Qualitative and quantitative experiments were conducted with the
newly built dataset (named the rural Weinan building dataset) with different deep learning networks
to examine the performance of the EDSANet model in the task of rural building extraction. Then,
the number of floors of each building was estimated using the normalized digital surface model
(nDSM) generated from UAV oblique photogrammetry. The floor area of the entire village was rapidly
calculated by multiplying the area of each building in the village by the number of floors. The case
study was conducted in Helan village, Shannxi province, China. The results show that the overall
accuracy of the building extraction from UAV images with the EDSANet model was 0.939 and that
the precision reached 0.949. The buildings in Helan village primarily have two stories, and their total
floor area is 3.1 × 105 m2. The field survey results verified that the accuracy of the nDSM model was
0.94; the RMSE was 0.243. The proposed workflow and experimental results highlight the potential
of UAV oblique photogrammetry and deep learning for rapid and efficient village-level building
extraction and floor area estimation in China, as well as worldwide.

Keywords: building extraction; floor area estimation; rural China; deep learning; UAV

1. Introduction

Homesteads are an important part of basic rural geographic information and multi-
functional complex spaces for rural residents [1–3]. With the advancement of urban–rural
economic integration in China, many farmers have migrated to cities. From 2000 to 2016, the
rural resident population in China decreased from 808 to 589 million (a decline of 27.1%) [4].
The migration of rural residents to cities reduces the area of rural homestead land. However,
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due to the free acquisition and use of the homestead system, local governments launch new
rural construction without proper scientific planning, which has increased the area of idle
rural homesteads by 20.6% [5], from 0.99 to 1.21 million km2 [4]. Compared to developed
cities, rural areas are dominated by low-rise buildings, and the excessive occupation of land
resources by farmers affects land-use efficiency [6]. To promote rural development, the
Chinese government has proposed “beautiful countryside” construction. In-depth investi-
gations should be conducted on the living conditions of farmers, and land-use areas in rural
areas should be rationally planned. Field surveys can provide accurate information about
the residents of farms but require time and labor. Moreover, land use for rural homesteads
in developing countries is usually scattered, resulting in barriers to the acquisition of rural
building information. Therefore, additional methods should be proposed to quickly and
accurately extract building information and estimate floor area in rural environments.

To ameliorate adverse social problems, building density regulations (such as those for
building heights or floor area ratios) are common practices in urban planning and manage-
ment worldwide [6]. Various remote sensing products and classification methods have been
used to extract building coverage areas [7,8] and building heights [9,10]; the nDSM [11] (the
difference between a DSM and a digital terrain models (DTM)) is widely used in height
estimation [12]. Ji and Tang [13] proposed three methods for gross floor area estimation
from monocular optical imagery using the NoS R-CNN model. Given the densely popu-
lated villages and scattered land-use layout in China, UAVs have become the latest trend in
rural homestead detection because of their flexibility, low cost, real-time results, and high
resolution [14]. Nyaruhuma et al. [15] used oblique photogrammetry to reconstruct 3D
buildings on an urban scale. High-resolution UAV images can obtain sufficiently detailed
information and provide new challenges to existing methods of building extraction [16,17].
Previous studies have primarily focused on the extraction of architectural features based
on machine learning, including maximum likelihood classification [18], support vector
machines [19], and object-based classification methods [20]. However, machine learning
algorithms based on feature extraction rely heavily on manual parameter setting and ex-
pert knowledge, which usually leads to poor generalization with different environmental
backgrounds [21,22]. In rural areas with more complex surface compositions, the use of
traditional algorithms for ground object classification can be improved further [23].

Owing to the complexity of image backgrounds and the semantic texture of build-
ings, automatic and high-precision building extraction from UAV images presents un-
certainty [24,25]. Recently, scholars have employed deep learning technology to identify
building contour information [26–29]. Long et al. proposed the FCN model for pixel-
level semantic segmentation, which is the first end-to-end fully convolutional network
that accepts any size input for image segmentation, and it has successfully led to a new
wave of semantic segmentation tasks [30]. Subsequently, many variant FCN-based mod-
els have improved the feature expression capabilities to obtain better experimental re-
sults (such as SegNet [31], U-Net [32], and ERFNet [33]). Liu et al. [34] proposed a novel
convolutional neural network combined encoder–decoder and spatial pyramid pooling
module named USPP for building extraction from high-resolution remote sensing images.
Konstantinidis et al. [35] proposed a modular CNN to improve the performance of build-
ing detectors by employing a histogram of oriented gradients and local binary patterns in a
remote sensing dataset. Zhang [36] developed a method for estimating homestead areas
based on UAV images and the U-Net algorithm. The results demonstrate that, in rural areas
with complex surface compositions, the deep learning method can achieve fast, stable, and
high-precision results. Liao et al. [37] proposed a boundary-preserved model that works by
jointly learning the contours and structures of buildings. Experiments on the WHU, Aerial,
and Massachusetts Building Datasets showed that the proposed model outperformed other
state-of-the-art methods. Xiao et al. [38] proposed a shifted-window transformer-based
encoding booster to capture the semantic information of large buildings in high-resolution
remote sensing images. Li et al. [39] proposed a novel end-to-end network integrating
lightweight spatial and channel attention modules to refine features adaptively for building



Remote Sens. 2022, 14, 5175 3 of 20

extraction tasks. Wei et al. [40] proposed a multi-branch network for the extraction of rural
homesteads based on aerial images. Jing et al. [41] proposed an efficient memory module
to enhance the learning ability of deep learning models in building extraction. Li et al. [42]
proposed a global style and local matching contrastive learning model for image-level
and pixel-level representation. However, most existing deep learning models focus on
stacking complex architectures and parameter settings to improve accuracy, which also
has disadvantages, such as requiring extensive calculations and slow iteration speed [43].
Moreover, in the extraction of comprehensive building information, high-resolution remote
sensing images cannot directly identify the numbers of floors in homesteads. The use of
remote sensing data with high spatiotemporal resolution to estimate the area of village-
level homesteads at the pixel level still remains challenging. Comprehensive methods
and models should be combined with building extraction and floor area estimation at the
village level.

Here, we propose a comprehensive method for building extraction and floor area
estimation of village-level homesteads by combining UAV oblique photogrammetry and
deep learning technology. First, the footprint of buildings is identified using the novel
EDSANet model proposed, which employs dual attention extraction and attention feature
refinement to enhance the accuracy of building extraction. Then, the number of floors
of each building is estimated using the nDSM generated from UAV remote sensing. The
total floor area of the homestead is rapidly calculated by multiplying the floor area of each
building by the number of floors. A case study was conducted in Helan village, Shaanxi
province, China. The experiments demonstrate that the proposed method can achieve
rapid and low-cost results in building extraction and floor area estimation in rural villages.
To summarize, the main contributions of this paper are as follows:

(1) We propose a comprehensive method combining UAV oblique photogrammetry and
deep learning technology for building extraction and floor area estimation of village-
level homesteads. A novel EDSANet model is proposed to tackle the problem of
complex surface feature scenes in remote sensing images and improve performance
in building extraction;

(2) We designed a semantic encoding module by applying three down-sample stages
(with atrous convolution) to enlarge the receptive field and a spatial information
encoding module with only six layers and three stages using one eighth of the original
input to enrich spatial details and improve the accuracy in building extraction;

(3) A dual attention module is proposed to extract useful information from the kernel
and channel, respectively. To adjust the excessive convergence of building feature
information after attention extraction, we propose an attention feature refinement
module to further improve the extraction effect of the model for useful features by
redefining the attention features, thereby improving the accuracy.

The remainder of this paper is organized as follows: Section 2 describes the study area
and data. Section 3 presents deep learning methods for building extraction and the UAV
oblique photogrammetry method for floor area estimation. Section 4 introduces the results
of the building extraction and floor area estimation. The discussion and conclusions are
presented in Sections 5 and 6, respectively.

2. Study Area and Data
2.1. Study Area

Weinan City is located in Shaanxi province, China, from 34◦13′E to 35◦52′E and
108◦50′N to 110◦38′N. According to the 2017 census, the total population of the city is
approximately 5.38 million, and it has an area of 13,134 km2. Since 2018, Shaanxi province
has vigorously promoted rural innovation and reform and accelerated the implementa-
tion of the rural revitalization strategy. The pilot reform project in Weinan city achieved
remarkable success. Based on a field survey, this research selected Helan village, Fup-
ing county, Weinan city, Shaanxi province as the research area. The village is located
between the Guanzhong Plain and the northern Shaanxi Plateau. The village has an area of
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3.88 × 104 m2 with 205 households (of which 151 are residents) and a registered population
of 321. The buildings are densely distributed in the research area, the village roads are
planted with regular arbor forests, and parts of the homesteads are shaded by tall trees or
shrubs. An overview of the study area is presented in Figure 1.
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Figure 1. The geographical location of the study area.

2.2. UAV Data

The experimental data utilized in this research were tokens from a small four-rotor
unmanned aerial vehicle (UAV). The drone model was an INSPIRE 2 (Shenzhen DJI In-
novation Technology Co., Ltd., Shenzhen, China) equipped with a Zenmuse X5s HD
camera, an effective pixel count of 16 million for the four thirds CMOS, and a built-in
optical imaging lens camera composed of nine glass sheets in seven groups. The UAV was
equipped with GPS and GLONASS dual satellite navigation systems, which can be used to
autonomously plan the flight path in a study area. Table 1 presents detailed information on
the UAV equipment.

Table 1. Detailed information on the UAV equipment.

Parameters Value

Takeoff Weight 1280 g
Image Size 4608 × 3456

Flight Duration 27 min
Focal Length 15 mm

Ground Sample Distance 0.23 cm
Spectral Range 0.38–0.76 µm

Working Temperature 0–40◦

Maximum Flight Altitude 6000 m
Maximum Horizontal Flight Speed 18 m/s

GPS Module GPS/GLONASS dual mode
Image Coordinate System WGS 84/UTM Zone 49N

UAV Flight Permission Needed

A warm, clear, and windless day (2 August 2018) was chosen to ensure stability for
the UAV photography. The flight track ranged from 108◦50′E to 110◦38′E and 34◦13′N to
35◦52′N (Figure 2). The flight route was from the southeast corner to the northwest corner
of the study area, and pictures were taken along the S route. To construct photogrammetric
stereo pairs, the two adjacent images were set with an 85% heading overlap and 75% inside
overlap. The spatial resolution of the UAV data reached 2.3 cm.
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Figure 2. Flight route map in the research area.

3. Methodology

Figure 3 illustrates the detailed workflow, which includes seven principal steps. The
first and second steps consisted of obtaining the orthophoto of the research area from the
aerial UAV images. The orthophoto of the research area and the building sample dataset
were produced through data preprocessing and augmentation. The proposed EDSANet
model was then used to extract the building footprint of the study area, the accuracy
was evaluated using five metrics, and the segmented images were merged into an entire
image. Based on the UAV point cloud data, the tilt photogrammetry method was applied
to generate the DSM, DTM, and nDSM to determine the building height. Lastly, the floor
area of the homesteads in the study area was calculated based on the building footprints
and the numbers of floors.
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Figure 3. Flowchart of building extraction and floor area estimation in this research.

3.1. Methodology
3.1.1. EDSANet Architecture

We propose a novel fully connected network named the Efficient Deep-wise Spatial
Attention Network (EDSANet) to tackle the problem of complex surface feature scenes in
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remote sensing images and improve the efficiency and accuracy of building extraction tasks.
Figure 4 shows an overview of the EDSANet architecture, including two branch networks
composed of four units. (1) We first designed a semantic encoding module (SEM, Figure 4b),
which employs channel splitting and shuffling to reduce computation and maintain higher
segmentation accuracy. (2) A dual attention module (DAM, Figure 4d), consisting of
spatial attention and channel attention, and an attention feature refinement module (AFRM,
Figure 4e) were designed to make full use of the multi-level feature maps simultaneously,
which helps predict the pixel-wise labels in each stage. (3) A spatial information encoding
module (SIEM, Figure 4a) was used to enhance spatial semantic information and preserve
spatial details. (4) We developed a simple feature fusion module (FFM, Figure 4c) to better
aggregate the context information and spatial information [44].
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Figure 4. The architecture of the EDSANet model consists of two parts: the semantic encoding branch
and the spatial information encoding branch. (a) Spatial information encoding module, (b) semantic
encoding module, (c) feature fusion module, (d) dual attention module, and (e) attention feature
refinement module.

First, input images are fed into the SEM to generate four feature maps (Fh,1, Fh,2,
Fh,3, Fh,4) with decreasing spatial resolution. The feature maps Fh,3 and Fh,4 have the
same numbers of channels, with different dilation rates, to enlarge the receptive field
convolutional filters. Then, inspired by the efficiency of dilated convolution [45], we
adopted a one-eighth down-sample strategy. As Equation (1) shows, the final segmentation
FFMh,s is obtained by combining the high-resolution feature map Fh with the spatial feature
map Fs from SIEM.

FFMh,s = Fup(conv([Fh, Fs])), (1)

3.1.2. Semantic Encoding Module (SEM)

This building block was designed with inspiration from lightweight image classifi-
cation model strategies, such as in Ma et al. [46], Zhang et al. [47], and Sandler et al. [48].
The models mentioned above set the ratio of the input image resolution by applying five
down-samplings and the size of the final output is only 1/32 of the input image size, which
can lead to a significant loss in the spatial details. As Table 2 shows, our proposed SEM is
based on this building block and applies three down-samplings (the output resolution is
only one eighth of the original image resolution with 32, 64, and 128 channels). In stages
three and four, atrous convolution is introduced to increase the receptive field.

3.1.3. Spatial Information Encoding Module (SIEM)

To improve the performance of semantic segmentation, the model aimed to effectively
combine high-level semantics and low-level details. As the SEM was not designed for
spatial details or low-level information, in the shallow SIEM, which has only six layers and
three stages, each layer consists of a convolution operation (Conv), batch normalization
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(BN), and a parametric rectified linear unit (PReLU) [49]. The first and second layers of each
stage have the same number of filters (stride of 2) and output feature map size. Therefore,
one eighth of the original input is extracted by the SIEM, which enriches the spatial details
due to the high channel capacity.

Table 2. SEM is used to extract high-level semantic information.

Stage Type Filters

Input
Stage 1 3 × 3 Conv 32
Stage 2 Down-sample 64
Stage 3 Down-sample 128
Stage 4 Building block 128

3.1.4. Dual Attention Module (DAM)

For the spatial dimension, we designed an attention mechanism based on kernel
attention named the kernel attention module (KAM). For the channel dimension, the
number of input channels C is normally far less than the number of pixels contained in the
feature maps (i.e., C� N). Therefore, the complexity of the Softmax function for channels
is not high. Thus, we utilized a channel attention mechanism based on the dot-product [50]
named the channel attention module (CAM). As Figure 5 shows, using the KAM, which
models the long-range dependencies of positions, and CAM, which models the long-range
dependencies of channels, we designed the dual attention module (DAM) to enhance the
discriminative ability of the feature maps extracted by each layer.
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3.1.5. Deep Supervision

As providing supervision to the hidden layer reduces classification errors [21], re-
searchers have adopted similar strategies [51] to ease the loss propagation in shallow layers.
Therefore, we adopted auxiliary losses (Equation (2)) in stages two to four to supervise
the predictions:

Lt = αL f β
n

∑
i=1

Li, (2)

where α and β are the weights of the main loss function and auxiliary loss, with both
weights set to 1; Lt is the total loss; L f represents the loss for the output layer; and Li
represents the loss of the j-th stage after applying dual attention and feature refinement.
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3.1.6. Loss Function

The loss function has an essential impact on the model accuracy and, usually, the most
suitable loss function depends on the data properties and the class definitions [28]. Cross-
entropy loss is a widely used loss function in two-dimensional semantic segmentation tasks.
The aim of the learning-based remote sensing building extraction task is to train a binary
classifier. The positive samples are pixels representing the buildings, whereas the negative
samples are pixels containing the background. We here employed binary cross-entropy
loss (Equation(3)) [52] in the training process:

Hp(q) = −
1
N

N

∑
i=1

yi·log(p(yi)) + (1− yi)·log(1− p(yi)), (3)

where y is the label (1 for green points and 0 for red points) and p(yi) is the predicted
probability of the point being green for all N points.

3.2. Data Preprocessing

The data preprocessing in the deep learning technology primarily consists of image
clipping and image labeling. Building segmentation is a binary classification task involving
buildings and non-building elements [21]. The building samples were intended to contain
various types of buildings in the study area. The building labels were manually completed
in ArcGIS 10.2. The pixel values of each image were scaled to the interval [0,1] by dividing
by 255. To facilitate the deep learning calculation, the original image was uniformly cropped
to generate 256 × 256 pixels with an overlap of 56 pixels between two adjacent images.

Data augmentation is an effective way to enlarge a dataset and avoid overfitting [53].
As presented in Figure 6, the images were rotated by 90◦, 180◦, and 270◦. Random horizontal
and vertical flipping were performed with a probability of 0.5. After data augmentation,
4980 images with 256 × 256 pixels were generated. The spatial resolution of these images
was about 2.3 to 5.3 cm. A total of 30% of the images were randomly selected as the test set,
while the rest of the images were the training set. The final results of the building extraction
were obtained by further applying a threshold of 0.5. No additional post-processing was
performed in this study.
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3.3. Experimental Setting

The experiments were conducted using the PyTorch deep learning framework. All ex-
periments were conducted on servers with 12th Gen Intel(R) Core™ i9-12900KF (3.20 GHz)
and NVIDIA GeForce RTX 3090 (24 GB). All deep learning models were trained for
100 epochs, and 16 batches were randomly selected as the input data. The Adam opti-
mizer was applied with an initial learning rate of 0.0001 and a weight decay of 0.0001.
Figure 7 presents the dynamic changes in the accuracy and loss of the EDSANet model
during the training process with the rural Weinan building dataset: the loss decreased and
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the accuracy increased as the training epochs increased; after the number of epochs reached
60, the model training tended to stabilize, and the accuracy remained high.
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3.4. Evaluation Metrics

Five common evaluation metrics were employed for quality evaluation in this research:
overall accuracy (OA) (Equation (4)), precision (Equation (5)), recall (Equation (6)), F1-score
(F1) (Equation (7)), and intersection-over-union (IoU) (Equation (8)). The five metrics are
calculated as follows:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 =
2× Precision× Recall

Precision + Recall
, (7)

IoU =
TP

TP + FP + FN
, (8)

where P is the number of positive samples, N is the number of negative samples, TP is the
number of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.

3.5. Building Height and Floor Area Estimation

Figure 8 shows the workflow for the building height and floor area estimation. The
UAV images obtained from field surveys were first fed into the Pix4Dmapper software
(version 4.5.6) [54]. This software contains three image processing steps: initial processing,
point cloud and mesh, and DSM orthomosaic [55]. The DSM can be extracted from overlap-
ping aerial images obtained with photogrammetry technology using location information
stored in the header file of each aerial image from the UAV flight [56]. Based on the DSM,
the point-cloud filtering algorithm with mathematical morphology was employed to iden-
tify whether the filter window was the ground point. Subsequently, the ground objects on
the surface (including buildings, trees, and other non-ground points) were eliminated. The
DTM data, which represent the terrain elevation information, were then formed [57–59].
The difference between the DSM and the DTM is referred to as the nDSM, which is widely
used in height estimation. The height of the rural elements above the terrain was then
generated [60]. Based on field surveys of the usual heights of local buildings, a threshold
was set to estimate the number of floors in rural buildings. Using the footprint area of
the buildings identified by the EDSANet model, the numbers of floors of each building in
the nDSM were extracted and estimated in the ArcGIS environment (version 10.2). Lastly,
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the total floor area of the homesteads in the study area was obtained by counting the
construction areas of each floor. The formula is as follows:

Areafloors =
f loorsmax ∑

∑
i=1

Areagird × Ni, (9)

where Areafloors is the total floor area of the homesteads, Areagrid is the area of the grid reso-
lution of nDSM, N is the number of floors, and i ranges from 1 to floorsmax for each building.
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4. Results
4.1. Building Extraction Using Deep Learning Models

Five classic and state-of-the-art deep learning models, including SegNet [31], UNet [30,32],
Deeplabv3+ [61], MAP-Net [62], ARC-Net [23], and AGs-Unet [21], were compared to
verify the performance and efficiency of the proposed EDSANet model with the rural
Weinan building dataset. Figure 9 presents the qualitative results of building extraction
using different deep learning models. SegNet returned too many false positives and false
negatives exhibiting the worst performance with the dataset. Deeplabv3+, MAP-Net, and
AGs-Unet presented quite similar performances in building extraction. For the proposed
EDSANet model, the building segmentation results were satisfactory, and most buildings
were generally well-segmented regardless of the type of roof (e.g., colored steel tile or
sloped tile); additionally, the building footprints were very clear. However, the deep
learning model could not clearly separate the boundaries between households in connected
buildings (Figure 9a,b).

The specific analysis of the figure is as follows: Columns (a)–(d) represent four images
randomly selected to show the test results. In (a) and (b), the proposed EDSANet model
achieved effective completeness in extracted results for the whole single building. In the
second column of buildings in (c), compared with Ags-Unet and ARC-Net, EDSANet
clearly extracted the boundary of the buildings and showed the distinct gap between the
buildings. Moreover, EDSANet was more advanced in the expression of the surrounding
details of the building gap than Unet, MAP-Net, and Deeplabv3+, as shown in the lower
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right corner of the image building extraction results in (d), but it was not as good as the
boundary smoothness that the ARC-Net model achieved.
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Figure 9. Building extraction results of different deep learning models with the rural Weinan building
dataset. (a–d) Four images randomly selected to show the test results. SegNet, UNet, Deeplabv3+,
Ags-Unet, MAP-Net, ARC-Net, and EDSANet, respectively, are represented by the building extraction
results from the four groups of comparison experiments. Green represents the buildings and black
represents the background. In the ground truth, red represents the buildings and black represents
the background.

Table 3 presents the quantitative results of the building segmentation with the rural
Weinan building dataset. SegNet obtained an overall accuracy of 0.740, while other models
were all above 0.80. ARC-Net obtained an overall accuracy of 0.929 with a precision of
0.876, while EDSANet obtained an overall accuracy of 0.939 with an IoU of 0.848. In the
experiments with the rural Weinan dataset, our proposed EDSANet model better balanced
efficiency and accuracy compared to the MAP-Net and the ARC-Net models and achieved
optimality for four evaluation metrics but not for recall, where Deeplabv3+ held the highest
score of 0.946. Both the qualitative and quantitative experiment results demonstrate that
EDSANet can effectively extract and fuse the features of rural buildings, improving the
extraction accuracy for rural buildings. The results of the building extraction using the
EDSANet model in Helan village are presented in Figure 10.

Table 3. Building extraction results with rural Weinan building dataset using different CNN models.

Models OA Precision Recall F1 IoU

SegNet 0.740 0.759 0.698 0.723 0.568
UNet 0.876 0.774 0.939 0.848 0.738

Deeplabv3+ 0.899 0.813 0.946 0.872 0.777
AGs-Unet 0.907 0.864 0.911 0.887 0.798
MAP-Net 0.916 0.877 0.888 0.891 0.799
ARC-Net 0.929 0.876 0.921 0.902 0.822
EDSANet 0.939 0.949 0.887 0.916 0.848 1

1 Bold items in each column indicate the highest value.
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Figure 10. Spatial distribution of rural buildings in Helan village. (a) Ground truth of homesteads
and (b) identification results based on the EDSANet model.

4.2. Building Height Estimation

Figure 11a shows the DSM extracted from the overlapping aerial images using pho-
togrammetry technology. The DTM, based on morphological filtering, was utilized to
obtain the ground area in the DSM (Figure 11b). The pixel values of the nDSM represent
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the height of the rural elements above the terrain (Figure 11c) and were calculated using the
difference between the DSM and the DTM. The enclosed building area and the vegetation
area on the ground cannot be correctly distinguished based only on the difference in height
data. In the extraction of ground objects from high-resolution remote sensing data, the
building segmentation precision obtained from the combination of spectral and height
information is generally higher than that obtained using only spectral information or only
height information.
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Figure 11. UAV-based estimation of the number of floors in rural buildings. (a) The DSM based on
the photogrammetry workflow with the overlapping UAV images, (b) the DTM based on the point
cloud filtering algorithm with the DSM images, and (c) the DTM subtracted from the DSM to create
the nDSM.

The frequency distribution of the nDSM pixel values (Figure 12) was then calculated
to obtain the building height information. Two pixel-value peaks were distributed near the
0.3 m and 4 m height differences. The pixel value of 0.3 m represents farmland crops and
country roads, and the height difference of 4 m primarily represents the height of the roofs
of one-story buildings or the walls of courtyards. All pixels in the nDSM grid with values
less than 0.3 m were removed to avoid interference when extracting the building height.
Moreover, because of the low reflectivity of the vegetation in the red band, the vegetation
was well-extracted in the red band of the DOM image; the vegetation pixels in the nDSM
were then detached with a raster operation in ArcGIS.

The building segmentation results of the deep learning method were a set of architec-
tural and non-architectural images without a spatial reference. To facilitate the calculation
and to display the results, the raster-based building footprint was converted into vector
data after map projection in ArcGIS software to the coordinate system consistent with the
reference image, which also made it possible to further calculate the floor area. Further-
more, the nDSM model of the interference pixels, including vegetation and roads, was
removed with the mask of the homestead area. In accordance with the results of the field
survey, the floors of the buildings in the study area were set at 4 m intervals. The height
difference of 1–12 m was then set as indicating the first, second, and third floors (Table 4).
In contrast, areas with floor heights of less than 1 m were set as indicating the courtyard
height. Seventeen field survey buildings were randomly selected and utilized to examine
the accuracy of the floor classification from the nDSM.
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Table 4. Classification rules for the vegetation and the number of building floors.

Parameter Threshold Class

Brightness ≤60 Vegetation
Height ≤1 m Courtyard
Height 1 m ≤ nDSM ≤ 4 m One floor
Height 4 m ≤ nDSM ≤ 8 m Two floors
Height 8 m ≤ nDSM ≤ 12 m Three floors

Figure 13 displays the classification results for the building floors; 16 buildings were
correctly classified and the height of 1 building was overestimated. The accuracy of the
floor classification from the nDSM was 0.94, and the RMSE was 0.243 (Table 5). Field
verification showed that the abnormal point was a canopy built by residents. The canopy
was low and easily covered by the tall arbor canopy on one side. Therefore, the canopy
height was calculated as the height of the vegetation canopy.
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Table 5. Confusion matrix for the number of floors divided by the nDSM model.

Prediction

Courtyard Courtyard Courtyard Courtyard

Actual

Courtyard 1 0 0 0
One floor 0 3 0 0
Two floors 0 1 11 0

Three floors 0 0 0 1

4.3. Floor Area Estimation

The area of the homesteads was computed by multiplying the building area by the
number of floors. We calculated the total construction area of the homesteads based on
the reclassified results for the building heights from Section 4.2. The results showed that
the total area of the homesteads was 3.1 × 105 m2. Specifically, the homestead area for
one-floor buildings was approximately 1.14 × 105 m2 and accounted for 37.3% of the total
homestead area; the homestead area for two-floor buildings with heights of 4–8 m was
approximately 1.78 × 105 m2 and accounted for 58.2% of the total construction area of
the homesteads; three-floor buildings with a height difference of more than 8 m had a
homestead area of approximately 3.33 × 103 m2 and accounted for approximately 1.1% of
the total construction area of the homesteads. The construction area for courtyards and
low-rise shanty households accounted for only 3.4% of the total construction area. Figure 14
displays the frequency histogram for the building height; the average value of the pixels
reached 4.45 m, and the standard deviation was 1.62. In conclusion, the average height and
pixel frequency distribution indicated that residential buildings in the research area are
primarily composed of two floors; this was consistent with the field survey results.
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5. Discussion
5.1. Ablation Experiments

To further verify the feasibility of the DAM consisting of kernel attention and channel
attention, the effectiveness of the atrous convolution in the SEM and the extraction precision
of the different modules and fusion strategies were evaluated here in ablation experiments.
The backbone model included the SIEM, SEM (without atrous convolution), and FFM. The
benchmark models and strategies contained the backbone, the backbone + SEM (with atrous
convolution), the backbone + DAM, the backbone + AFRM, and the backbone + SEM (with
atrous convolution) + DAM + AFRM. Some of the ablation results for building extraction
are presented in Figure 15. EDSANet (Figure 15b) showed the best performance in build-
ing extraction, with clear boundary identification compared to the model without DAM
(Figure 15c) or AFRM (Figure 15d).
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(a) The input images, (b) results extracted with the proposed EDSANet model, (c) EDSANet without
DAM, and (d) EDSANet without AFRM.

The quantitative comparison results for the different combinations are shown in
Table 6. Based on the reference network as the backbone, both the dual attention module
consisting of the kernel and the channel attention module and attention feature refinement
module improved the representation ability for the features extracted from the network.
Compared with the backbone, the accuracy was significantly improved. However, the
recall performance of the backbone, at 0.907, was better than that of the backbone + SEM
(atrous convolution), the backbone + DAM, and the backbone + AFRM, individually. It can
be concluded from Table 4 that adding the DAM or AFRM modules reduced the accuracy
of the model based on the backbone, and all the OA, precision, recall, F1, and IoU results
for the backbone + SEM (atrous convolution) + DAM + AFRM network, with AFRM, were
improved. This indicates that AFRM can adjust the excessive convergence of building
feature information after attention extraction with DAM, thereby improving the accuracy
of building extraction in remote sensing. The last row in Table 6 shows the results for the
proposed EDSANet model, which achieved the best performance in all evaluation metrics
except for recall.

Table 6. Building extraction accuracy for modules and variants of the model.

Models OA Precision Recall F1 IoU

Backbone 0.911 0.862 0.907 0.883 0.783
Backbone + SEM (atrous convolution) 0.905 0.855 0.889 0.870 0.771

Backbone + DAM 0.906 0.847 0.899 0.870 0.773
Backbone + AFRM 0.914 0.878 0.882 0.879 0.787

Backbone + SEM (atrous convolution)
+ DAM + AFRM 0.939 0.949 0.887 0.916 0.848 1

1 Bold items in each column indicate the highest value.

5.2. Summaries and Limitations

Recent years have witnessed widespread application of deep learning in building
extraction and other tasks owing to advancements in automatic learning features and
strong adaptability. Previous studies have primarily focused on urban building extraction,
which lacks application in rural China. In this study, we proposed the EDSANet model to
extract buildings from UAV imagery in rural Weinan, China. The overall accuracy of the
building extraction achieved by EDSANet was 0.929, and the precision was 0.876. Buildings
were well-identified with clear boundaries regardless of the type of roof (e.g., colored steel
tile or sloped tile). Buildings in rural areas mostly have one or two floors and are generally
made of adobe, brickwood, and brick-concrete. The rural area selected in this research
has fewer and more consistent building structure types than urban areas, which facilitates
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building extraction. However, for some irregularly arranged rural areas, the performance
of building extraction with the EDSANet should be further analyzed.

Consumer-grade drones are flexible and have high spatial resolution, which can
ensure the clear boundaries of buildings and the accuracy of the three-dimensional point
cloud model. Series of 3D products based on UAV flight data, including DSM and DTM,
were here generated using oblique photogrammetry technology. The nDSM was used
to remove the vacant rural plots, and the heights of the buildings were extracted from
the nDSM model. However, classifying different types of ground objects with complex
spectral information from high-resolution UAV images is difficult. In addition, 17 buildings
field-surveyed on the ground, accounting for 8.3% of buildings and covering all numbers
of floors in this village, were randomly selected and employed to verify the classification
results of building heights in this study. As mentioned in Section 4.2, the height of the
building at one sample point was overestimated because the roof was covered by the
vegetation canopy. The overall accuracy of the classification results was 0.94. As the
property rights and structures of the rural buildings were investigated and confirmed in
the field survey, the building height error was primarily due to the instability in the drone
flight conditions and the overestimation of the roof height caused by trees. In future studies,
we will adopt mathematical morphological methods to eliminate interference factors and
to further optimize the accuracy of the building boundaries identified by deep learning
methods and elevation extraction using UAV oblique photogrammetry.

6. Conclusions

Rapid and accurate building extraction and floor area estimation at the village level
are of great significance for the overall planning of rural development and intensive
land use. In this study, we proposed a comprehensive method to estimate village-level
homestead areas by combining UAV remote sensing and deep learning technology. First,
the building footprints were identified using the proposed EDSANet model, which merged
dual attention extraction and attention feature refinement to aggregate multi-level semantics
and enhance the performance of building extraction, especially for high-spatial-resolution
images. Then, the number of floors of each building was estimated using the nDSM model
generated from UAV oblique photogrammetry. The floor area of the entire village was
estimated by multiplying the floor area of each building by the number of floors in the
village. The case study was conducted in Helan village, Shaanxi province, China. The
results show that the overall accuracy of the building extraction with the EDSANet model
from UAV images was 0.929, with the precision reaching 0.876. The buildings in Helan
village are primarily composed of two stories and have a total floor area of 3.1 × 105 m2.
The field survey verified that the accuracy of the nDSM model was 0.94; the RMSE was 0.243.
The experimental results demonstrate that the proposed workflow, combining UAV remote
sensing and deep learning technology, can aid in rapid and efficient building extraction
and floor area estimation at the village level in China, as well as worldwide.
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