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Abstract: Pre- and post-fire airborne lidar data provide an opportunity to determine peat combus-
tion/loss across broad spatial extents. However, lidar measurements of ground surface elevation
are prone to uncertainties. Errors may be introduced in several ways, particularly associated with
the timing of data collection and the classification of ground points. Ground elevation data must
be accurate and precise when estimating relatively small elevation changes due to combustion and
subsequent carbon losses. This study identifies the impact of post-fire vegetation regeneration on
ground classification parameterizations for optimal accuracy using TerraScan and LAStools with
airborne lidar data collected in three wavelengths: 532 nm, 1064 nm, and 1550 nm in low relief boreal
peatland environments. While the focus of the study is on elevation accuracy and losses from fire, the
research is also highly pertinent to hydrological modelling, forestry, geomorphological change, etc.
The study area includes burned and unburned boreal peatlands south of Fort McMurray, Alberta.
Lidar and field validation data were collected in July 2018, following the 2016 Horse River Wildfire.
An iterative ground classification analysis was conducted whereby validation points were compared
with lidar ground-classified data in five environments: road, unburned, burned with shorter vegeta-
tive regeneration (SR), burned with taller vegetative regeneration (TR), and cumulative burned (both
SR and TR areas) in each of the three laser emission wavelengths individually, as well as combinations
of 1550 nm and 1064 nm and 1550 nm, 1064 nm, and 532 nm. We find an optimal average elevational
offset of ~0.00 m in SR areas with a range (RMSE) of ~0.09 m using 532 nm data. Average accuracy
remains the same in cumulative burned and TR areas, but RMSE increased to ~0.13 m and ~0.16 m,
respectively, using 1550 nm and 1064 nm combined data. Finally, data averages ~0.01 m above the
field-measured ground surface in unburned boreal peatland and transition areas (RMSE of ~0.19 m)
using all wavelengths combined. We conclude that the ‘best’ offset for depth of burn within boreal
peatlands is expected to be ~0.01 m, with single point measurement uncertainties upwards of ~0.25 m
(RMSE) in areas of tall, dense vegetation regeneration. The importance of classification parameteri-
zation identified in this study also highlights the need for more intelligent adaptative classification
routines, which can be used in other environments.

Keywords: elevation; airborne laser scanning; peatland; carbon; accuracy; change detection; disturbance

1. Introduction

Boreal peatlands contain considerable carbon (C) stores and have acted as a long-term
sink for atmospheric C since the Holocene [1,2]. However, with climate change, many of
these peatland regions are drying and becoming more vulnerable to wildland fire [3–5],
which are increasing in both frequency and severity [4,6]. There is interest in quantifying
the contribution of peat combustion to atmospheric C [7–9]. Improving estimations of C loss
during wildland fire is especially critical in boreal environments, where soil combustion
can account for up to ~90% of C loss [7].
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In recent years, several studies [6,10–12] have described the loss of C from wildland
fire in peatlands; however, there are methodological limitations for estimating C loss
across a broad range of peatland and boreal ecosystems. Fieldwork is labor-intensive
and time-consuming and cannot survey the full range of environmental variations that
influence the loss of C from fire in peatland landscapes [8,13,14]. Optical remote sensing
is often utilized to estimate burn severity and is particularly useful in its ability to cover
broad spatial extents (e.g., [13,15]); however, optical remote sensing of the understory and
ground surface is occluded by the pre-fire vegetation canopy and any remaining post-forest
canopy—a limitation in assessing burn severity as well as pre-fire conditions [8,13,16].
Therefore, these sensing techniques cannot easily measure ground surface elevation and
cannot measure depth of burn, an essential component of biomass loss [9].

Airborne and Unpiloted Aerial Vehicle (UAV) lidar provide an opportunity to resolve
both the lack of spatial coverage of field data and reduced ability to determine ground
elevation from high spatial resolution optical remote sensing due to occlusion. Lidar is
useful for measuring ground surface elevations and vegetation structural characteristics
across a range of land cover types, including boreal peatlands (e.g., [17–19]). This capability
allows for not only the quantification of pre-fire fuels and post-fire ecosystem regeneration
in the study of wildland fire (e.g., [9,20,21]), but also in forestry (e.g., [19,22]), urban
planning and road design (e.g., [13]), hydrological modelling (e.g., [23]), mapping and
modelling of land cover distribution (i.e., wetlands) (e.g., [24,25]), monitoring of permafrost
thaw (e.g., [9]), soil erosion (e.g., [26]) and flooding (e.g., [27]). A benefit of the use of lidar is
the ability to measure both canopy structure, understory, and ground surface elevation [13].
Multi-temporal, pre- and post-fire lidar data also enable quantification of biomass losses
from fire and post-fire vegetation regeneration (e.g., [28]). As laser pulse returns can
measure ground surface elevation, the technology is particularly useful for determining
surface elevation changes, such as depth of burn during wildland fire, quantification of
erosion, and impacts of permafrost slaw if pre- and post-disturbance lidar data are available.
However, despite its utility, questions arise on the accuracy of lidar data for determining
elevation (and therefore depth of burn, C losses, etc.) associated with different ground
classification routines and also, the efficacy of lidar-based observations as time since fire
increases. Ref. [13] suggest that most error is introduced during the classification stage;
however, custom, environment-specific ground classification parameterization can improve
DEM accuracy [19,29]. Due to the need for accurate ground surface data when quantifying
relatively small changes in elevation from combustion, erosion, slumping, permafrost thaw,
and anthropogenic disturbance, the quantification of ground classification routines specific
to land cover and vegetation growth that result in the least error is required. There is also
an urgent need for more accurate measurements of soil combustion and overall C losses
from boreal peatlands and their potential influence on the global climate system [11,30].

Based on the necessity for accurate ground elevation data for estimating depth of
peatland burn in pre- and post-fire lidar data, this study aims to: (a) identify how post-
fire vegetation regeneration impacts optimal ground classification configurations using
industry-standard software: TerraScan (Terrasolid, Helsinki, Finland) and LAStools (Rapid-
Lasso, Gilching, Germany, GmbH); and (b) compare multispectral lidar emission wave-
length(s) (532 nm (green); 1064 nm (near infrared); 1550 nm (shortwave infrared); 1064 and
1550 nm combined; and, 532, 1064, and 1550 nm combined) in burned and unburned boreal
peatlands and transition zones in western Canada. The overall goal is to provide recom-
mendations for ground classification of lidar data across a range of vegetation regeneration
required for quantifying subtle changes in elevation, including depth of burn from fire (in
bi-temporal, pre- and post-fire lidar data). While this research focuses on wildland fire,
recommendations will also be useful for hydrological modelling, forestry applications, and
land surface engineering/mining/cut-fill operations.
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2. Materials and Methods
2.1. Study Area

The study area is located about 30 km south of Fort McMurray, Alberta (centre:
12N 482464E 6260554N) in the Boreal Plains ecozone of Canada (Figure 1) [31]. The
region is characterized by flat to slightly undulating terrain with some hummocky zones.
It is dominated by bog and fen peatlands (dominant wetland classes in Alberta [32]),
aspen (Populus tremuloides) uplands, and black spruce (Picea mariana) lowlands/transition
zones [31]. Extensive forestry and oil exploration and extraction occur within the region, as
do subsistence and commercial hunting and fishing and minor agricultural practices [31].
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Figure 1. Map illustrating the extent of the Horse River Wildfire within the Boreal Plains Ecozone
(inset), which extends across Canada from northern British Columbia (BC) and into Alberta (AB),
Saskatchewan (SK), and Manitoba (MB) and the study area, including lidar survey polygon and field
validation transects/plots.

The study covers a 20,441-ha area south of Fort McMurray, extending beyond the area
burned by the Horse River Wildfire in 2016 (Figure 1). The Horse River Wildfire, covering
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approximately 600,000 ha, ignited 7 km outside Fort McMurray on 1 May 2016, under
hazardous conditions—uncharacteristically hot (~35 ◦C), dry, and windy (~43 km hr−1)
weather. The fire was declared under control on 4 July 2016; however, smoldering peat burn
continued for approximately 15 months before being extinguished [33,34]. The burned
region includes a variety of burn severities and levels of vegetative regeneration since the
fire, from little to no regeneration to significant vegetation growth (Figure 2). This allows
for the opportunity to compare laser pulse interactions and ground elevation accuracies
across a range of conditions akin to timing of lidar data collection following fire.
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Figure 2. Four vegetation categories used to represent time since fire with field photos and lidar
point clouds.

In sites with shorter regeneration (SR), post-fire vegetation heights averaged 0.20–0.35 m
(Figure 2). Dominant vegetation was primarily Sphagnum spp. And feathermoss (Pleuroz-
ium spp.), with subdominant vegetation consisting of mosses, herbs, and low-lying herb
species such as Labrador tea (Rhododendron groenlandicum), reindeer lichen (Cladonia rangife-
rina), bog cranberry (Vaccinium oxycoccos), cloudberry (Rubus chamaemorus), and horsetail
(Equisetum fluviatile). In sites with taller post-fire vegetative regeneration (TR), above-surface
vegetation heights averaged 0.40–1.00 m (Figure 2). While dominant vegetation included
some similar species as the SR sites such as feathermoss and Sphagnum spp., sites were also
dominated by more woody vegetation and tall shrubs, such as willow (Salix spp.), bog,
shrub, and paper birch (Betula pumila, glandulosa, and papyrifera), black spruce (Picea mari-
ana), fireweed (Chamaenerion angustifolium), horsetail (Equisetum spp.), rose (Rosa acicularis),
trembling aspen (Populus tremuloides), and raspberry (Rubus idaeus).
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2.2. Data Acquisition

Airborne lidar data were collected in July 2018, two years following the Horse River
Wildfire, using a Titan multispectral lidar (Teledyne Optech, Inc., Vaughan, ON, Canada).
The Titan collects data using three laser emission wavelengths (channels): 1550 nm (short-
wave infrared (SWIR); channel 1), which is 3.5◦ forward of nadir; 1064 nm (near-infrared
(NIR); channel 2), which is emitted at nadir; and 532 nm (green; channel 3) which is 7◦

forward of nadir (Figure 3a) [18]. The survey was flown at ~1000 m above ground, with
scan angles of ±25 degrees, a pulse repetition frequency of 100 kHz per channel (300 kHz
total), and a 50% flightline overlap. This survey configuration resulted in average point
densities of 4.8 pts m−2, 4.2 pts m−2, and 2.1 pts m−2 for channels 1, 2, and 3, respectively.
As laser scan lines are not spatially coincident, the 50% overlap reduces gaps, especially
prevalent along scan line edges, such that validation points do not exist within one or two
channels, introducing bias (Figure 3b).
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Figure 3. (a) Illustration of lidar laser beam angles, beam divergence, and impact on footprint
diameter (Ø) in peatlands with variable microtopography (hollows and hummocks); (b) Samples of
validation transects and lidar data demonstrating spatial distribution of validation points throughout
the three channels. Note: microtopography in (a) has been exaggerated for demonstration purposes.

Field data were collected coincident with the 2018 lidar data collection for the calibra-
tion and validation of lidar data. To select sample sites, the study area was first stratified
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into scales of influence: (a) burned versus non-burned areas within and proximal to the
Horse River wildfire; (b) within burned areas, different classes of burn severity (minimum,
medium, and severe) determined visually from optical remote sensing imagery as well as
through on-the-ground assessments at the time of field data collection; and, (c) peatland
type (treed and open bogs; rich and poor fens) determined from optical remote sensing
imagery and on-the-ground assessments. Data were collected along ~30 m transects in
18 burned and 6 unburned peatland sites. Transects intersected upland-peatland transi-
tion zones and peatlands. Global Navigation Satellite System (GNSS) ground elevation
validation points were collected in burned and unburned landscapes. To validate post-fire
ground surface elevations [9], GNSS stations were placed at the beginning and end of each
transect and were left to run for the duration of sampling (>1 h for centimeter accuracy).
Precise Point Positioning (PPP) was used to process these end points. A level was used at
one- (burned sites) or two- (unburned sites) meter intervals to determine ground elevation
relative to the GNSS base stations. A total of 708 ground elevations were measured: 130 in
unburned and 578 in burned peatlands with variable rates of vegetation regeneration. Post
Processed Kinematic (PPK) GNSS elevation locations were also collected along two road
surfaces (n = 2655) to ensure the elevational accuracy of airborne lidar data in areas of flat
terrain without any overstory canopy influences on ground surface elevation [17,35].

2.3. Data Processing

Lidar returns from road surfaces were compared with PPK GNSS survey points and
vertically batch-shifted to ensure the average offset between lidar data and calibration
points was zero [35] using Bentley Microstation TerraSolid Terrascan software version
021.011 (Terrasolid, Helsinki, Finland) [36]. Isolated or outlier points were removed, and
an iterative ground classification analysis was then conducted through which ground vs.
non-ground returns were classified. The five ground cover types (road, unburned, short
vegetation regeneration (SR), and tall vegetation regeneration (TR), and cumulative burned
(all regeneration stages)) were analyzed separately to identify optimal ground return
classifications for each type, optimized for relatively flat to slightly undulating boreal
peatland and transitional environments with micro-topographic hummocks and hollows.

2.3.1. TerraScan

Within TerraScan, six ground classification parameters can be readily modified: (a) ‘max
building size’, which sets the grid size for seed ground point selection; (b) ‘terrain angle’,
which is the maximum slope between a seed point and a candidate point; (c) ‘iteration
angle’, which is the maximum angle that a point can be added to the ground classification;
(d) ‘iteration distance’, which is the maximum distance that a point can be added to the
ground classification; (e) ‘reduce iteration angle’, a binary choice which reduces the number
of unnecessary points added to the surface in areas of high point density by reducing the
number of points that are added to the surface if edge length is longer than all triangle edges;
and (f) ‘stop triangulation’, another binary choice which reduces the number of unnecessary
points added to the surface by not processing points within a triangle if edge length is longer
than all triangle edges [37,38] (Table 1). Adjusting each ground classification parameter results
in morphological differences in the resultant ground-classified data.
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Table 1. TerraScan ground classification parameter modifications used in ground classification
iteration analysis.

Ground
Classification

Max Build-
ing Size

Terrain
Angle

Iteration
Angle

Iteration
Distance

Reduce Iteration Angle
When Edge Length<

Stop Triangulation
When Edge Length<

1 60 50 6 1.4 5 -
2 60 55 6 1.4 5 -
3 60 60 6 1.4 5 -
4 60 65 6 1.4 5 -
5 60 70 6 1.4 5 -
6 60 75 6 1.4 5 -
7 60 80 6 1.4 5 -
8 60 88 6 1.4 5 -
9 60 88 2 1.4 5 -
10 60 88 2 0.5 5 -
11 60 88 2 1 5 -
12 60 88 2 1.5 5 -
13 60 88 2 2 5 -
14 60 88 5 1.4 5 -
15 60 88 5 0.5 5 -
16 60 88 5 1 5 -
17 60 88 5 1.5 5 -
18 60 88 5 2 5 -
19 60 88 10 1.4 5 -
20 60 88 10 0.5 5 -
21 60 88 10 1 5 -
22 60 88 10 1.5 5 -
23 60 88 10 2 5 -
24 60 88 15 1.4 5 -
25 60 88 15 0.5 5 -
26 60 88 15 1 5 -
27 60 88 15 1.5 5 -
28 60 88 15 2 5 -
29 60 88 15 1.5 - -
30 60 88 15 1.5 1 -
31 60 88 15 1.5 2 -
32 60 88 15 1.5 10 -
33 60 88 15 1.5 5 0.5
34 60 88 15 1.5 5 2
35 60 88 15 1.5 5 5
36 60 88 15 1.5 5 0.25

Thirty-six different ground classification parameterizations were developed by mak-
ing adjustments to TerraScan’s classification parameters (Table 1). Classifications 1–28 were
produced by iterating through adjustments to the four primary parameters: ‘Max Building
Size’, ‘Terrain Angle’, ‘Iteration Angle’, and ‘Iteration Distance’. Classifications 29–36
were developed by refining an optimal classification (27) using ‘Reduce Iteration Angle
When Edge Length<’ and ‘Stop Triangulation When Edge Length<’ (Table 1). Each of the
classification parameterizations was used to produce ground surfaces in the channels and
channel combinations tested, resulting in 180 distinct ground surfaces. Each surface output
was compared to ground elevation field validation data (elevation collected along the road,
unburned peatlands, TR peatlands, SR peatlands, and total burned peatlands) using TerraS-
can’s control report function (see Section 2.4) for a total of 740 ground classification tests.

2.3.2. LAStools

LASground, from LAStools (RapidLasso GmbH, Gilching, Germany), offers five
defined ground classifications that, like TerraScan, use an adaptive TIN algorithm to classify
ground points. Two were tested (excluding urban settings): ‘nature’ and ‘wilderness’. These
settings differ in their step size (cell size within which lowest point becomes initial ground
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point) and ‘bulge’ (height allowance for TIN to “bulge” above planar surface). These can
be refined using the options ‘default’, ‘fine’, ‘extra’, ‘ultra’, and ‘hyper’, resulting in ten
different readily accessible ground classification parameterizations (lettered A–J; Table 2).
Using refining options intensifies the search for seed ground points—this is often most
useful for ground surfaces with steep hills [39]. Each of the ten different classification
parameterizations was used to produce ground surfaces in the channels and channel
combinations tested, resulting in 50 distinct ground surfaces. These were brought into
TerraScan for the quantification of control point statistics. Like the TerraScan analysis, each
ground surface was compared with field elevation measurements from road, unburned
peatlands, TR peatlands, SR peatlands, and burned peatlands cumulatively, for a total of
250 ground classification tests.

Table 2. LASTools ground classification parameter modifications used in ground classification
iteration analysis.

Ground Classification Refinement Bulge (m) Step Size (m) Subgrid for Initial Ground Points

A Nature Default 0.5 5 =step size
B Nature Fine 0.5 5 Default granularity × 4
C Nature Extra Fine 0.5 5 Fine granularity × 4
D Nature Ultra-Fine 0.5 5 Extra Fine granularity × 4
E Nature Hyper Fine 0.5 5 Ultra-Fine granularity × 4
F Wilderness Default 0.3 3 =step size
G Wilderness Fine 0.3 3 Default granularity × 4
H Wilderness Extra Fine 0.3 3 Fine granularity × 4
I Wilderness Ultra-Fine 0.3 3 Extra Fine granularity × 4
J Wilderness Hyper Fine 0.3 3 Ultra-Fine granularity × 4

2.4. Vertical Accuracy Assessment

Ground classification outputs performed using TerraScan (n = 36) and LAStools soft-
ware (n = 10) in each of the three available laser emission wavelengths and wavelength
combinations were compared with field-measured elevations from road (n = 2655), un-
burned peatlands (n = 130), burned peatlands (n = 578), TR peatlands (n = 267), and SR
peatlands (n = 269). Validation data were segregated into TR vs. SR vegetative regeneration
based on average measured vegetation height and dominant species per plot (1 m × 1 m
with three elevation measures through the center of each plot, perpendicular to the transect;
Figure 2). The separation of peatlands based on vegetation provides an opportunity to quan-
tify elevation accuracy from lidar across a range of environmental characteristics, including
unburned with a full understory, burned with no or shorter regeneration (SR; a proxy for
lidar data collected immediately post-fire), and burned with tall regeneration (TR; a proxy
for data collection several years post-fire). Validation data were distributed throughout
the study area, and the number of validation elevations measured in the field exceeded
the minimum (n = 20) and the recommended (n = 30) suggested for each vegetation cover
type by the American Society for Photogrammetry and Remote Sensing [13,40,41]. All
ground-classified data were examined in TerraScan, where validation point elevations were
compared with lidar point elevations, a standard methodology for lidar vertical accuracy
assessments [41,42]. Through TerraScan’s control report function, lidar points were used to
interpolate a surface using a Triangulated Irregular Network (TIN). As it is unlikely that
a lidar point exists at the same x, y location as a validation point, validation points were
compared to their x, y location on the TIN surface [43,44]. Control point statistics, including
the difference in elevation between control points and lidar ground returns (dz; average,
maximum, and minimum), standard deviation, and root mean square error (RMSE), were
quantified via TerraScan’s control report function [44].

To identify the optimal ground classification for each vegetation cover type, classified
outputs were assessed based on RMSE (commonly used to determine accuracy) [41,45,46]
and by absolute average dz (|dz|), while also being mindful of point density. Optimal



Remote Sens. 2022, 14, 5080 9 of 27

ground classification statistics (dz and standard deviation (SD)) were then used to determine
total error (dz± SD) when using multitemporal lidar data to assess ground surface elevation
changes (pre- and post-fire). The uncertainties associated with multi-temporal surface
elevation measurements are independent of one another, so the propagated error (SD)
was calculated through quadrature, (Equation (1)), where Q is the average over- or under-
estimation of surface elevation change, ∈ a is cumulative SD, dz(b) and dz(c) are the
average deviations of lidar classified ground surface from the measured ground surface at
times b and c, and ∈ b and ∈ c are the SDs of ground surface measurements at two points in
time (i.e., pre- and post-fire). Note that the average deviation (dz) is used, and not absolute
average deviation (|dz|).

Q ± ∈ a =
(

dz(b) + dz(c)
)
±
√
(∈ b)2 + (∈ c)2 (1)

3. Results

The results demonstrate wavelength dependencies and optimal ground classification
parameterizations for each vegetation cover type tested within TerraScan and LAStools.

3.1. Differences between Ground-Surveyed Road Elevations and Lidar-Measured Road
Ground Classifications

The optimal ground return classification aims to observe the lowest differences in
ground surface elevations between field validation and nearby laser returns in each wave-
length. Based on the flat, non-vegetated road surface GNSS measurements, we found
that neither classification parameter choice (Tables 1 and 2), nor wavelength, significantly
impacted the quality of the ground classification along road surfaces (Figures 4 and 5;
Table S1). Using both TerraScan and LAStools, the |dz| from the measured elevations
ranged from 0.00 to 0.02 m, and RMSE from 0.04 m to 0.05 m.
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This provides a baseline for comparisons to ground classifications in varying vegeta-
tion regeneration stages and demonstrates that any changes observed in ground classifica-
tion accuracies result from different parameterizations responding differently to variable
vegetation regeneration.

3.2. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Shorter Vegetative Regeneration Peatlands

In SR peatlands and transitional areas (representing characteristics that are similar
to peatlands that have been surveyed soon after a fire), we found that the ground clas-
sifications that produced the most accurate results in TerraScan were classifications 14
through 18 (a slight reduction in iteration angle from six to five as compared to default)
with laser pulse emission at 532 nm (Figure 6 and Table 1). These all produced a lidar-
derived ground-classified elevation with an |dz| = 0.00 m (RMSE = 0.09 m). However,
the point density was below 1 point m−2; (0.86 points m−2; Table S1). If a higher point
density were required, using all three laser pulse emissions (IR, NIR and Visible) and
increasing iteration angle from 6 to 15, as well as reducing iteration angle when edge
length < 1.0, 2.0, or turned off (classifications 29–31) produce nearly-as-accurate ground
surfaces with |dz| = 0.01 m (RMSE = 0.09 m) and 4.06, 3.94, and 3.32 points m−2, respec-
tively (Figure 6; Tables 1 and S1). In more typically used lidar systems that collect data
at 1064 nm (NIR), the optimal classifications were 24–28 (iteration angle increased from
6 to 15◦; Table 1), which resulted in |dz|s slightly elevated above the true ground surface
(|dz| = 0.03 m; RMSE = 0.10 m; 1.03 points m−2; Figure 6 and Table S1).The poorest ground
classifications for SR areas were those within which iteration angle was narrowed to 2◦.
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Figure 6. Ground classification results (|dz| and RMSE) in burned peatlands with low vegetation
regeneration two years post-fire (as a proxy for immediately post-fire). Classifications were conducted
in TerraScan.

Using LAStools, ground classifications F–J using lidar data collected at all three wave-
lengths were optimal (Figure 7 and Table 2). These classifications produced lidar-measured
ground elevations that did not, on average, deviate from the true ground surface
(|dz| = 0.00 m; RMSE = 0.09 m; 3.70–3.72 points m−2; Figure 7 and Table S1). In this
case, where all channels were used, refinement did not impact the ground-classified sur-
face’s accuracy or point density (m−2). In a lidar system that collects data in the 1064 nm
wavelength, optimal classifications were G–J, which produced lidar-measured ground clas-
sifications with |dz| = 0.01 m (RMSE = 0.09 m; 1.3–1.31 points m−2; Figure 7 and Table 2).
However, in this landscape, when using LAStools, the most significant difference in classifi-
cation accuracy was due to the channel with which the data were collected; changes within a
channel were negligible (i.e., within the 1064 nm data: |dz| remained at 0.01 m regardless
of classification, RMSE only varied by 0.01 m (0.09–0.10 m), and point density varied from
1.24–1.31 points m−2 (Figure 7 and Table S1). While the optimal classifications from TerraScan
and LAStools were comparable, the poorest classifications from each were notably different.
The classifications produced in LAStools had an |dz| ranging from 0.00–0.03 m and an
RMSE ranging from 0.09–0.10 m, whereas TerraScan classifications had an |dz| ranging from
0.00–0.09 m and an RMSE ranging from 0.09–0.15 m (Figures 5 and 6).
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Figure 7. Ground classification results (|dz| and RMSE) in burned peatlands with low vegetation
regeneration two years post-fire (as a proxy for immediately post-fire). Classifications were conducted
in LAStools.

In summary, for a well-calibrated and locally controlled (e.g., over a nearby highway
surface) airborne lidar survey we can expect a spatially averaged difference in elevation of
<0.01 m with a range of ~0.09 m in areas of burned ground surface with no to low vegetation
regeneration using optimal classifications in both TerraScan and LAStools. However,
appropriate parameterization in TerraScan is dependent on the channel(s) available and
required point density (Tables 1 and S1).

3.3. Differences between Field-Measured Elevation and Lidar Ground Classification across All
Burned Peatlands (Cumulative Shorter Vegetative Regeneration and Taller Vegetative
Regeneration Sites)

As vegetation growth increases in the two years following wildland fire, and vegeta-
tion regeneration varies from low (as in SR sites) to high (as in TR sites), optimal ground
classification parameters change. In TerraScan, the greatest similarity (and lowest error)
when comparing lidar ground-classified returns with the surveyed ground elevation in
all burned sites combined (a proxy for ~2 years post-fire) was found when the iteration
angle was increased from 6 to 15, but iteration distance was reduced to 0.5 or 1.0 from 1.4
default (parametrization methods 25 or 26) using both 1550 nm and 1064 nm data (Figure 8;
Tables 1 and S1). These classifications produced lidar-measured ground elevations with
an |dz| = 0.00 m (RMSE = 0.13 m; 1.88 points m−2). For a typical 1064 nm laser emission
wavelength system, classifications 20 through 23 produced optimal results (iteration angle
increased from six to ten), also producing ground elevations with an |dz| = 0.00 m but
with a slightly higher RMSE and lower point density (RMSE = 0.14 m; 1.03 points m−2;
Figure 8 and Table 1). As with SR areas, the ground classifications with the lowest accuracy
in cumulative burned areas were those whose iteration angle was narrowed to 2.
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Figure 8. Ground classification results (|dz| and RMSE) in burned peatlands unsegregated based on
vegetation regeneration two years post-fire (true representation of two years post-fire). Classifications
were conducted in TerraScan.

When compared with optimal ground classification for laser returns in SR landscapes,
the optimal ground classification used for total burned areas provides results with compa-
rable |dz|, but slightly higher uncertainty (SR RMSE = 0.09 m), as would be expected with
an increase in vegetation height and height variability.

As in SR areas, classification of returns to ground and elevation accuracy in ar-
eas representative of vegetation two years post-fire (cumulative burn areas) depended
more on laser pulse emission wavelength than on classification parameters applied in
LAStools; however, channel optimization differed. The ground classifications that pro-
duced the most accurate results for burned surfaces compared with measured elevations
were A through C, E, G, and J (Table 2), using 1550 nm data (|dz| = 0.00; RMSE = 0.14;
point density = 1.27–1.34 points m−2; Figure 9; Table 2); however, within a given wave-
length, all parameterizations produced similar results (for example, using 1550 nm data,
|dz| = 0.00–0.01 m; RMSE = 0.14–0.15 m; points m−2 = 1.27–1.34). By using combined
1550 nm and 1064 nm data, similar results are produced (|dz| = 0.01–0.02 m; RMSE = 0.14)
but point density increases to 2.4–2.61 points m−2. Similarly to SR landscapes, optimal
classifications from TerraScan and LAStools were negligibly different; however, the poorest
classification from LAStools was more accurate than that of TerraScan (|dz| = 0.06 m;
RMSE = 0.15 m and |dz| = 0.09 m; RMSE = 0.16 m, respectively; Figures 7 and 8).
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Figure 9. Ground classification results (|dz| and RMSE) in burned peatlands unsegregated based on
vegetation regeneration two years post-fire (true representation of two years post-fire). Classifications
were conducted in LASTools.

In the case of more typical 1064 nm lidar systems, classifications B through J produced
ground elevations with an |dz| of 0.02 m, an RMSE of 0.14 m, and 1.24–1.31 points m−2

compared with field-measured; however, even the “poorest” classification (greatest dif-
ference from measured) produced from 1064 nm data showed nearly identical results
(|dz| = 0.02; RMSE = 0.15; Figure 9 and Table 2), emphasizing the importance of chan-
nel selection during data collection over classification parameterization choice when
using LAStools.

In summary, two years post-fire, we can expect an average elevational accuracy of
~0.00 m with a range of ~0.13 m using combined 1550 nm and 1064 nm data with TerraScan.
Using LAStools, spatially averaged elevational accuracy is comparable at ~0.00 m but with
a slightly higher range of ~0.14 m when measured at 1550 nm.

3.4. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Taller Vegetative Regeneration Peatlands

In areas with the greatest vegetation growth since fire (proxies for >2 years post-
burn), the most accurate ground classification in TerraScan was classification 20, using
combined 1550 nm and 1640 nm data (Figure 10; Tables 1 and S1). For this classification, the
iteration angle was increased from six to ten, and the iteration distance was reduced from
1.4 m to 0.5 m when compared with default parameters. This resulted in a lidar ground
classification output with a ground classification accuracy of |dz| = 0.00 m (RMSE = 0.16 m;
1.54 points m−2). In the case of more typical airborne lidar emitting laser pulses at 1064 nm,
this classification still resulted in the most optimal ground surface (with a point density of
>1 point m2); however, the lidar-measured ground surface sat ~0.03 m above measured
(|dz| = 0.03 m; RMSE = 0.17 m; 1.03 points m−2). More accurate classification schemes
were identified, with fewer (in this case, 0.75) points m−2 (classifications 14 through 18;
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|dz| = 0.00 m; RMSE = 0.17 m; Figure 10; Table 1). Generally, the least accurate results
were similar to those for cumulative burned areas—those within which the iteration angle
was reduced to two; however, in TR areas, emission wavelength made the most difference
to accuracy, with the lowest accuracy classifications produced by 532 nm data.
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Figure 10. Ground classification results (|dz| and RMSE) in burned peatlands with tall vegetation
regeneration two years post-fire (as a proxy for 3+ years post-fire). Classifications were conducted
in TerraScan.

Using LAStools, the optimal ground classifications were A through E (‘Nature’ classifi-
cations with any level of refinement) using combined 1550 nm and 1064 nm data (Figure 11;
Tables 2 and S1). The lidar-measured ground classified returns had an |dz| = 0.03 m
from field-measured (RMSE = 0.18 m; 2.40–2.42 points m−2). Comparable results were
achieved using only 1550 nm data, but point density was reduced to 1.27–1.34 points m−2.
As with earlier vegetation regeneration stages, classification accuracy depended more on
the wavelength than on classification parameters with LAStools. For systems using only
1064 nm emission wavelengths, the lidar-measured ground surface sits slightly above the
measured ground (|dz| = 0.04–0.05 m; RMSE = 0.18 m; 1.24–1.31 points m−2). Similar to
TerraScan results, the poorest classifications were those produced with 532 nm data.
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Figure 11. Ground classification results (|dz| and RMSE) in burned peatlands with tall vegetation
regeneration two years post-fire (as a proxy for 3+ years post-fire). Classifications were conducted
in LAStools.

In summary, unlike areas with lower vegetation regeneration, in TR areas, the optimal
classifications from TerraScan and LAStools differed, with TerraScan classifications gener-
ally performing better (Figures 10 and 11). Using TerraScan we can still expect an average
elevation accuracy of ~0.00 m; however, the accuracy at a given point is expected to have a
range of ~0.16 m using combined 1550 nm and 1640 nm data with TerraScan. Using the
same lidar data but with LAStools, the average elevational accuracy is slightly lower at
~0.03 m, with a slightly increased RMSE of ~0.18 m.

3.5. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Unburned Peatlands

Finally, in unburned areas (or areas that have fully regenerated post-fire), the optimal
ground classifications were 9 through 13 using all wavelengths combined (Figure 12;
Tables 1 and S1). By reducing the iteration angle to two, these classifications resulted in
an |dz| = 0.01 m and an RMSE = 0.19 m; however, point density was relatively low
for this particular survey (0.64 points m−2). When a threshold of 1.0 points m−2 is set,
the optimal ground classifications shifted to 14 through 18, with their iteration angles
set to 5◦ (Table S1). These classifications have a point density of 1.16 points m−2, but
an |dz| = 0.05 m (Figure 12; Table 1). In the case of a lidar emitting at 1064 nm, the
optimal classifications are the same as those when all wavelengths are combined (9 through
13); however, classification accuracies notably decline with a threshold of 1.0 points m−2.
Classifications 19 through 23 provide the best outputs, in this case, with an |dz| = 0.09 m
(RMSE = 0.22 m; 1.03 points m−2). The least accurate classifications are those produced
using lidar data collected at 532 nm, where the iteration angle is 15 (widest angle tested).
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Figure 12. Ground classification results (|dz| and RMSE) in unburned peatlands. Classifications
were conducted in TerraScan.

Unlike in burned landscapes, where classification was not the dominant control on
accuracy compared with emission wavelength in LAStools, there was a distinction between
classifications in unburned areas. In these zones, classification B using data collected at
1064 nm was optimal (Figure 13 and Table 2), resulting in the lowest difference between field-
measured and ground classified returns. This classification resulted in an |dz| = 0.09 m
(RMSE = 0.21 m; 1.24 points m−2). As with other vegetation regeneration stages, data
collected at 532 nm resulted in the least accurate ground classifications, regardless of
parameterization, followed by use of all channels combined.

In summary, as with TR areas, the optimal classifications from TerraScan and LAStools
differed in unburned boreal peatlands. We can expect a spatially averaged elevation
accuracy of ~0.01 m (or ~0.05 m with a threshold of point density > 1 point m−2) with an
accuracy at a given point within an RMSE of ~0.19 m when using all channels combined,
processed in TerraScan (Figure 12). Using LAStools, accuracy was poorer, with an average
elevation accuracy of ~0.09 m with an RMSE of ~0.21 m at 1064 nm (Figure 13).
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Figure 13. Ground classification results (|dz| and RMSE) in unburned peatlands. Classifications
were conducted in LAStools.

3.6. Expected Ground Surface Elevation Accuracies of Lidar Data in the Years following
Wildland Fire

By isolating taller versus shorter vegetative regeneration regions and using these as
proxies for time since fire, we can estimate the elevation accuracy of lidar data collection
in the years following wildland fire. Within the first year since fire (which we assume is
the ‘SR’ category), lidar-measured ground elevation accuracies would be expected to be
approximately 0.00 ± 0.09 m (dz ± standard deviation (SD); Figure 14a and Table S1). For
this classification, as well as the others used, below, SD was equal to RMSE. Approximately
two years post-fire (at the time of this lidar data collection, assumed to include burned area
surveyed–SR and TR), we would expect to see ground elevation accuracy of approximately
0.00 ± 0.13 m (Figure 14a and Table S1). As vegetation growth continues beyond the third
year post-fire (‘TR’ category), the elevation accuracy of the lidar-measured ground classified
points would be reduced to approximately 0.00 ± 0.16 m (Figure 14a and Table S1). In
unburned areas, elevation accuracy would be approximately 0.01 ± 0.19 m (Figure 14a
and Table S1).

As the highest uncertainty (SD) was associated with unburned (pre-fire) areas, the
RMSEs associated with surface elevation changes were minimally different depending
on the stage of post-fire vegetation regeneration (Figure 14b). By using optimal ground
classification schemes, the post-fire dzs were consistently 0.00 m, and pre-fire was ~0.01 m
(Figures 4–13; Table S1). As such, the standard offset for elevation change was ~0.01 m, on
average, regardless of vegetation regeneration. We found that if lidar data were collected
immediately post-fire (i.e., SR areas), SD of the elevation change (depth of burn) was 0.21 m
(Figure 14b). If data were collected ~ two years post-fire (i.e., cumulative burned areas),
SD was 0.23 m (Figure 14b). Furthermore, if lidar data were collected three or more years
post-fire (i.e., TR areas), SD was 0.25 m (Figure 14b).
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Figure 14. (a) Expected ground elevation accuracies of lidar data in the years following wildland
fire in boreal peatlands; (b) Expected depth of burn (DOB) accuracies of lidar data in the years
following wildland fire in boreal peatlands, assuming pre-fire lidar data were collected in “unburned
conditions”, where Q = average over- or under-estimation of surface elevation change, and Ea is
cumulative error (SD). Note: for all measurements used, SD was equal to RMSE.
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3.7. Wavelength Dependency of Ground Classification Accuracy as Varies by
Vegetation Regeneration

By optimizing parameterizations, highly accurate ground classifications in low relief
environments are possible for any wavelength or combination used. However, regardless
of processing software, local vegetation characteristics still influence which wavelength
produces optimal ground classification results. When applying the TerraScan ground
classification parameterizations to road surfaces, optimal ground classification parameteri-
zations derived from 1064 nm data had the lowest error compared with ground control
measurements. However, wavelength-associated differences in ground surface elevation
were negligible: |dz|s ranged from 0.00 to 0.02 m (on average for all combination of
wavelengths) and RMSEs from 0.04 to 0.05 m (Figure 15a and Table S1). In unburned
and TR areas, the combination of 1550 nm and 1064 nm wavelengths resulted in the
most accurate ground classifications, with the least variability based on parameterization
optimizations (Figure 15e,c). The least wavelength-dependent vegetation regeneration
stage was that of cumulative burned areas with variable regeneration heights (a proxy for
~2 years post-fire; Figure 15d). While 1064 nm data resulted in the most accurate ground
classifications with the least variability based on the parameterization scheme, the use of
any wavelength individually resulted in similar levels of accuracy. However, the accuracy
of ground classifications became more variable when wavelengths were combined (either
1550 nm and 1064 nm; or, 1550 nm, 1064 nm, and 532 nm). In SR zones, lidar-based ground
elevations measured at 532 nm were the most accurate, with the lowest variability based
on parameterizations (Figure 15b).
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Figure 15. Ground classification results by wavelength along/in: (a) roads, (b) burned peatlands
with short regeneration, (c) burned peatlands with tall regeneration, (d) all burned peatlands, and
(e) unburned peatlands two years post-fire. Results were identified using TerraScan as determined by
lidar channel. Each point represents an iterative parameter set. Note: axis range varies by plot.

In LAStools, wavelength selection impacted ground classification accuracy more than
in TerraScan (Figures 15 and 16). Interestingly, processing software affects wavelength
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dependency for a given regeneration stage, particularly in SR areas (Figures 15b and 16b).
Along road surfaces, the use of data collected at 1064 nm, or both 1550 nm and 1064 nm,
resulted in slightly lower RMSEs; however, |dz| differences were negligible, and RMSEs
varied by only ~0.01 m (Figure 16a). In unburned areas, 1064 nm data resulted in ground
classifications with the lowest |dz|s and RMSEs (Figure 16e). Data collected using the
1550 nm wavelength provided the most accurate classifications in both cumulative burned
and TR areas (Figure 16d,c). In SR areas, all wavelengths combined provided the most
accurate ground classifications (Figure 16b).
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Figure 16. Ground classification results by wavelength along/in: (a) roads, (b) burned peatlands
with short regeneration, (c) burned peatlands with tall regeneration, (d) all burned peatlands, and
(e) unburned peatlands two years post-fire. Results were identified using LAStools as determined by
lidar channel. Each point represents an iterative parameter set. Note: axis range varies by plot.

4. Discussion

Despite the utility of lidar data for measuring ground surface elevation, time-series
lidar data pre- and immediately post-fire is relatively rare but is increasing in availability
with the application of lidar for understanding the impacts of wildland fire on ecosystems.
This study provides an opportunity to assess the potential for error during the classification
of lidar returns as “ground” and the accuracy of ground elevations for use in DEMs. It also
identifies the ground classification errors associated with scorched patches/new vegetation
regeneration (SR) and early post-fire regeneration stages, indicating time since disturbance.

Previous studies have found that errors in ground classification most often occur
as a result of steep terrain [19,41,47] or dense vegetation [19,29,48]. Here, the study area
is relatively flat, and so the potential for error that results from sloped terrain is greatly
reduced (e.g., [19]). However, where vegetation has regenerated post-fire, stems and
foliage can be relatively dense. Further, burned peatland surfaces can have significant
microtopographical variability (hummocks and hollows) that may be difficult for the
lidar ground classification to differentiate from short, dense vegetation (e.g., [49]). Our
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results show that within a given vegetation height range, the accuracies of lidar ground
classifications (provided the parameters are set logically) do not deviate greatly from
the most to least accurate ground classification of laser returns compared with ground
control (Table S1). For example, within SR zones, using the least accurate classification
scheme/wavelength combination results in classified returns that were, on average, 0.11 m
below measured ground elevation, with a RMSE of 0.15 m. For many applicationns, such
as canopy height measurements in forested environments, this may be sufficient (e.g., [50]);
however, it is important to achieve the best accuracy possible when determining ground
surface elevations for applications including combustion from wildland fire (e.g., using
pre- and post-fire datasets) and hydrological modelling (e.g., [19]). This is due to the need
for accurate quantification of slight differences in the elevation surface from pre-post fire or
spatial changes in local surface topography.

We found that as vegetation regenerates post-fire, both optimal parameterizations and
the wavelength used for lidar data collection differ at varying growth stages. In SR areas, or
immediately post-fire, laser pulse emissions at 532 nm or using all wavelengths combined
(532 nm, 1064 nm, and 1550 nm) provide the most accurate ground classifications compared
with measured (Figures 4, 5, 15 and 16; Table S1). In these areas where vegetation regeneration
was minimal, laser pulses emitted at 532 nm better characterized the ground surface due to
the dominance of moss cover in measurement plots with little overlying vegetation in these
peatland environments. It should be noted that channel dependencies are likely a result of
both wavelength as well as pulse geometry (beam angle and footprint). Pulses emitted at
532 nm have lower energy receipt, a wider footprint, and a tendency to reflect from green
vegetation above the ground surface (Figure 3a) [51,52]. As such, ground classified returns at
532 nm were the least accurate in unburned and TR areas (Figures 15 and 16).

As vegetation heights increased, the data from 1064 nm, 1550 nm, or both wavelengths
combined, produced the most accurate elevations, noting that the addition of the 532 nm
wavelength reduced accuracy even when combined with the other two (Figures 15 and 16).
In cumulative burned areas, the use of 1550 nm provided the most optimal ground classifi-
cations, while in TR areas, either using 1550 nm data or combined 1064 nm and 1550 nm
data had the least error and variability based on parameterizations (Figures 15 and 16). In
cumulative burn areas where ground classification was conducted over regions of highly
variable vegetation heights and densities, classifications that used 1064 nm data resulted
in vegetation misclassified as ground [17,53]. Typical lidar systems with 1064 nm laser
wavelength emission have greater reflectance from short vegetation and mosses [54]. There-
fore, in areas with low, dense vegetation, there may be energy transmission losses as the
laser pulse intercepts and reflects from vegetation instead of the ground surface [9,17,51,53].
This was also observed in [19] who found that low, dense vegetation was more commonly
misclassified as ground, such that the classification was less accurate than in areas with
tall overstory vegetation and reduced understory, e.g., in some forests. This phenomenon
can be seen in the classifications of unburned peatlands, where 1064 nm data were optimal
for ground classifications as this resulted in the lowest error (Figures 15 and 16). Here, it
is likely that lidar was penetrating through canopies to low-lying understory vegetation
(ground dominated by mosses) and the ground surface.

As with channel selection, the parameterization settings that optimized ground classi-
fications depended on the dominant and sub-dominant vegetation heights found within
plots. In TerraScan, we found that changes to three parameters impacted ground classifica-
tions: iteration angle, iteration distance, and the ability to reduce iteration angle when edge
length exceeds a set distance (Tables 1 and S1). In burned landscapes with little vegetation
regeneration (SR), adjustments made to the iteration angle improved the accuracy of the
lidar-measured ground elevations compared with field-measured (Tables 1 and S1). Using
532 nm wavelength data (most accurate but low point density), the iteration angle was
slightly reduced from six to five degrees in the optimal classification. Using all wavelengths
combined, or only the 1064 nm wavelength data, the iteration angle was increased to 15
and 10 degrees, respectively (Table S1). The classifications using 532 nm data were more
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optimal using a smaller iteration angle (best for flat landscapes), likely due to the large
pulse footprint. However, by increasing the iteration angle when using all wavelengths
or 1064 nm data, the classification was better able to retain the steep transitions between
hummocks and hollows, which would be most significant in areas with low regeneration,
resulting in higher accuracy ground classification. A larger iteration angle allows the
ground classification routine to adhere to surface elevation variability [38] by including re-
turns that follow the microtopographic morphology of the hummocks and hollows. Despite
the general topography of peatlands and transitions into forests being relatively flat, we are
able to optimize the classification to account for highly localized topographic variability by
setting the iteration angle to a greater angle within a confined area [10,38].

As vegetation heights increased (cumulative burned and TR areas), maintaining a high
iteration angle but reducing iteration distance improved results. Iteration distance, which
is the maximum height at which a point will be added to the ground classification [38],
may be optimized at a longer distance in landscapes with little vegetation (e.g., for lidar
surveys in the months following a fire). This will better account for the discrepancies in dz
from returns from hummocks vs. hollows. However, in areas with greater vegetation re-
generation and fewer scorched gaps between vegetation patches, a larger iteration distance
of 1.4 m (vs. 0.5 m) may result in some returns from short vegetation being included in the
ground classification. This increases the lidar ground classified elevation surface above
the measured ground surface elevation, thereby increasing the inaccuracy of the DEM
(Tables 1 and S1). Optimal parameterizations change notably in unburned areas or in areas
with complete vegetation regeneration, post-fire. Interestingly, the optimal classifications
in these regions had a reduced iteration angle of two degrees, which was the iteration
angle that resulted in the poorest classifications in all post-burn analyses, even in TR areas.
As peat combustion can enhance elevation differences between hummocks and hollows
in peatlands [55], unburned peatlands often have less undulating moss ground surfaces.
Further, reducing the iteration angle in unburned areas reduces the likelihood of including
low herbaceous or shrubby vegetation in the ground classification. However, by reducing
the iteration angle, the tendency to add more points into the ground class is also reduced,
thereby reducing the point density. We found that by increasing the iteration angle to 5◦,
point density was increased to >1 point m−2; however, this increased the dz as the routine
included low-lying vegetation as ground.

When using LAStools, we found that classification parameters were less important
than the channel (laser pulse emission/reception wavelength as well as pulse geometry)
with which data were collected. In SR and TR areas, ground elevation classifications were
slightly improved when step size was set to 5 (‘Nature’ setting) instead of 3 (‘Wilderness’
setting) but were not impacted by the level of refinement. The ground classification was
slightly better in unburned landscapes when step size was five and refinement was set to
‘Fine’, where the initial ground point search grid is four times more refined than the step
size (Tables 2 and S1).

The results of this study demonstrate that not only do optimal classification parameters
differ based on vegetation structures and environmental conditions within these low-relief
ecosystems, but also that the same ground classification parameters can be optimal for spe-
cific environmental conditions (e.g., burned, low, moderate vegetation regeneration), but
far less accurate for a different set of environmental conditions. For example, in TerraScan,
classifications 8 through 13 provided the most accurate classifications in unburned land-
scapes but were the least accurate in cumulative burned and SR areas. There may be more
variable ground topography in a burned landscape, which is not optimally parameterized
using the same classification. With reduced iteration angle, areas with highly variable mi-
crotopography result in underestimation of ground surface elevation because returns from
hummocks are excluded from the classification because the angular differences between
returns in hollows vs. hummocks is too great. Steep angular classification of returns from
the tops of the Sphagnum hummocks resulted in points being added to short vegetation
instead of the ground class. This emphasizes the need to classify returns not only by land
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cover type but also by vegetation characteristics within those land covers for the most
optimal/accurate classification parameterization. For example, classification to wetland
class, burned and unburned, and within the burned class, high versus low regeneration
(which can be determined based on the lidar data derivatives).

5. Conclusions

This study demonstrates the importance of optimizing classification parameters from
default settings and optimizing parameters for different land cover types and vegetation
structural characteristics. While it is important to iterate/optimize methods with any new
data set, the results here provide parameters that can be used in burned and unburned
boreal peatland environments and as a starting point for parameterization in similar
environments. We provide optimal parameterization for boreal peatlands along a post-fire
regeneration trajectory, with “SR” representing peatlands soon after burn, unsegmented
burned land cover representing two years post-fire, “TR” representing several years post-
fire, and unburned vegetation covers representing land cover later in the regeneration
trajectory. However, we suggest that there is a need for the development of accessible
adaptative classification procedures, which can be used to (a) filter the landscape by
attributes and (b) identify optimal parameterizations.

From this study, we conclude an expected ‘best’ average accuracy for depth of burn
(pre-fire elevation minus post-fire elevation) within peatlands will have a spatially averaged
error (dz) of ~0.01 m, indicating that soil organic matter loss (determined most simply as
a change in elevation) would be over-estimated by an average of 0.01 m. Using the
adventitious roots method, the average uncertainty is 0.004 m to 0.04 m (e.g., [54,56,57]) at
the tree base. However, airborne lidar methods provide an opportunity to quantify spatially
continuous elevational variability between trees and across a broad range of peatlands and
environmental characteristics. In addition, we demonstrate that lidar surveys completed in
the years following combustion do not become significantly less accurate for quantifying
depth of burn overall (offset at ~0.01 m and RMSEs ranging from ~0.21 m to ~0.25 m in SR
to TR areas; Figure 14). We suggest that lidar data collected up to three years post-fire can
be utilized for depth of burn analyses without significant differences in cumulative errors
associated with laser pulse interactions in the understory.
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