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Abstract: With the foreseen increase in population and the reliance on water as a key input for
agricultural production, greater demand will be placed on freshwater supplies. The objective of
this work was to present the newly developed Android smartphone application to calculate crop
evapotranspiration in real-time to support field-scale irrigation management. As part of the answer
to water shortage, we embraced technology by developing AgSAT, a Google Earth Engine-based
application that optimizes water use for food production. AgSAT uses meteorological data to calculate
daily water requirements using the ASCE-Penman–Monteith method (ETref) and vegetation indices
from satellite imagery to derive the basal crop growth coefficient, Kcb. The performance of AgSAT
to estimate ETref was assessed using climatic data from 18 meteorological stations distributed over
several climatic zones worldwide. ETref estimation through the app showed acceptable results with
values of 1.27, 0.9, 0.79, 0.95, and 0.5 for root mean square error (RMSE), correlation coefficient (r),
modeling efficiency (NSE), concordance index (d), and percentage bias (Pbias), respectively. AgSAT
guides gross irrigation requirements for crops and rationalizes water quantities used in agricultural
production. AgSAT has been released, is currently in use by research scientists, agricultural producers,
and irrigation managers, and is freely accessible from the Google Play and IOS Store and also at
agsat.app. Our work is geared towards the development of remote sensing-based technologies that
transfer significant benefits to farmers and water-saving efforts.

Keywords: precision farming; smart irrigation; food production; remote sensing; smart-phone
application; Sentinel-2; AgSAT

1. Introduction

About 85% of the total water resources available worldwide are exclusively used for
irrigation purposes [1]. Smartly managing these freshwater resources for precision irriga-
tion in agriculture is essential for enhancing crop yield and water productivity, improving
irrigation scheduling, and decreasing farming costs while sustaining the environment [2–7].
Smart irrigation scheduling has evolved from computer-based tools and programs such as
CROPWAT [8], consumptive use program (CUP) [9], and Washington Irrigation Scheduling
Expert (WISE) [10], to recently incorporate the Internet of Things (IoT). The IoT emerged as
the means for smart water management applications by offering easy-to-use methods and
real-time scheduling regarding water availability, crop water requirements, soil and weather
conditions, and crop response to stress. In this context, a shift from traditional irrigation
methods to real-time smart irrigation automation using low-cost sensors, weather data, and
water balance or evapotranspiration modeling approaches is now gaining attention [11].

Many researchers reported using internet and communication tools (ICT) in irrigation
applications [12,13]. ICT include cloud-based technologies for data acquisition transmission
and management, soil–plant–atmosphere and irrigation performance monitoring, and
remote control of the irrigation process [14]. The literature shows a plethora of applications
of ICT in irrigation systems at the irrigation district-scale including using remote sensing,
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crop modeling, linear regressions, and neural approaches for water demand forecast,
and remote control of irrigation processes (see, for example, Bartlett et al. [15]; Sesma
et al. [16], Pulido-Calvo et al. [17]). Perea et al. [18] established an ICT-based system for
scheduling and managing irrigation at the micro-scale level (i.e., a strawberry farm), using
the principles of precision irrigation. However, many of these tools remain within the realm
of research institutions, and few reach out to farmers for direct field applications, leaving
them with limited on-farm technology access and with reliance on traditional irrigation
scheduling methods that often reduce yield and water productivity.

There is also growing attention towards the development of web and software-based
irrigation scheduling tools for estimating site-specific water requirements at various scales,
which has better chances of farmer’s accessibility. One of the most significant advantages of
using smartphone applications is that they represent instances of portable and simple-to-use
technology, allowing for real-time decision-making. Some of these tools integrate real-time
weather data with crop-specific ET or water budgeting methods [19–21]. Some web-based
applications have also been developed, such as Wateright [22], and Crop Manage [23].
Moreover, several public agencies have developed online irrigation scheduling services,
including IRRINET in Italy [24], IrriSatSMS [25] in Australia, IRRISA in France [26], and
ISS-ITAP in Spain [27].

Although the earlier mentioned irrigation scheduling systems’ (e.g., ICs, sensors, web
platforms, apps, and online irrigation services) costs are generally falling, for growers of
moderate- to low-profit crops, this technology may still be cost-unaffordable if it does
not significantly increase farmer income [28]. In addition, the computerized irrigation
technologies have limited on-field applicability due to the need for desktop computers,
which represents one other significant barrier that hampers their adoption by farmers.
Such web-based tools may have limited user interaction and rely heavily on frequent user-
follow up using a laptop or desktop computer. Farmers readily adopt simple technologies
that require limited knowledge and skills, such as auto-steer machinery, irrigation pivots,
sprinklers, and others. However, the implementation of information-intensive technologies
is often limited. These innovations may require further investments in hiring external
services to train farmers [29–31]. While the available literature has tended to focus on major
advancements in smart irrigation applications, many agricultural regions in the world
lack the availability of the above technologies. Less-skilled farmers in countries where
agriculture is viewed as a chief economic sector are often held back from the potential
adoption of such technologies.

The increased use of smartphones, combined with weather data availability, has cre-
ated an excellent environment for developing and deploying smartphone applications for
calculating crop water requirements in near real-time. Several smart irrigation mobile apps
were designed using this approach. In contrast to web-based tools, smartphone applications
provide increased operational flexibility, simplicity in control, and continuous user–tool
interaction. Smart Irrigation apps (for example, those developed by the Universities of
Florida and Georgia) may offer real-time irrigation schedules for commercially valuable
seasonal and perennial selected crops, including strawberry, avocado, citrus, peanut, cot-
ton, and vegetables. The irrigation schedule is based on the integration of weather and
short-term forecasted data with crop evapotranspiration (ETc) or water balance approach.
Such apps are customized according to the users’ practices in terms of the used irrigation
systems, splitting irrigation events, water conservation options, and other management
methods. While the limitation of these apps is the spatial variability of rainfall, their vali-
dation over multiple seasons at field level in water savings for lawn, tomato, and citrus
are 57, 33, and 24%, respectively [18,32,33]. Blueleaf is another example of a smartphone
application developed in partnership with IAM (Institut Agronomique Méditerannéen) of
Bari (Italy), the CNR of Italy, and a consortium of Italian enterprises [12]. Daily soil-water
balance is modeled based on station weather data, and farmers need to add a range of
required information into the application and install a soil moisture probe, making the
app laborious to use. Another example of smartphone apps with similar capabilities is
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the Colorado State University WISE Irrigation Scheduler [15]. Recently, the EVAPO app
was developed that provides reference point ET data based on the NASA-POWER system.
However, the grid size of the weather data has a spatial resolution of 1 × 1◦, or 12347 km2

(111.12 × 111.12 km) at the equator [34].
Evapotranspiration is a key parameter for hydrological and climatological studies,

as well as for agricultural water resources management, such as irrigation management
and planning. Several empirical methods to estimate reference evapotranspiration have
been developed in the past 50 years, with the ASCE-Penman–Monteith method being the
most accurate one under different climatic conditions [35]. The availability of high spatial
resolutions of satellite imagery that is publicly available nowadays (such as the Sentinel-2
imagery from the Copernicus mission of the European Space Agency) and the long period
of records of Landsat imagery provides opportunities to develop operational and global
evapotranspiration (ET) datasets at field scales [36]. Our innovation avoids scalability
limitations and diverts from the availability of on-farm weather stations and soil sensors.

We developed the first global smart irrigation application (AgSAT), that relies on
remote sensing and gridded global weather data forecasts and, as such, has near real-
time operational capability. The application was released to the Google Play store in
English and Arabic. The app performs on-demand satellite and climate data processing
through Google’s Earth Engine-enabling environment. It provides crop water requirements
based on crop growth coefficients derived from remotely sensed vegetation indices at a
resolution of 10m and based on reference evapotranspiration calculated every six hours and
populated to the daily interval from the coupled rorecast system model version 2 (CFSV2).
The objectives of this study were to (1) provide a general overview of the AgSAT app,
(2) evaluate the remote-sensing-based approach for calculating ETref through comparison
against meteorological data collected from 18 weather stations at various locations in
different climatic regions and temporal scales (daily and monthly), and (3) asses the
remotely sensed estimates of ETref and Kc at plot scale over an irrigated potato field,
located in Lebanon at the Agriculture Research and Education Center (AREC) during
the growing season of 12 March–15 July 2020. Therefore, we aimed to demonstrate the
operational application of AgSAT to monitor irrigation water use at the field level and
global scales.

2. AgSAT App Conceptual Framework
2.1. Model Overview: Crop Water Requirement Based on FAO 56 Approach

Several studies have reported that the FAO-56 Penman–Monteith (FAO-PM) model,
which has been tested in many regions of the world, is renowned for being the most
accurate under different climatic conditions [35]. The model for crop water requirements
used in the AgSAT app is based on the FAO-56 approach. We provided, herein, a brief
description of the main calculations. The FAO-56 is based on the concept of reference
evapotranspiration for standard, well-watered crops by crop coefficients to account for the
influences of ET during the growing season. Therefore, the actual crop evapotranspiration
is estimated as follows:

ET = Kcb × ETre f (1)

where ET is the actual evapotranspiration, Kcb is the basal crop coefficient, and ETref is the
reference evapotranspiration.

AgSAT calculates the ASCE Standardized Penman–Monteith evapotranspiration prod-
uct (ETref ) using the 6 h CFSV2 gridded (0.2 arc degrees) weather dataset available in
Google Earth Engine data generated by the National Centers for Environmental Predic-
tion (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) [36]. The
CFSV2 version 2 was developed at the Environmental Modeling Center at NCEP. CFSV2 is
a fully coupled model representing the interaction between the Earth’s atmosphere, oceans,
land, and sea ice. Currently, CFSV2 is the global weather reanalysis and forecast with the
highest temporal and spatial resolution to allow for real-time reference evapotranspiration
calculations and forecasts on Google Earth Engine. Other available datasets or systems
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(e.g., GLDAS, NASA-POWER, ECMWF) are either unavailable in near real-time unless
paid for or have a lower resolution. Each grid of the CFSV2 file covers an approximate area
of 490 km2. We used the weather variables in Table 1 for deriving ETref after adjusting the
wind-speed to 2 m height. In the ASCE-Penman–Monteith equation, the surface resistance
rs is computed from the leaf area index (LAI), which is a function of the height specified
for the reference type, usually either grass or alfalfa. Algorithms for LAI depend on the
reference type. Therefore, the value of rs (and the aerodynamic resistance ra) will change
with the height specified for the reference. Based on the ASCE LAI algorithms, the values
for rs for 24-hour time steps are rs = 70 s m−1 for 0.12 m tall grass and rs = 45 s m−1 for 0.5 m
tall alfalfa. Because the Penman–Monteith equation is well-documented in the scientific
literature, we did not repeat its presentation in this paper.

Table 1. Agrometeorological data from CFSV2, used for estimating the potential evapotranspiration
(PET) (a product of the reference evapotranspiration (ETref) and the basal crop coefficient (Kcb))
computed using the standardized ASCE-Penman–Monteith equation.

Agrometeorological Data Description Unit

Temp Temperature 2 m above
ground

Kelvin

U-wind U-component of wind 10 m
above ground

m s−1

V-wind V-component of wind 10 m
above ground

m s−1

Rs Downward short-wave
radiation flux at surface,

6-hour average

W m−2

RH_spec. Specific humidity 2 m above
ground

kg kg−1

Pressure_surface Pressure at surface Pa

The basal crop coefficient (Kcb) is a major variable determining crop transpiration, and
its estimation is necessary to determine crop water use. Crop coefficients have been shown
to correlate well with satellite-based vegetation indices, making their remote estimation
from operational platforms practical [37–39]. The normalized difference vegetation index
(NDVI) and other vegetation indices such as the soil-adjusted vegetation index (SAVI) and
the enhanced vegetation index (EVI) have been used as the main operational parameters to
monitor vegetation status using Earth Observation. These indices rely on the difference
in reflectance of vegetation (between the near-infrared band heavily reflected by healthy
vegetation and the red-band absorbed for photosynthesis). In 2015, the Copernicus ESA
mission made available the highest resolution (10 m) remotely sensed satellite imagery
from the Sentinel-2 satellite. Sentinel-2 is now available at 5-day revisit time, making
its utilization in vegetation monitoring helpful. We utilized the red (Band 4) and the
near-infrared band (Band 8A) of Sentinel-2 to derive the normalized difference vegetation
index and the soil-adjusted vegetation index (SAVI). Several researchers have provided
empirical equations to derive the crop coefficients from the NDVI and SAVI [38,40–43].
Kamble, Kilic, and Hubbard [38] developed a simple linear regression model between Kcb
calculated from the flux data measured for different crops and cropping practices using
AmeriFlux towers and MODIS NDVI. We adopted equations from the literature to derive
Kcb according to crop type (Table A1). We used a generic equation to calculate the crop
coefficient surrogate for crops that do not have a corresponding NDVI–Kcb relationship.
First, NDVI is transformed into a fractional vegetative cover (Fc) via empirical relationships
developed by USDA and NASA [37] as follows:

Fc = 1.26× NDVI − 0.18 (2)
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Kcb is determined using the generic equation as established by Melton et al. [44]
following methods described by Allen and Pereira [45]:

Kcb = −0.4766× F2
c + 1.4048× Fc + 0.15 (3)

For the derived NDVI/SAVI at 10 m, we masked out pixels of cloud shadow, adjacent
cloud, cloud, and cirrus. We interpolated the NDVI/SAVI from the latest available image
for masked pixels to a daily time step. The interpolated NDVI/SAVI were then used to
calculate the crop growth coefficient. Finally, the crop coefficient is multiplied by the daily
reference evapotranspiration for the field location as calculated from the gridded weather
data and forecasts for that location.

To calculate irrigation requirements, we prompt the user to input the on-farm irrigation
system, from which an irrigation efficiency can be assumed (Table 2), based on [46].

Table 2. Suggested irrigation efficiencies based on pressurized irrigation system types.

Irrigation System Suggested Efficiency

Hand-move or portable or side roll 70%
Traveling gun 65%

Center and Linear move 85%
Solid-set 75%

Drip or bubbler 85%
Micro-sprinkler 80%

Surface N/A

Irrigation efficiencies are used to calculate the gross irrigation requirement only if
the user delineates the field area (gross irrigation requirement= (net irrigation require-
ment/irrigation efficiency) * Area, where net irrigation requirement is the actual crop water
requirements calculated with an assumption of zero rainfall). Hence, gross water irrigation
requirements are provided under dry weather conditions. Once the user selects the valve
size irrigating the field, run-times (run time = total irrigation requirement/ discharge of
the water pump) are calculated from flow rates assuming design water flow velocity in
closed pipes of 1.5 m/s (which is recommended for flow in pressurized closed conduits).
Run-times are not calculated for surface irrigation systems and only refer to the total dura-
tion of irrigation needed for the field given the system type, the field area, and the valve
size (main or submain pipe size irrigating the field). No leaching requirement is included
in adjusting the run-time values, and it is assumed that the irrigation efficiencies will
handle necessary leaching, except for saline soils or irrigation water. AgSAT also provides
a five-day irrigation volume requirement should the user decide to lump irrigations every
five days in case the maximum available water in the root zone permits (applicable in
almost all soils expect sandy soils and shallow root-zone crops or crops at the initial stages
of development which may require more frequent irrigations with small amounts). The
system components and workflow of the app are shown in Figure 1.
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Figure 1. The workflow of the AgSAT application.

2.2. General Overview of AgSAT App

AgSAT is a smartphone app developed to support irrigation management. This
application estimates crop water-use and irrigation demand for several crops at a daily
time step. Through a user-friendly interface, farmers can input information specific to
their farms. Figure 2 provides a snapshot of the application interface. As the application
launches, the user is prompted to grant the app permission to read the location of the
device. After that, the user can either pinpoint the field of interest or can simply delineate
the field and save it after being prompted to select crop type, irrigation system type (used
to estimate irrigation efficiencies), and irrigation pipe size (for delineated fields only, and it
ranges from 1′ ′ to 6′ ′) from a drop-down list. In conjunction with the data provided by the
user, AgSAT provides crop water requirements based on crop growth coefficients derived
from remotely sensed vegetation indices (NDVI, SAVI, and Kcb) at a resolution of 10 m and
based on reference evapotranspiration calculated every six hours and populated to the daily
interval from the coupled forecast system model version 2 (CFSV2). In the ‘history’ tab of
the application, five days forecast of irrigation requirements based on ET and Kcb forecasts
from preceding satellite imagery is provided. The results are displayed for the user in a
popup window with a description for each variable, including crop evapotranspiration
(mm/day), the total volume of water requirements (m3/day), and irrigation run-time
(based on a system velocity of 1.5 m/s).
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2.3. AgSAT Technical Specifications

The app was developed using Java Programming Language for devices with android
operational systems. It is available on the Play store for download in two languages (English
and Arabic). AgSAT is supported on Android phones with operational system versions 5.1
and above. We used several external libraries to support different functionalities within
the app (OKHTTP for support HTTP requests, Firebase AUTH, Firebase Database, Play
Core, and MP Android Chart). We used the Firebase Real-Time Database to store and
fetch data and Firestore to store assets. Google maps, supported by Maps SDK (Software
Development Kit) for Android Utility Library, is the main activity where users can delineate
their field(s). AgSAT would require minimum user input to provide precise irrigation
values based on advanced back-end computations. Upon clicking the ‘delineate field’
button, the user is prompted to select different field attributes: pipe size (ranging from 1′ ′

to 6′ ′), pump strength, and crop type. Once the user selects these details and assigns the
corners of the field, the ‘Calculate ET’ button must be clicked to trigger an API request
necessary for fetching irrigation usage data for the selected location, considering its latitude
and longitude as per Google maps. The returned API results are displayed for the user in
a popup window with a description for each value. Additionally, the irrigation forecast
along with the irrigation history for already existing fields are displayed in a graph to
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monitor variations. Another feature of AgSAT is the ability for a user to specify a point
location, save it, name a field from the selected point, and get the irrigation value of this
point. A field of 50 by 50 m is mimicked for ET calculations by default for a point selection.

The app allows the user to save the selected field information. Once the current field
is saved, a screenshot of the delineated field with Google Earth Imagery as the background
is captured and stored in the Firebase Database by the users’ device ID. The app allows to
list all the selected fields, fetched by device ID as an index. To ensure privacy, users are
authenticated anonymously on Firebase with a unique ID. The user is then taken back to
the main map page where a new field is selected, and field information is specified. The
area of the field and the recommended irrigation duration are calculated in the background.

3. AgSAT ETref Performance Analyses
3.1. Direct Validation of AgSAT ETref against ETref from Various Weather Stations Worldwide

To evaluate the performance of AgSAT, we compared ETref estimated by the AgSAT
with the ETref calculated from meteorological data collected from 18 weather stations at
various locations in different climatic regions worldwide (USA, South America, Europe,
Africa, Asia) (Figure 3). The daily station ETref equation was calculated using the REF-
ET software of the University of Idaho. The agrometeorological data used from weather
stations were temperature (◦C), solar radiation (W m−2), and wind speed (m s−1). Some
weather networks included hourly minimum and maximum temperatures. At this step, the
daily min/max values were taken as the minimum of the hourly minimum temperatures
and a maximum of the hourly maximum temperatures. Clear sky solar radiation was used
when solar radiation data was missing. Solar radiation was calculated as recommended in
Allen, Walter, Elliott, Howell, Itenfisu, Jensen, and Snyder [36]. Both AgSAT and station
ETref evaluations were performed on a daily time step since a day is a typical time period
over which ETref is calculated and is generally the shortest period in which irrigation
practices are scheduled. The station location, longitude, latitude, elevation, climate zones,
and period of record for the available data needed for comparison are shown in Table 3.
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Table 3. Coordinates, altitude, elevation, wind speed height, climate, and source of studied sites.

Location Latitude Longitude Elevation
(m) Source Climate Period of

Record

Aguas Emendadas, Brazil 15◦35′47”S 47◦37′32”W 1030 INMET Aw 2015–2019
Monastir, Tunisia 35◦45′59”N 10◦49′59”E 12 Rp5 BSh 2015–2019

Islamabad, Pakistan 33◦37′0”N 73◦6′0”E 507 Rp5 BSh 2015–2019
Beijing, China 39◦56′59”N 116◦17′ 59”E 57 Rp5 BSk 2015–2019

Manama, Bahrain 26◦12′59”N 50◦34′59”E 8 Rp5 BWh 2015–2019
Adrar, Algeria 27◦50′0”N 0◦11′0”W 280 Rp5 BWh 2015–2019

Alexandria, Egypt 31◦11′1”N 29◦56′56”E −8 Rp5 BWh 2015–2019
Mashtal, Iraq 33◦19′18”N 44◦29′11”E 39 MOA, Iq BWh 2011–2017

Rafha, Saudi Arabia 29◦37′33”N 43◦29′25”E 448 MOC, KSA BWh 1979–2009
Indian River, Florida 27◦37′9”N 80◦34′21”W 7 FAWN Cfa 2015–2019

Oak Park, Ireland 52◦51′38”N 6◦54’54”W 62 Met Éireann Cfb 2008–2020
Roches Point, Ireland 51◦47′34”N 8◦14′38”W 40 Met Éireann Cfb 2014–2020
Five Points, California 36◦20′10”N 120◦6′46”W 87 CIMIS Csa 2015–2020
Westlands, California 36◦38′3”N 120◦22′54”W 58 CIMIS Csa 2015–2020
Casablanca, Morocco 33◦34′0”N 7◦40′0”W 52 Rp5 Csa 2015–2019

Kamishly, Syria 37◦1′59”N 41◦11′59”E 447 Rp5 Csa 2015–2019
AREC, Lebanon 33◦55′31”N 36◦4′27”E 993 AUB Csa 2012–2020

Basel, Switzerland 47◦32′48”N 7◦34′8”E 284 Meteoblue Dfb 2015–2020

Following the Köppen and Geiger climate classification (1939). Aw: wet tropical-savanna; BSh: hot semi-arid;
BSk: cold semi-arid; BWh: arid-desert-hot; Cfa: humid subtropical; Cfb: oceanic; Csa: Mediterranean; Dfb: humid
continental. Source Legend: CIMIS, California Irrigation Management Information System; FAWN, Florida Auto-
mated Weather Network; Met Éireann Forecast, The Irish Meteorological Service; Meteoblue, University of Basel,
Switzerland; INMET, Instituto Nacional de Meteorologia; Rp5, rp5.co.za weather in the world; MOA, Iq, Ministry of
Agriculture, Iraq; MOC: ministry of communication, Saudi Arabia; AUB: American University of Beirut.

Goodness-of-fit parameters, primarily the root mean square error (RMSE), percentage
bias (Pbias), correlation coefficient (r), the concordance index (d), and the Nash–Sutcliffe
coefficient (NSE), were applied to evaluate modeled ETref against the observed ETref.

The average difference between the ETref from AgSAT and the ETref from the weather
stations was described by root mean square error (RMSE) as:

RMSE =

√
∑n

i=1(Estimated ETre fi −Measured ETre fi)
2

n
(4)

The percentage bias (Pbias) was used to indicate under/over estimations by the ETref
derived from AgSAT as:

Pbias = ∑n
i=1 Estimated ETre fi −Measured ETre fi

∑n
i=1 Estimated ETre fi

× 100 (5)

We also used Pearson’s r, which is the most used parametric correlation coefficient
to quantify the strength of the linear relationship between ETref estimated and measured,
given by:

r =
∑n

i (Measured ETre fi −Measured ETre fi)(Estimated ETre fi − Estimated ETre fi)√
∑n

i

(
Measured ETre fi −Measured ETre fi

)2
×
√

∑n
i

(
Estimated ETr f − Estimated ETre f

)2
(6)

Then, concordance index (d) which represents the ratio between the mean square error
and the potential error. d is a descriptive parameter which varies between 0 and 1, with a
value of 1 indicating excellent agreement. d is calculated as:
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d = 1− ∑n
i=1(Measured ETre fi − Estimated ETre fi)

2

∑n
i=1 (

∣∣∣Estimated ETre fi −Measured ETre fi

∣∣∣+ ∣∣∣Measured ETre fi −Measured ETre fi

∣∣∣)2 (7)

Additionally, the modeling efficiency (NSE) is a normalized statistical parameter which
determined the relative magnitude of residual variance with respect to the measured data
variance. The model validity is considered very good for NSE ranges: 0.9–1, good for NSE
ranges: 0.8–0.8999, acceptable for NSE: 0.65–0.799, and unsatisfactory for NSE: <0.65.

NSE = 1− ∑n
i=1(Measured ETre fi − Estimated ETre fi)

2

∑n
i=1 (

∣∣∣Measured ETre fi −Measured ETre fi

∣∣∣)2 (8)

3.2. Field Validation

The app’s performance was tested by experimenting in the Bekaa Valley, the food
basket of Lebanon. This valley is one of the country’s most important agricultural produc-
tion areas where water-use estimates are critical for water management and resilience [47].
The primary driver threatening farmers to use less irrigation water for food production
is the valley’s growing water constraint. The experimental field (1-ha) is located at the
Agriculture Research and Education Center at AREC and planted with a potato crop during
12 March–15 July 2020: the growing season. The field was irrigated with a micro-sprinkler
system (5 × 5 spacing at 200 L/h for a sprinkler) using the AgSAT-app irrigation recom-
mendations. Irrigations were set at 4–5 day intervals with timings populated from the
AgSAT app. The irrigation scheduling experiment consisted of four plots of equal size.
Each plot had its own flow meter installed on the laterals to monitor the amount of water
irrigated. The main weather parameters were taken from a Delta-T Devices weather station
located upwind within the field and used to calculate ETref by the FAO Penman–Monteith
standard approach. Water lost due to wind drift and evaporation was estimated using a
catch-can test at the beginning of the irrigation season. In addition, soil moisture and crop
yield measurements were held. A deep soil-water sensor at 60 cm was installed to monitor
deep percolation.

4. Results and Discussion
4.1. Global Validation

AgSAT daily ETref aligned with the in situ measurements of reference evapotranspira-
tion from 18 weather stations (n = 46385) worldwide. Daily ETref was reasonably predicted
by the AgSAT model, as suggested by the relatively low spread of most points in the scatter
plots, close to the 1:1 line (Figure 4). Generally, RMSE was relatively low (1.27 mm/d), with
a very small percentage of error (Pbias) (0.5%) driven by a slight positive bias (0.02 mm/d).
The NSE value of 0.79 shows that the AgSAT model can be classified as acceptable. The
concordance index (d) approaches 1, indicating very good agreement between AgSAT ETref
and station ETref. The comparative analysis of the AgSAT and the weather stations’ daily
reference evapotranspiration at a site level is shown in Figure A1, colored by climate type.
Additional accuracy statistics are shown in Table A2 at a site level, including MAE, MBE,
RE, and MAPE. Accuracy statistics of AgSAT ETref comparison with station ETref at the
18 studied sites by climate are shown in Figure A2.
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Figure 4. AgSAT reference evapotranspiration comparison with in situ measurements of reference
evapotranspiration from 18 weather stations.

The plot shows that AgSAT ETref agrees very well with the station ETref, with an
index of agreement ranging from 0.8 to 0.98. The highest index of agreement was apparent
in California and Lebanon, indicating the suitability of AgSAT for use in semi-arid and
arid regions where agriculture relies on irrigation water and where water is scarce. The
lowest error was obtained at the Ireland station (RMSE of 0.62 mm/d, driven by a slight
positive bias of −0.4 mm/d). The most significant error was observed at the Adrar station
in Algeria, with the highest RMSE (2.29 mm/d), driven by a negative bias of −1.91 mm/d.
AgSAT ETref tended in the opposite direction at a site level, where it overestimated ETref at
the Rafha, KSA (by 23%) and underestimated ETref at the Adrar, Algeria stations (by−22%).
This could be due to the site hyperaridity where reference conditions were not met; no
adjustments were made to correct station data. Very good model skills were observed at
most of the stations (e.g., most of the stations such as Monastir, Tunisia, Aguas Emendadas,
Brazil, and Roches point, Ireland have very low mean bias error). We did not find any
substantial Pbias in the AgSAT ETref estimation at all sites where Pbias remained below 23%.
AgSAT ETref was further evaluated across climatic zones. The ETref model revealed
variability in model skill (Figure A2). The most notable finding in group-wise analysis
based on climate was a general trend in bias, with AgSAT ETref model underestimating ET
in Dfb (humid continental) climates and overestimating in humid subtropical (Cfa) climates.
Based on nearly all statistical measures, AgSAT ETref performed best in Mediterranean
climates (Csa).

4.2. Field Validation

The total water applied during the irrigation season was 590 mm. Water lost to wind
drift and evaporation was estimated at 15–20% (depending on the irrigation time and wind
speed) of applied water. Total water reaching the soil was estimated at 487 mm. Soil water
content at planting was at field capacity following an above-average rainfall at the site. The
clay soil-available water in the root zone on 12 March 2020 was 65 mm for 50 cm of the
maximum potato root depth measured on-site for the duration of the experiment. No deep
percolation was observed during the duration of the experiment. The amount of water used
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by the crop was estimated at 521 mm. The AgSAT app calculated a total ET of 531 mm for
the period May 1–July 31. The resulting potato yield was 60 tons/ha from plot 1, 53 tons/ha
from plots 2 and 3, and 46 tons/ha from plot 4 (due to weed infestations), indicating a
superb yield. Figure 5 shows the Kcb, ETref, and ETpot (potential evapotranspiration)
derived from the app. The Kcb values matched those indicated for the planted potato crop
(Figure 6) [35].
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Figure 6. Images of potato growth stages in the field used to validate the app (from right to left:
6 May, 26 May, 9 June, and 29 June).

4.3. Daily and Monthly ETref Time Series Analysis

Examples of temporal trends for the eight studied climate zones are shown in Figure 7.
A subset of the stations’ data with lower RMSE than the other stations is shown. Aw, BSk,
BSh, and BWh climates maintained high AgSAT and station ETref, whereas Cfa, Cfb, and
Dfb zones consistently had lower AgSAT and ETref values. AgSAT ET ref deviated from
the station ETref by −34 and 32% at the Florida and Switzerland stations, respectively. The
strongest agreement of AgSAT with the observed ETref was noted at the Brazil station,
with an average daily Etref deviation of only 1%. Consistency in results was noticeable
between years for all studied sites. The AgSAT ETref successfully captured the station ETref
seasonality at the various climatic regions with an average daily ETref deviation of less
than 10%. Generally, the time series figures show a high degree of overlap between the
modeled and measured ETref datasets.
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Figure 7. Daily AgSAT and station ETref over the study period of eight weather stations selected from
each climate groups: Aw: wet tropical-savanna, BSk: cold semi-arid, Cfa: humid subtropical, Dfb:
humid continental, BSh: hot semi-arid, Cfb: oceanic, Csa: Mediterranean, and BWh: arid-desert-hot.
The station ETref is in red and AgSAT ETref is in black.

The AgSAT ETref was also evaluated for an additional grouping, with daily ETref
aggregated to monthly level for all studied sites (Figure 8). This kind of data grouping
provides insight into how the error changes seasonally across the years. The monthly
aggregation showed a very close agreement between the modeled and the observed ETref
at almost all stations in all months across the years, except for some of the locations. For
example, at Kamishly in Syria, AgSAT ETref underestimated station ETref by an average of
22%. At Manama in Bahrain, the monthly ETref from AgSAT was only 5% lower than the
station ETref. The estimated ETref was lower than the observed at Adrar, Algeria, by 23%
in all months, while a higher estimated ETref was observed at Rafha, KSA, by 26% in all
months. At Indian River, Florida, AgSAT yielded a higher ETref in all months (34% higher
than the station ETref).
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4.4. Reasons for Differences between AgSAT ETref and Station ETref

The AgSAT model uses gridded data to estimate ETref, which does not have a small
enough spatial resolution to best serve ETref estimation. For ETref computations, weather
data should be collected over a reference surface as defined by ASCE-EWRI [48]. In arid
areas with irrigated agriculture, the grid cell size in the CFSV2 datasets used in the study
could extend well beyond the weather station of interest. The grid cell would thereby
combine the microclimatic conditions of an irrigated (representing reference conditions),
and dry areas (with non-reference conditions), possibly weakening the validity of the ETref
estimate. Another error anticipated in the gridded weather dataset is the assimilation of
data. Overestimating temperature and underestimating humidity might occur if irrigation
and precipitation data are not used as assimilation input data, especially in arid areas
where irrigation is prevalent. This was noticed in the arid-desert-hot (BWh) climate group,
specifically at the Rafha, KSA station where AgSAT overestimated the ETref.

Additionally, AgSAT ETref is overestimated in the humid subtropical climate zone
spotted in the Indian River, Florida station. Gao [49] mentioned that the Penman–Monteith
method is unsuitable for high humidity settings because of the linear assumption of
saturated vapor pressure and air temperature. To maintain errors of less than 10–15%,
Grignon [50] recommended using non-linear equations in extreme conditions (high humid-
ity). In humid climates, condensation occurs during the night, leading to an overestimated
VPD [35], leading to a higher ETref.

Moreover, the CFSV2 datasets generally represent the weather conditions at the aver-
age elevation of the grid cell. However, air temperature can change rapidly with elevation
at an average lapse rate of −6.5 ◦C per 1000 m gained [51], leading to some misrepresen-
tation of ETref in areas with complex terrain if the gridded weather temperatures are not
adjusted to the weather station elevations. Nevertheless, AgSAT was designed to work in
agricultural areas with simple topography.

Gridded weather data also pose a challenge due to their temporal resolution. CFSV2
has a coarse temporal resolution of 6 h, which might be insufficient for representing
the substantial variation of the four weather parameters (air temperature, wind speed,
humidity, and solar radiation) during a day, potentially reducing the accuracy of ETref
estimation. This was indicated by Hupet and Vanclooster [52], who found that errors in
daily grass ETref can be as large as 27% even when an hourly sampling rate is used.

Some of the selected weather stations in the study are located at or next to airports
where paved surfaces are prevalent. In such surface type, measured temperature and
humidity might be higher due to little to no moisture available to vaporize and high energy
to heat the air. Among these stations are the Adrar, Algeria, and Kamishly, Syria, stations
where AgSAT underestimated the ETref. Both weather station and gridded data have in-
herent errors and uncertainties in a comparable matter. The weather station measurements
typically have errors of 20–30% [53,54], as large as the gridded data errors [55]. The gridded
weather datasets overestimate standardized Penman–Monteith ETref from weather stations
by as much as 20–30% [56]. Other causes of error are related to the scale and geolocation
mismatch (a partial overlap between the area overlap footprint of remote sensing vs. point
measurements) [53,57].

Future research could pursue the bias correction for the gridded weather data or
decreasing ETref bias directly through statistical models or the use of theoretical adjustments
based on the surface to air profiles for temperature, wind, and humidity, as described
by [35,58]. Debiasing gridded data would allow the data to be used to its fullest potential,
benefiting from temporal, spatial, and global coverage. Although most of the used locations
reliably produced low error without bias correction, commonly, the gridded data requires
bias correction in regions where a systematic bias exists to improve their accuracy.

4.5. Limitations and Future Work

As with any technological advancement, the development and deployment of AgSAT
holds various limitations. Because AgSAT relies on vegetation reflectance data, it is un-
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suitable for greenhouse farms. However, farmers who plant in greenhouses may still use
the weather data from AgSAT and adjust them for greenhouse conditions. Jaafar and
Ahmad [59] provided equations to derive in-greenhouse ET from outside ET and weather.
Currently, AgSAT does not use a soil-water balance to derive irrigation schedules for farm-
ers, as this approach requires the farmers to input soil moisture data from field sensors. The
availability of global gridded soil moisture at the field level is also another constraint. A
soil-water balance requires an estimate of irrigation, rainfall, runoff, and deep percolation,
all of which now cannot be calculated or derived on the fly. We plan to extend the app to
read remotely sensed-based soil moisture once this data becomes useful for agriculture.
Currently, only very low-resolution gridded soil moisture data is available, which is not
very handy for field-scale applications. Due to the limited availability of reliable rainfall
data in real-time, users are encouraged to subtract rainfall amounts from the irrigation
water requirements. We plan to add a rainfall dataset to the model when such a dataset be-
comes available in higher resolution in Google Earth Engine. However, the major strength
of the app results from working conjointly with farmers and irrigation managers during
the development of AgSAT, with many features outlined and implemented based on their
needs and suggestions. Despite the aforementioned constraints, AgSAT has been perform-
ing well since its development, with many farmers relying on its guidance on irrigation
quantities and transitioning towards increasing water use efficiency in crop production.
Adjustments may be necessary in areas where local climate differs from gridded weather
data due to complex topography or other specific micro-climatic conditions.

5. Conclusions

This paper presents a novel global smart irrigation app (AgSAT) as an efficient and
simple tool calculating crop water requirements in near real-time. The android smartphone
application was developed using available Google Earth Engine datasets of both gridded
weather data and surface reflectance satellite imagery for calculating reference evapotran-
spiration and crop NDVI. AgSAT was assessed at the small field level for irrigating a potato
crop, and the reference evapotranspiration parameter it relies on was validated globally in
various climatic zones in many countries. The main app metrics, crop evapotranspiration
referenced to grass as developed by the ASCE-standardized Penman–Monteith equation,
were calculated from global climatic data (CFSV2) and have shown very good agreement
with the corresponding ET calculated from weather stations worldwide. Local adjustments
may be needed in complex topographies and areas with their own microclimate. Our
validation, herein, showed that the estimated crop evapotranspiration for AgSAT could be
used reliably, enabling the applicability of the developed smart irrigation app. Moreover,
the results presented in this study allowed concluding that crop growth coefficients can
be derived using the highest publicly available resolution (EAS’s Sentinel-2 at 10 m) and
were shown to be valid for agricultural crops in major agricultural regions, including the
USA (California). Coverage remains a challenge in cloudy regions where crop phenol-
ogy changes quickly. This can be addressed in the future by utilizing synthetic aperture
RADAR imagery such as Sentinel-1. This study sought to contribute to the topic of smart
technologies in irrigation and has demonstrated an illustrative example of an app that cuts
back on high costs and the challenges of computerized applications for the technologically
challenged farmer. AgSAT brings irrigation technology to the farmer’s phone and provides
an opportunity for combatting water scarcity and mitigating the impact of climate change
on the world’s dwindling water resources.
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Appendix A

Table A1. Compilation of Kcb–VI relationships as found in the literature.

Crop Equation Reference

Wheat Kcb = 1.64 × NDVI − 0.12 [60]
Row vineyard Kcb = 1.44 × NDVI − 0.1 [61]

Bell pepper Kcb = −0.12 × NDVI2 + 1.45 × NDVI − 0.06 [37]
Broccoli Kcb = −1.48 × NDVI2 + 2.64 × NDVI − 0.17 [37]
Lettuce Kcb = −0.11 × NDVI2 + 1.39 × NDVI + 0.01 [37]

Corn Kcb = 1.77 × SAVI + 0.02 [62]
Potato Kcb = 1.36 × SAVI + 0.06 [63]

Sugar beet Kcb = 1.74 × SAVI − 0.16 [64]
Cotton Kcb = 1.74 × SAVI − 0.16 [65]
Garlic Kcb = 1.82 × SAVI − 0.16 [65]
Olive Kcb = 1.59 × SAVI − 0.14 [65]
Citrus Kcb = 0.99 × SAVI − 0.09 [65]
Peach Kcb = 1.29 × SAVI − 0.12 [65]

Apple trees Kcb = 1.82 ± 0.19 × SAVI − 0.07 ± 0.06 [66]

Table A2. Comparison between modeled and weather station ETref for the different studied weather
stations grouped by region and climate classification.

Region Climate Weather Stations MAE
(mm)

MBE
(mm)

RE
(%)

MAPE
(%)

Africa

BSh Monastir, Tunisia 0.64 −0.01 −0.3 18
Csa Casablanca, Morocco 0.62 −0.36 −9 19

BWh Adrar, Algeria 1.95 −1.91 −22 23
BWh Alexandria, Egypt 0.72 −0.31 -6 17

Asia

BWh Rafha, Saudi Arabia 1.43 1.3 25 31
Csa AREC, Lebanon 0.51 −0.38 −10 22

BWh Manama, Bahrain 0.71 −0.42 −7 11
BSk Beijing, China 0.77 −0.68 −17 22
Csa Kamishly, Syria 1.2 −1.13 −20 23
BSh Islamabad, Pakistan 1.1 −0.47 −10 31
BWh Mashtal, Iraq 1.07 0.74 7 23

Europe
Cfb Oak Park, Ireland 0.47 −0.4 −27 44
Cfb Roches, Ireland 0.35 0.02 1 30
Dfb Basel, Switzerland 0.92 −0.87 −32 47

USA and
South

America

Cfa Five Points, California 0.6 −0.25 −5 31
Csa Westlands, California 0.64 −0.32 −7 30
Cfa Indian River, Florida 1.12 1.01 34 40
Aw Aguas Emendadas, Brazil 0.62 −0.05 −1 17
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Figure A1. Daily AgSAT and station ETref scatterplots comparisons for the 18 studied locations
grouped by the climatic region, the grey line represents the 1:1 line. AE*: Aguas Emendadas.
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