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Abstract: Data assimilation methods have been used to improve the performances of land surface
models by integrating remote sensing and in situ measurements. However, the impact of data
assimilation on improving the forecast of land surface variables has not been well studied, which is
essential for weather and hydrology forecasting. In this study, a multi-pass land data assimilation
scheme (MLDAS) based on the Noah-MP model was used to predict short-term land surface variables
(e.g., sensible heat fluxes (H), latent heat fluxes (LE), and surface soil moisture (SM)) by jointly
assimilating soil moisture, leaf area index (LAI) and solar-induced chlorophyll fluorescence (SIF).
The test was conducted at the Mead site during the growing season (1 May to 30 September) in 2003,
2004, and 2005. Four assimilation-prediction scenarios (assimilating for 15 days, 45 days, 75 days,
and 105 days from 1 May, then predicting one future month) are adapted to evaluate the influence
of assimilation on subsequent prediction against Noah-MP open-loop simulation (OL). On average,
MLDAS produces 28.65%, 27.79%, and 19.15% lower root square deviations (RMSD) for daily H,
LE, and SM prediction compared to open-loop run, respectively. The influence of assimilation on
prediction can reach around 60 days and 100 days for H (LE) and SM, respectively. Our findings
indicate that data assimilation can improve the accuracy of land surface variables in a short-term
prediction period.

Keywords: sensible heat flux; latent heat flux; short-term prediction; ensemble Kalman filter; Noah-MP

1. Introduction

It is critical to monitor and predict land surface variables related to vegetation dy-
namics, water and carbon fluxes, which are essential for better understanding complex
land–atmosphere interactions and climate change [1–3]. Process-based land surface models
(LSMs) make it possible to simulate land surface variables and represent complex land
surface processes [4]. A series of models have been developed to study land and lower
atmosphere conditions. Among them, the Noah with multi-parameterization model (Noah-
MP model) significantly improves the simulations of land surface vegetation and heat
fluxes with its advantages of using multiple optional parameterization schemes to interpret
the differences in modeling simulations [5].

While LSMs can provide temporally and spatially continuous simulations of land
surface variables, there are still substantial uncertainties caused by initial conditions, forcing
data, interactions between land surface and atmosphere, and model physics within LSMs,
leading to significant differences between simulation and reality [6]. Data assimilation (DA)
methods that can merge observational information into process-based LSMs can constrain
parameters and optimize the simulations of land surface variables. Most data assimilation
schemes are developed with variational-based or ensemble-based methods to improve
the performance of LSMs [4–8]. Based on the assimilation theories, various observational
variables such as land surface temperature (LST), leaf area index (LAI), and soil moisture
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(SM) observations have been assimilated into LSMs, improving the simulations of land
surface variables from LSMs. For instance, assimilation of SM improves the estimation of
evapotranspiration [9,10], and assimilation of LAI optimizes estimates of carbon fluxes of
gross primary production (GPP) and net ecosystem exchange (NEE) [11–13].

It is notable that these traditional data assimilation frameworks are built with a sin-
gle or dual observational variable assimilated into theprocess-based models [11,14,15]. Al-
bergel et al. [16] found that root zone soil moisture (RZSM) can benefit from the assimilation
of SM and LAI, which indicates that assimilation of multi-variables at once may improve
the performance of land surface variable simulations. Recently, a multi-pass land data
assimilation scheme (MLDAS) has been proposed, which can assimilate different observa-
tional variables into LSMs to optimize simulations of land surface variables all at once [17].
As different observed variables are jointly assimilated, MLDAS potentially improves the
capability of LSM simulations.

Although some data assimilation schemes have been constructed within LSMs to better
simulate land surface variables, few studies are focused on the potential of improvement
of predictivity skills brought by data assimilation. It is believed that uncertainties of land
surface forecast mainly arise from initial conditions (ICs), meteorological forcing, and errors
in model structure, and initial conditions play an important role among them. Wood and
Lettenmaier [7] evaluated the relative importance of initial conditions and meteorological
forcing in hydrologic forecast and discovered that initial conditions dominated the forecast
in some cases. Sawada et al. [18] assimilated microwave brightness temperature into a
land surface model for better monitoring and forecast of agricultural drought. The results
showed that data assimilation especially sequential data assimilation may provide more
accurate initial conditions that lead to better LAI and SM forecasts, which were likely to
benefit agricultural drought monitoring. Quantities of data assimilation experiments have
proved that accurate initial conditions are crucial for prediction, but the observational data
are assimilated into the LSM separately in those experiments. It is a topic of interest to
test whether assimilating several land surface variables into LSM jointly would improve
prediction of LSMs.

The objective of this study is to test whether Noah-MP LSM coupled with MLDAS
(Noah-MP-MLDAS) can better predict land surface variables such as LAI, SM, sensible
heat flux (H) and latent heat flux (LE) compared to Noah-MP open-loop simulations (OL)
(simulations of Noah-MP without assimilation). Assimilating for 15 days, 45 days, 75 days,
and 105 days from May 1st, four sets of data assimilation experiments (four scenarios) were
designed and conducted at an AmeriFlux crop site, namely Mead (Mead, NE, USA) during
the growing season (1 May to 1 October) in 2003, 2004 and 2005, respectively. The SM, H,
and LE assimilation outputs for the growing season served as benchmarks for evaluating
the predictability of MLDAS and open-loop run (OL), the duration of impact on prediction
in each scenario was further evaluated. This study demonstrates how data assimilation can
improve the prediction capability of LSM and is expected to be useful for scientific research
on LSM prediction and agricultural monitoring.

2. Materials and Methods
2.1. Data

The assimilation-prediction experiment was conducted using MLDAS at the Amer-
iFlux Mead (US-Ne1) site, which is located at the University of Nebraska Agricultural
Research and Development Center. There are 3 sites (US-Ne1, US-Ne2, and US-Ne3) over
Mead which are within 1.6 km of each other. Site 1 (US-Ne1), used in our study, is an
irrigated site covered by corn [19].

Meteorological forcing data of the Mead site, including air temperature, pressure,
humidity, precipitation, wind speed, incoming shortwave and longwave radiation used to
drive Noah-MP, were downloaded from AmeriFlux (http://ameriflux.lbl.gov/, accessed
on 7 October 2021). LAI and SM were also acquired from the AmeriFlux database. SM
was measured at depths of 0.02, 0.05, and 0.1 m, which was averaged to be consistent with
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the topsoil layer of Noah-MP (0.1m) [17]. The remotely-sensed solar-induced chlorophyll
fluorescence (SIF) products with the spatiotemporal resolution of 5 km and 4 days were
available via https://osf.io/8xqy6/?view_only=4d14a64b7be644d-39564c82a371e1d20 (ac-
cessed on 1 November 2021) [20].

2.2. Noah-MP Model

Noah-MP is enhanced from Noah LSM [21] with expanded and multi-parameterization
options [4,5]. A two-source energy balance module, short-term dynamic vegetation growth
model, modified two-stream radiation transfer scheme, dynamic groundwater component,
and multilayer snowpack are included in Noah-MP LSM. The multi-parameterization
options make it possible for users to try combinations of parameters in different modules to
optimize the model performance, such as leaf dynamics, surface-layer turbulence treatment,
canopy stomatal resistance, runoff, and groundwater [5]. A crop module has also been
added to Noah-MP LSM, improving the simulations of vegetation dynamics and turbulent
fluxes for corn and soybean by using several agricultural management data, such as
growing degree days (GDDs) and planting/harvesting dates [8,9,22].

2.3. Multi-Pass Land Data Assimilation Scheme

A multi-pass land data assimilation scheme (MLDAS) has been proposed based on
the Noah-MP model [4,5] and ensemble Kalman filter (EnKF) method. Unlike other data
assimilation (DA) methods, MLDAS can assimilate multisource remotely sensed or ground-
measured observations in multiple passes to optimize parameters and state variables
simultaneously. Currently, four passes have been built to assimilate LAI (pass I–pass II), SM
(pass III), and SIF (pass IV) to update specific leaf area (SLA), leaf biomass (LFMASS), SM
and maximum carboxylation rate at a reference temperature of 25 ◦C (Vcmax25) in MLDAS
successfully [17]. Pass I to pass II are designed to update simulation on plant productivity,
ecological behavior and plant growing rates, which are key factors for vegetation status and
evapotranspiration. SLA is defined as ratio of LAI to LFMASS, so LAI can be assimilated in
two passes to update these two parameters jointly. In pass I, LAI is assimilated to update
the constant parameter SLA which is equivalent to BIO2LAI in Noah-MP. In pass II, state
variable LFMASS is updated. SM is updated in pass III directly. Through assimilating SIF
in pass IV, we can optimize Vcmax25 to better control carbon assimilation processes and
represent plant productivity [23].

In our study, four passes were opened to jointly assimilate LAI, SM and SIF. LAI
observations will be assimilated when available, and SM and SIF observations will be
assimilated when available at daily and four-day intervals, respectively.

2.4. Experiments Setup

In this study, the MLDAS system was used to test the impact of data assimilation on
land surface variable prediction. Using the same atmospheric forcing data, the MLDAS
predictions (red arrows in Figure 1) were compared with simulations of Noah-MP OL
(without assimilation, blue arrow in Figure 1) to evaluate the influence of assimilation
on predictions. Four assimilation-prediction scenarios (assimilating for 15 days, 45 days,
75 days, and 105 days from 1 May, and then predicting until 1 October) were adapted
during the growing season (1 May to 30 September) in 2003, 2004, and 2005, respectively (as
shown in Figure 1). Furthermore, considering that the differences between OL and MLDAS
are significant in the first month of prediction, the first 30 days of the prediction period
of each scenario (15 May–15 June, 15 June–15 July, 15 July–15 August, and 15 August–15
September for scenario I, II, III, and IV, respectively) were used for statistical analysis.
This part corresponds to the red-dashed lines in Figure 1. Notably, the main goal of this
study was to assess to what extent data assimilation could influence the prediction of land
surface variables, so we took the output of assimilation for the whole growing season
(1 May to 30 September) as the “benchmarks” that contain information from both models
and observations considering the uncertainties in raw observations. The “benchmarks”
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corresponds to the green arrow in Figure 1 and will be further compared with the prediction
of MLDAS and OL.
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Figure 1. Diagram for four assimilation scenarios. The green arrow represents benchmarks with data
assimilation; the blue arrow represents Noah-MP Open-Loop run (without data assimilation); the
red arrows represent the prediction of LAI, SM, H, or LE; and the dashed lines in red arrows are the
first-month prediction used for statistical analysis.

Here, normalized information contribution (NICRMSD) was adapted to quantify the
differences between MLDAS and OL, which was defined by Equation (1) [24]. RMSDAnalysis
(RMSDModel) refers to RMSD between “benchmarks” and MLDAS (OL). A positive NICRMSD
indicates the prediction of MLDAS is improved compared with OL. A negative NICRMSD
means degradation. Besides, the relative difference (RD) between OL and MLDAS defined
by Equation (2) was used to show how long the influence of assimilation exists during the
prediction period. RD in the equation is relative difference, LSVModel and LSVAnalysis are
simulations of land surface variables (LSV) from OL and MLDAS, respectively.

NICRMSD =
RMSDModel − RMSDAnalysis

RMSDModel
× 100 (1)

RD =

∣∣∣LSVModel − LSVAnalysis

∣∣∣
LSVModel

× 100 (2)

3. Results
3.1. Impacts of Assimilation on Land Surface Variables Prediction

The output time step of MLDAS is 30 min, so H, LE, and SM predictions were daytime-
averaged (09:00–18:00, local time) for further estimates within all assimilation-prediction
scenarios. As with each assimilation scenario, a short-term prediction (forecasting lead time
of 30 days) for LAI, SM, H, and LE was conducted separately in MLDAS and OL. NICRMSD
was used to show the advances in land surface variables prediction by MLDAS compared
with Noah-MP OL.

3.1.1. Leaf Area Index

Figure 2 shows the prediction of LAI in MLDAS and OL at the Mead site from 2003
to 2005. Since LAI observations are limited, the ground-measured LAI was used as the
references in this section, and NICRMSD of LAI was not calculated herein. As shown,
MLDAS performs better than OL in most scenarios compared to ground-measured LAI. In
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general, LAI is tended to be overestimated, especially during DOY 180–220 in OL. MLDAS
corrects the overestimation and produces predictions that can better fit LAI observations,
suggesting that assimilation can bring better prediction skills to MLDAS. However, as
Figure 2 shows, the prediction skill of MLDAS is worsened in scenario I assimilating
for 15 days in 2004 and 2005. This is because only one set of LAI observations with
relatively low values was assimilated into the Noah-MP model, bringing uncertainties to
future prediction. In contrast, longer assimilation then prediction generally leads to better
predictions of LAI peaks, which are especially better captured in scenario III from 2003 to
2005. It is also notable that the correction in MLDAS is most obvious in midsummer, when
LAI is at peak. Correction brought by MLDAS is no longer evident compared with OL after
midsummer (scenario IV).
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Figure 2. Leaf area index simulation and prediction from OL and MLDAS in 2003–2005. Results of
four assimilation scenarios with different assimilation periods are given. Columns represent different
assimilation scenarios in each year. The blue line in each subplot represents MLDAS simulation and
prediction; the orange line in each subplot represents OL simulation; the red scatters represent LAI
observations; and the shaded regions are the assimilation period, which starts from 1 May and lasts
for 15 days, 45 days, 75 days, and 105 days for scenarios I, II, III, and IV, respectively.

3.1.2. Soil Moisture

The statistics of RMSDAnalysis, RMSDModel, and NICRMSD at the Mead site from 2003 to
2005 are shown in Table 1. As is shown, 9 out of 12 experiments experience improvement in the
prediction from OL to MLDAS. The maximum relative difference is up to 60.41% in scenario
IV in 2003. There are three sets of experiments that appear to be a degradation of predicting
performance after assimilation. The NICRMSD is negative in scenarios I and II from 2003 to
2005, indicating that SM prediction improvements are unstable with a short data assimilation
period (i.e., 15 or 45 days). The NICRMSD of scenarios III and IV generally increases in all 3
years, suggesting that forecast performance is better with the extended assimilation period.
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Table 1. NICRMSD of soil moisture in different assimilation scenarios (I–IV) in 2003, 2004, and 2005.
Positive NICRMSD numbers are marked in bold.

Year 2003 2004 2005

RMSDModel
(m3/m3)

RMSDAnalysis

(m3/m3)
NICRMSD

(%)
RMSDModel

(m3/m3)
RMSDAnalysis

(m3/m3)
NICRMSD

(%)
RMSDModel

(m3/m3)
RMSDAnalysis

(m3/m3)
NICRMSD

(%)

Scenario I 0.0102 0.0106 −3.87 0.0233 0.0115 50.51 0.0084 0.0106 −26.50

Scenario II 0.0138 0.0136 1.23 0.0121 0.0136 −12.08 0.0469 0.0402 14.26

Scenario III 0.0386 0.0245 36.35 0.0224 0.0201 10.10 0.0251 0.0225 10.15

Scenario IV 0.0540 0.0214 60.41 0.0244 0.0166 31.93 0.0411 0.0227 44.83

The detailed impacts of data assimilation on SM prediction are shown in Figure 3.
As is shown, Noah-MP OL tends to overestimate SM at the Mead site from 2003 to 2005.
For assimilation-prediction scenarios I and II, the data assimilation performs similarly
to the OL. However, with longer data assimilation periods (scenarios III and IV), data
assimilation can significantly improve SM prediction compared to OL. For assimilation-
prediction scenario IV (assimilation of 105 days), the prediction of SM can reach even the
maximum and minimum benchmark values for the whole future month, indicating that
the data assimilation significantly impacts the prediction of future SM.
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Figure 3. Soil moisture simulation and prediction from OL and MLDAS in 2003–2005. Results of
four assimilation scenarios with different assimilation periods are given. Columns represent different
assimilation scenarios in each year. The red solid line in each subplot represents MLDAS simulation
and prediction; the blue dashed line in each subplot represents OL simulation; the green hollow
scatters represent SM benchmarks; the blue bars are precipitation; and the shaded regions are the
assimilation period, which starts from 1 May and lasts for 15 days, 45 days, 75 days, and 105 days for
scenario I, II, III, and IV, respectively.
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3.1.3. Sensible Heat Flux

The performance of H from OL and MLDAS with a prediction lead time of 30 days is
shown in Figure 4. Table 2 shows the NICRMSD of MLDAS and OL prediction in 2003 to 2005.
Overall, RMSDAnalysis is decreased compared to RMSDModel in 10 of the 12 experiments. The
result indicates that data assimilation can potentially improve the prediction skill of H in
the Noah-MP model. Larger NICRMSD can be seen in scenario IV (assimilation of 105 days)
with 57.07% in 2003, 47.80% in 2004, and 47.57% in 2005, indicating that a longer assimilation
period results in better prediction performance for H. On the contrary, NICRMSD is negative in
scenario I over 2003 and 2005, revealing that assimilating observations with large uncertainties
into the model does not improve the prediction performance, but even degrades it.
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Figure 4. Sensible heat fluxes prediction from OL and MLDAS in 2003–2005. Predictions of four
assimilation scenarios are given. Columns represent different assimilation scenarios in each year. The
red solid line in each subplot represents MLDAS prediction in one future month; the blue dashed line
in each subplot represents OL simulation; and the green hollow scatters represent H benchmarks.

Table 2. NICRMSD of sensible heat fluxes in different assimilation scenarios (I–IV) in 2003, 2004, and
2005. Positive NICRMSD numbers are marked in bold.

Year 2003 2004 2005

RMSDModel
(W/m2)

RMSDAnalysis

(W/m2)
NICRMSD

(%)
RMSDModel

(W/m2)
RMSDAnalysis

(W/m2)
NICRMSD

(%)
RMSDModel

(W/m2)
RMSDAnalysis

(W/m2)
NICRMSD

(%)

Scenario I 26.716 29.411 −10.09 48.168 46.886 2.66 36.926 52.082 −41.04

Scenario II 32.043 21.718 32.22 20.031 7.822 60.95 63.834 25.284 60.39

Scenario III 15.021 7.552 49.72 7.961 5.210 34.56 9.853 5.745 41.70

Scenario IV 22.453 9.640 57.07 12.422 6.484 47.80 34.707 18.198 47.57

Details on H prediction in different assimilation scenarios from 2003 to 2005 are given
in Figure 4. Considering that there are subtler differences in H prediction between MLDAS
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and OL compared with SM, H prediction from four scenarios with lead times of 30 days are
given to highlight the differences. In general, both MLDAS and OL can fit the benchmarks
quite well. In Scenario I, the OL slightly outperformed the MLDAS in prediction, especially
in 2003 and 2005. However, for scenarios II–IV, prediction in MLDAS can better capture the
variations in benchmarks both in trend and magnitude. Among scenarios II–IV, scenario II
(assimilation of 45 days) improves the prediction skill of MLDAS most significantly, which
can also be seen from NICRMSD in Table 2. Note that H predictions are relatively low with
some cases lower than −50 W/m2 in scenario II–IV. To confirm the accuracy of benchmarks
and predictions, raw observations of H from AmeriFlux were checked. There are also
several H observations smaller than 0 W/m2 at this site during the middle of summer,
indicating that the benchmarks and predictions are reliable here. Details regarding the
observations can be seen at: https://ameriflux.lbl.gov/data/download-data/ (accessed on
10 October 2022). There are probably two reasons for this. Firstly, it is probably because
SM simulations are generally higher than the benchmarks (as shown in Figure 3), making
H prediction lower than expected. Secondly, irrigation at this site in the middle of the
growing season may also be a factor influencing simulation on H. Moreover, the H and LE
are mainly affected by the atmospheric state variables (i.e., air temperature and specific
humidity) in wet and/or densely vegetated sites [25,26], not land surface variables (e.g.,
LAI, soil moisture). As it is very humid for scenario III (from Mid-July to Mid-August), the
differences between OL and MLDAS will be small.

3.1.4. Latent Heat Flux

Statistical evaluation metrics (i.e., RMSDAnalysis, RMSDModel, NICRMSD) of LE predic-
tions are summarized in Table 3. In general, data assimilation significantly improves the
prediction skill of LE, and 10 out of 12 experiments obtain positive NICRMSD. Similarly, the
MLDAS prediction is slightly worse compared to OL in scenario I (assimilation for 15 days),
with a negative NICRMSD for 2003 and 2005. The prediction performance in MLDAS is
improved rapidly in scenarios II–IV, which is similar than that of H. As for the trend of
NICRMSD, NICRMSD increased from 25.69% to 58.08% with a longer assimilation period
in 2003. However, the highest NICRMSD falls in scenario II in 2004 and 2005 (57.34% and
61.56%, respectively), which is similar than the trend of NICRMSD in H.

Table 3. NICRMSD of latent heat fluxes in different assimilation scenarios (I–IV) in 2003, 2004, and
2005. Positive NICRMSD numbers are marked in bold.

Year 2003 2004 2005

RMSDModel
(W/m2)

RMSDAnalysis

(W/m2)
NICRMSD

(%)
RMSDModel

(W/m2)
RMSDAnalysis

(W/m2)
NICRMSD

(%)
RMSDModel

(W/m2)
RMSDAnalysis

(W/m2)
NICRMSD

(%)

Scenario I 31.121 33.785 −8.56 56.808 54.251 4.50 44.714 59.053 −32.07

Scenario II 36.858 27.390 25.69 22.309 9.517 57.34 69.300 26.642 61.56

Scenario III 21.382 11.165 47.79 11.749 7.763 33.93 13.545 8.009 40.87

Scenario IV 32.459 13.608 58.08 17.408 9.235 46.95 39.647 21.527 45.70

Figure 5 shows the comparison of the LE prediction with a lead time of 30 days
between MLDAS and OL. Prediction in MLDAS, especially in scenarios II and IV of each
year, is closer to the benchmarks in most experiments. The most apparent improvement
can be seen in scenario II, where OL tends to overestimate LE while MLDAS corrects it.
Moreover, the differences between MLDAS prediction and OL prediction diminish with
lead time in scenario II over 3 years, indicating that the prediction skill brought by data
assimilation also decreases with forecast lead time.

https://ameriflux.lbl.gov/data/download-data/
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Figure 5. Latent heat flux predictions from OL and MLDAS in 2003–2005. Predictions of four
assimilation scenarios are given. Columns represent different assimilation scenarios in each year. The
red solid line in each subplot represents MLDAS prediction in one future month; the blue dashed line
in each subplot represents OL simulation; and the green hollow scatters represent LE benchmarks.

3.2. Duration of Impact of Data Assimilation on Prediction

This work focuses not only on whether data assimilation improves the performance of
prediction, but also on how long the effect exists. Previous results have demonstrated that
MLDAS does have the potential to improve the prediction skill of Noah-MP compared to
OL, and specific comparisons are summarized in Tables 1–3. Therefore, it is necessary to
analyze the impact of assimilation on the duration of the prediction. Herein, SM and LE
are chosen to demonstrate this issue.

The overall dynamic changes of RD over four scenarios from 2003 to 2005 are given
in Figures 6 and 7. The RD of SM prediction is given in Figure 6. As indicated, RD in
each of the four scenarios decreases with the forecast lead time, suggesting that improved
prediction skill brought by data assimilation degrades with time. RD in scenario IV is
generally larger than other scenarios and the decreasing tendency is not as clear as other
scenarios. Figure 7 shows how RD of LE prediction changes over forecast lead time.
Generally, the trend that RD diminishes with lead time is clear in scenarios I and II over the
3 years. Minimum fluctuations of RD can be seen in scenario III (assimilation for 75 days),
where RD is less than 10% and close to 0% over most of the lead time, and corresponding
changes can also be seen in scenario III of Figure 6. No significant trend of decreasing RD
was found in scenario IV, indicating that the impact of data assimilation in scenario IV may
persist for a longer period.
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Scenario I (assimilation for 15 days) of each year (2003, 2004, and 2005) is chosen
to show how RD changes with forecast lead time so that the forecast lead time can be
long enough for evaluation. Figure 8 shows the RD of SM over the 3 years. Overall,
the influence of assimilation on prediction also diminishes with forecast lead days. The
impact of assimilation lasted for around 80 days, 70 days, and 100 days in 2003, 2004, and
2005, respectively. Then the RD converges to around 0. Additionally, precipitation is also
an essential factor that affects SM simulation. There is a good correspondence between
precipitation events and fluctuation of RD between MLDAS and OL before convergence
(as shown in the grey parts). As is shown, RD between MLDAS and OL becomes smaller
when precipitation happens, and RD increases fast without precipitation (i.e., 20–40 days
in 2005), confirming that accurate precipitation inputs are important for SM prediction.
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Figure 8. RD between OL and MLDAS of soil moisture prediction in scenario I in 2003, 2004, and 2005.
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Figure 9 shows detailed RD of LE prediction between MLDAS and OL. Similar to SM
prediction, the overall tendency of RD diminishes with lead time and apparent fluctuation
can be seen in the first 20 to 30 forecast lead days. The RD also converged to around 0 at
around 60, 55, and 55 lead days in 2003, 2004, and 2005, respectively.
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4. Discussion
4.1. Can MLDAS Improve the near Future Prediction Performance?

Most NICRMSD of H, LE, and SM are positive within four data assimilation scenarios,
indicating that MLDAS outperforms OL during the prediction period. It is widely accepted
that forecasting errors arise from the uncertainty of initial conditions, model structure and
parameters, interactions between land surface and atmosphere, and atmospheric forcing.
Previous studies have found that accurate initial conditions are essential for better predic-
tions of land surface variables in LSM [7,27,28]. Wood and Lettenmaier [7] evaluated the
relative importance of initial conditions and meteorological forcing in seasonal hydrological
forecast and found that initial conditions were more important than meteorological forcing.
Here, the initial conditions provided by process-based models (MLDAS or OL) are crucial
for future prediction as they determine where the prediction begins. In particular, the
forcing data used in our study are from AmeriFlux observations instead of forecasted
atmospheric reanalysis, making it possible to highlight the influence of initial conditions on
prediction. However, given that the forcing data used here are AmeriFlux observations with
high accuracy, the impact of initial conditions may become overestimated and uncertainties
in forcing data may not be well represented. Here, for a point-scale simulation driven
by AmeriFlux observations, the prediction was likely to be more accurate if the initial
condition was close to the “benchmark”. For instance, in Figure 3, the initial conditions of
SM prediction are different between MLDAS and OL in assimilation-prediction scenario I
(assimilation for 15 days) in 2004 (DOY 136, the edge of the grey region), with SM provided
by MLDAS (red solid line) closer to the “benchmark”. Accordingly, NICRMSD is 50.51%,
indicating that assimilation (assimilation for 15 days) can improve the performance of
prediction, despite being rare in scenario I. Hence, initial conditions play an essential role
in the performance of prediction [18].

Due to the climatic characteristics of the site, though overall prediction skill of SM,
H, and LE is increased in MLDAS compared with that of OL, prediction performance in
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different assimilation scenario varies. For instance, as mentioned above, the prediction
performance of scenario I is not as good as expected and even degrades in some experiments
such as SM, H, and LE prediction in 2005. For the other three scenarios (especially scenario
IV) MLDAS received better responses in most experiments. The seasonal transition of land
surface variables such as LAI may influence the prediction skill in different assimilation
scenarios. As in scenario I, initial conditions are in the spring/summer transition with
LAI around 0, which can be seen in Figure 2. Such a low LAI is likely to bring high
uncertainties to data assimilation, which lowers the accuracy and reliability of initial
conditions and worsens the prediction skill of MLDAS. However, as in scenarios II to
IV, the prediction experiments are conducted during the summer or summer/autumn
transition with relatively higher LAI. Furthermore, assimilation of SIF in pass IV updates
Vcmax25, which is by default a fixed parameter depending on vegetation type in Noah-
MP, leading to better LAI simulation. Hence, LAI is assimilated effectively, and lower
uncertainty is introduced so that initial conditions are more reliable, contributing to better
prediction performance of MLDAS. Regional climate and corresponding phenology are
crucial in the forecast framework dominated by initial conditions [7,18], so we suggest that
initial conditions for prediction should be carefully checked, considering the uncertainties
introduced from climate variations of assimilated land surface variables.

4.2. How Long Does the Influence of Assimilation Exist?

Overall, as Figures 6–9 show, the RD between OL and MLDAS diminishes and con-
verges to around 0 with forecast lead time, suggesting that assimilation exerts significant
influence on prediction during the early prediction period. A similar pattern can be seen in
other forecast work with LSM [6]. Relatively accurate initial conditions from data assimila-
tion play an important role during the early prediction period, while the prediction skill
brought by initial conditions decreases with lead time due to uncertainties in forcing data.
As mentioned in Section 4.1, uncertainties in forcing data are not well considered here.
However, the relatively ‘perfect’ forcing data makes it possible to emphasize the impact of
initial conditions on prediction. It can be assumed that the influence of initial conditions on
prediction decreases with lead time and disappears when RD converges to around 0.

As with fluxes prediction, the impact of assimilation can last for around 60 days.
Compared with fluxes prediction, the impact of assimilation on SM prediction generally
lasts longer, which can reach around 100 days. This can be explained through the fact
that turbulent fluxes are not only controlled by assimilated SM, LAI, and SIF, but also
by atmospheric conditions such as advection, condensation, and evaporation during the
growing season [29]. Using the same set of AmeriFlux observations as forcing data, it can
be considered that the influence of initial conditions for LE prediction is not as significant
as that in SM. Furthermore, in the model, LE is updated indirectly by assimilating LAI, SM,
and SIF, causing the impact of assimilation on turbulent fluxes prediction to last a shorter
amount of time than that of SM. Several studies have also shown that initial conditions
of SM significantly impact weather forecast skills in the short or medium range [30–32].
Using AmeriFlux observations as forcing data, uncertainties introduced from precipitation
and radiation was not well represented in this study. Coupling WRF to test the forecast
skill of MLDAS more comprehensively is needed in the future.

5. Conclusions

In this study, four data assimilation scenarios were adapted to evaluate whether the
assimilation of SM, LAI, and SIF can jointly increase the prediction performance of MLDAS.
Data assimilation experiments were conducted during the growing season over 3 years at
an AmeriFlux site. With more accurate initial conditions provided by data assimilation,
predictions from MLDAS outperform those from OL. On average, MLDAS produces 28.65%,
27.79%, and 19.15% lower root square deviations (RMSD) for daily H, LE, and SM prediction
compared to OL. Moreover, the results also indicate that the impact of assimilation on SM
prediction can last longer (around 100 days) than that of LE (around 60 days). Our work
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proves that data assimilation can potentially increase the short-term prediction skill of
LSMs. Considering that our assimilation-prediction test was conducted at only one site,
more sites with different climates and land cover conditions need to be included in our
assimilation-prediction experiments to draw some more general conclusions in the future.
Furthermore, Noah-MP should be further coupled with atmospheric models (e.g., WRF) to
test whether data assimilation influences meteorological forcing, which can give feedback
on real-time land surface variable forecasts.
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