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Abstract: Mesoscale sea surface temperature (SST) variability triggers mesoscale air–sea interactions
and is linked to ocean subsurface mesoscale dynamics. The National Oceanic and Atmospheric
Administration (NOAA) daily Optimum Interpolation SST (OISST) products, based on various
satellite and in situ SST data, are widely utilized in the investigation of multi-scale SST variabilities
and reconstruction of subsurface and deep-ocean fields. The quality of OISST datasets is subjected
to temporal inhomogeneity due to alterations in the merged data. Yet, whether this issue can
significantly affect mesoscale SST variability is unknown. The analysis of this study detects an
abrupt enhancement of mesoscale SST variability after 2007 in the OISST-AVHRR-only version 2
and version 2.1 datasets (hereafter OI.v2-AVHRR-only and OI.v2.1-AVHRR-only). The contrast is
most stark in the subtropical western boundary current (WBC) regions, where the average mesoscale
SST variance during 2007–2018 is twofold larger than that during 1993–2006. Further comparisons
with other satellite SST datasets (TMI, AMSR-E, and WindSAT) suggest that the OISST-AVHRR-
only datasets have severely underestimated mesoscale SST variability before 2007. An evaluation
of related documents of the OISST data indicates that this bias is mainly caused by the change of
satellite AVHRR instrument in 2007. There are no corresponding changes detected in the associated
fields, such as the number and activity of mesoscale eddies or the background SST gradient in these
regions, confirming that the underestimation of mesoscale SST variability before 2007 is an artifact.
Another OISST product, OI.v2-AVHRR-AMSR, shows a similar abrupt enhancement of mesoscale SST
variability in June 2002, when the AMSR-E instrument was incorporated. This issue leaves potential
influences on scientific research that utilize the OISST datasets. The composite SST anomalies of
mesoscale eddies based on the OI.v2-AVHRR-only data are underestimated by up to 37% before
2007 in the subtropical WBC regions. The underestimation of mesoscale variability also affects the
total (full-scale) SST variability, particularly in winter. Other SST data products based on the OISST
datasets were also influenced; we identify suspicious changes in J-OFURO3 and CFSR datasets; the
reconstructed three-dimensional ocean products using OISST data as input may also be inevitably
affected. This study reminds caution in the usage of the OISST and relevant data products in the
investigation of mesoscale processes.

Keywords: mesoscale eddies; mesoscale air–sea interaction; mesoscale SST anomalies; OISST data;
western boundary current

1. Introduction

Oceanic mesoscale eddies, characterized by length scales of tens to hundreds of
kilometers [1], account for 70% of the kinetic energy in the global ocean [2], and they
play vital roles in the redistributions of mass, heat, salt, momentum, and nutrients [3–11].
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These eddies are ubiquitous in the global ocean and particularly active in the subtropical
western boundary currents (WBCs) and their extensions [1,12–15]. The WBCs and their
extensions are highly dynamically unstable, generating frontal meanders, cutoff mesoscale
eddies, and turbulent flow fluctuations over a broad range of spatiotemporal scales [16–18].
Geographically, the five major subtropical WBCs and their extensions are known as the
Kuroshio Extension (KE) and the East Australian Current (EAC) in the Pacific, the Gulf
Stream Extension (GSE) and Brazil–Malvinas Confluence (BMC) in the Atlantic, and the
Agulhas Return Current (ARC) in the South Indian Ocean. In addition to being action
centers for the dynamic ocean circulation changes, the WBCs and their extensions are
also hotspots for thermodynamical interaction between SST anomalies (SSTAs) and the
overlying atmosphere [13,19–22]. Such interaction is scale dependent [23]. On a large scale
of >500 km, the correlation between SST and wind is usually negative with an increased
wind speed corresponding to SST cooling, reflecting the regime that the atmosphere dictates
ocean variability [24–27]. On the oceanic frontal scales of O (100 km), on the other hand,
the SST–wind speed correlation tends to be positive, indicating that mesoscale SSTAs
drive atmospheric variations [28–30]. The significance of oceanic mesoscale atmosphere
(OMEA) interaction in regulating large-scale oceanic and atmospheric circulations has
been increasingly recognized [30–34]. SSTAs of mesoscale eddies cause surface turbulent
heat flux anomalies and affect the stability of the atmospheric boundary layer [30,35–37],
exerting imprints on cloud formation, cloud liquid water, and precipitation rate [37,38].

Based on both satellite and in situ measured SST records, the National Oceanic and
Atmospheric Administration (NOAA) daily Optimum Interpolation SST (OISST) products
are widely utilized to investigate mesoscale SST variability due to its high spatial resolution
and long-term temporal coverage [39]. There have been a large number of studies using
OISST datasets to investigate the SSTA associated with mesoscale eddies [40–46]. Although
our understanding of the OMEA interaction has improved significantly over the past
few decades, an exploration into the long-term changes of mesoscale SST is still lacking.
Previous studies on this topic were either regional [36,37,47] or model based [30–34,48,49].
How mesoscale change in intensity, distribution, and characteristics under the ongoing
greenhouse gas warming is unknown. The OISST products covering a long period since
1981, serve as a favorable material for such investigation. In addition, satellite SST data,
along with sea surface height (SSH) and surface winds, are also used to retrieve subsurface
and three-dimensional properties of the ocean through various approaches [50–54]. Among
others, the OISST products are widely used as input in the reconstruction of subsurface and
deep-ocean properties, such as the subsurface eddies, redistribution of ocean heat content,
and overturning circulations using neural network approaches [55–58].

Since 1981, satellite-based SST observations have become available from the Advanced
Very High-Resolution Radiometer (AVHRR) instrument with global coverage [39]. In the
OISST product, a large-scale bias adjustment of the input infrared SST is made using in situ
observations as a reference [39]. It is well known that the quality of the OISST data has
been improved by including new data from satellites and in situ measurements [39,59–61].
For example, the OISST-AVHRR-only version 2 (OI.v2-AVHRR-only) product used AVHRR
Pathfinder data from January 1985 to December 2005 and changed to operational AVHRR
data for 2006 onward [39], https://repository.library.noaa.gov/view/noaa/33351 (accessed
on 12 January 2022). the observations have sparse spatial coverage before 2007, and
some ship observations in the 1985–2006 period were made from insulated buckets, hull
contact sensors, and engine condenser intakes at depths of one to several meters [42].
Therefore, the quality of OISST products is inevitably subjected to temporal inhomogeneity.
Whether this issue can significantly affect the long-term changes of mesoscale SST requires
careful inspection.

In this study, we seek to quantify mesoscale SST variability based on the OISST datasets
over the past few decades, particularly in the WBCs and their extensions. We underline
that the weak mesoscale SST variability in the OI.v2-AVHRR-only data before 2007, which
is smaller in amplitude by 46% than after 2007 in the four WBCs and extensions. Rather
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than reflecting a natural phenomenon, this contrast is likely caused by an artifact bias
arising from the alteration of the merged data in 2007. This bias has widespread impacts on
various data related to the OISST datasets, such as the J-OFURO3, CFSR, and subsurface
ocean reconstruction products.

2. Materials and Methods
2.1. Materials

Several satellite observation datasets were adopted in our analyses. The main observed
SST data were obtained from the National Oceanic and Atmospheric Administration
(NOAA) daily Optimum Interpolation SST (OISST) analysis product, which has a 0.25◦

spatial resolution and daily temporal resolution. This product includes version 2 (OI.v2)
from 1993 to 2018 and version 2.1 (OI.v2.1) from 1993 to 2019 [39]. Both products combined
in situ data from ships and buoys and included an adjustment of satellite biases with respect
to the in situ data. Moreover, the OI.v2 product has two versions: the OI.v2-AVHRR-only is
only based on the Advanced Very High-Resolution Radiometer (AVHRR) infrared satellite
SST data, and the OI.v2-AVHRR-AMSR combines the AVHRR and Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E) instrument from June 2002
to December 2007. The OI.v2.1 version is the AVHRR-only product (OI.v2.1-AVHRR-only)
that is the same as the OI.v2-AVHRR-only version before 2016. Compared with the OI.v2-
AVHRR-only data, the OI.v2.1-AVHRR-only data have significant quality improvement for
data starting in January 2016 and onward [62].

We also used other 0.25◦ spatial resolution daily satellite SST datasets including the
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data for 40◦S–40◦N
from 1998 to 2013 [63], the WindSAT data from 2003 to 2018 [64], and the Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data from
2003 to 2011 [65]. The SST datasets that combined the OISST data we used include the
Japanese Ocean Flux Data Sets with third-generation (J-OFURO3) data with 0.25◦ spatial
resolution and daily temporal resolution from 1993 to 2013 [66], and the Climate Forecast
System Reanalysis (CFSR) SST with 0.5◦ spatial resolution and daily temporal resolution
from 1993 to 2010 [67].

In addition, we used the 0.25◦ SSH anomaly (SSHA) data of the SSALTO/Data Unifica-
tion and Altimeter Combination System (DUACS) multi-mission altimeter sea level product
from 1993 to 2018 [68]. The Mesoscale Eddy Trajectory Atlas product in delayed-time
version-2.0 is based on SSALTO/DUACS SSHA data and provides the location, trajectory,
radius, amplitude, and rotation velocity of mesoscale eddies during 1993–2017 [69].

2.2. Mesoscale SST Variability

To investigate the temporal variability of mesoscale SST, we should first distinguish
between the large-scale SSTA and mesoscale SSTA. The SST can be decomposed into two
parts as follows:

T = T + T′ (1)

T′ = TL
′ + TM

′ (2)

where T denotes the 26-year climatological SST, and T′ is the SST anomaly (SSTA) relative
to the climatology. Moreover, the SSTA is composed of the large-scale SSTA (TL

′) and
the mesoscale SSTA (TM

′). Following [49], we used the 4◦ × 4◦ boxcar moving spatial
high-pass filter to isolate the mesoscale SST signal, which is similar to the result of the
15◦ (longitude) × 5◦ (latitude) half-width Loess filter method. The latter filter method
has been widely used to isolate mesoscale eddy variability from background files in the
ocean [30,70] but carries a high computational burden.

To quantify the intensity of mesoscale SST variability, we calculated the variance of
mesoscale SST as TM

′·TM
′. The increased value of TM

′ variance indicates the enhancement
of mesoscale SST variability, representing that the warm eddy induced much more positive
SSTA or the cold eddy induced much more negative SSTA. We used this index throughout
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the paper because it can measure the strength of mesoscale SST but does not distinguish
the eddy polarity. Similarly, the large-scale SST variance can be written as TL

′·TL
′, which

indicates the intensity of the large-scale SST variability.

3. Results
3.1. An Abrupt Increase in Mesoscale SST Variability in 2007

Figure 1 shows the spatial distribution of the mean TM
′ variance derived from the

OI.v2-AVHRR-only data during 1993–2018. Notably, the highest levels of mesoscale SST
variability are anchored in the subtropical WBCs and their extensions, where are abundant
with energetic eddies; this is consistent with previous studies [1,22]. As outlined by the
black boxes in Figure 1, the WBCs and their extensions include the Kuroshio Extension (KE;
140◦E–180◦E, 30◦N–45◦N), the Gulf Stream Extension (GSE; 40◦W–60◦W, 40◦N–50◦N), the
Agulhas Return Current (ARC; 10◦E–60◦E, 37◦S–44◦S), and the Brazil–Malvinas Confluence
(BMC; 40◦W–60◦W, 30◦S–50◦S). We refer to “WBCs and their extensions” as “WBC regions”
in the following analyses. Among the four WBC regions, the mean TM

′ variance during
1993–2018 in the GSE region is the largest with 1.1 ◦C2 and decreases in the order of the
ARC, BMC, and KE regions with values of 0.94 ◦C2, 0.64 ◦C2, and 0.52 ◦C2, respectively. In
contrast, TM

′ variance in tropics (20◦S–20◦N) is typically as small as 0.08 ◦C2. Tropical SST
variability is mainly associated with the tropical instability waves (TIWs) with wavelengths
of O (1000 km) and large-scale climate models such as the El Niño/Southern Oscillation
(ENSO) [71,72]. These signals have been largely attenuated by the 4◦ × 4◦ boxcar moving
spatial high-pass filter. Therefore, in the following analyses, we will mainly focus on
the four WBC regions, where the largest mesoscale air–sea interaction occurred in the
global ocean.

Figure 1. Mean mesoscale SST variance distribution derived from OI.v2-AVHRR-only data during
1993–2018. The black boxes denote the Kuroshio Extension (KE, 140◦E–180◦E, 30◦N–45◦N), the Gulf
Stream Extension (GSE, 40◦W–60◦W, 40◦N–50◦N), the Agulhas Return Current (ARC, 10◦E–60◦E,
37◦S–44◦S), and the Brazil–Malvinas Confluence (BMC, 40◦W–60◦W, 30◦S–50◦S), respectively.

To analyze the temporal variability of the intensity of mesoscale SST, the time series of
average TM

′ variance in each WBC region derived from the OI.v2-AVHRR-only data are
shown in Figure 2. The thin blue lines denote the daily time series, and the thick blue lines
denote the 1.5-year low-pass filtered time series. One can see that the TM

′ variance in the
four WBC regions exhibits well-defined seasonal variabilities with strong (weak) levels in
winter (summer), indicating that the mesoscale air–sea interaction is strongest in winter,
which is in agreement with previous studies [13,30,33,37,49]. However, notably, the TM

′

variance in all four WBC regions increased during 1993–2018, and surprisingly, the abrupt
increasing points all appeared in 2007. The mean TM

′ variance in the four regions during
2007–2018 is 1.05 ◦C2, which is approximately twofold larger than that during 1993–2006
with 0.54 ◦C2.
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Figure 2. Time series of the mesoscale SST variance based on the OI.v2-AVHRR-only data in the
regions of (a) KE, (b) GSE, (c) ARC, and (d) BMC. The thin and thick lines denote the daily and
1.5-year low-pass filtered time series, respectively.

3.2. Causes for the Change

As high-resolution observed SST data, the OI.v2-AVHRR-only data experience widespread
use in investigating mesoscale SST signals [40–46] and are considered as the input of
reconstruction of subsurface and deep ocean temperature [55–58]. Seeking out the reason
for the conspicuous abrupt increase in mesoscale SST variability in 2007 is very important
to our understanding of the observed mesoscale air–sea interactions. On the one hand,
the consistent jump points in 2007 in the four WBC regions may be unveracious due to
the different dynamic systems in different regions. On the other hand, if this scenario is
reliable, there must be some kind of physical process to regulate it.

We first suspected the validity of the abrupt increase in the TM
′ variance in the four

WBC regions in 2007 based on the OI.v2-AVHRR-only data. To examine its credibility, we
compared the time series of the TM

′ variance in each region based on the OI.v2-AVHRR-only
data with that using the other versions of the OISST data, including OI.v2-AVHRR-AMSR
data and OI.v2.1-AVHRR-only data (Figure 3). The thin lines denote the daily time series,
and the thick lines denote the 1.5-year low-pass filtered time series. For comparison, the
values of TM

′ variance based on OI.v2-AVHRR-AMSR data (yellow lines) and OI.v2.1-
AVHRR-only data (red lines) in Figure 3 are the original values plus 0.5 ◦C2 and minus
0.5 ◦C2, respectively. It can be found that the time series of TM

′ variance using OI.v2.1-
AVHRR-only data also exhibited enhancement in 2007 in all regions and corresponded well
with that using OI.v2-AVHRR-only data (blue lines), which is due to the OI.v2.1-AVHRR-
only data before 2016 being the same as OI.v2-AVHRR-only data [62]. However, the most
conspicuous discrepancy among these values is that the abrupt increase in the TM

′ variance
based on the OI.v2-AVHRR-AMSR data in the four regions all appeared in June 2002, when
the AMSR-E instrument was incorporated in the OISST data.

Taking the GSE region as an example, Figure 4a,b show the snapshots of the TM
′

variance on 31 May 2002, and 1 June 2002, respectively, based on OI.v2-AVHRR-AMSR
data. The average value of the TM

′ variance in the GSE region (black box in Figure 5a)
on 1 June 2002 is 1.52 ◦C2, which is 1.9 times that on 31 May 2002, with 0.79 ◦C2, even on
successive days. Similar results are obtained in the OI.v2-AVHRR-only data in 2007. As
Figure 4c,d show, based on the OI.v2-AVHRR-only data, the average TM

′ variance in the
GSE region on 1 Jan 2007 is 1.47 ◦C2, which is 1.8 times that on 31 Dec 2006, with 0.82 ◦C2,
indicating that the abrupt enhancement in 2007 is unveracious due to an artifact in the
OI.v2-AVHRR-only data.
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Figure 3. Time series of the mesoscale SST variance in the (a) KE, (b) GSE, (c) ARC, and (d) BMC
regions. The blue, yellow, and red lines denote the values based on the OI.V2-AVHRR-only data,
OI.v2-AVHRR-AMSR data, and OI.v2.1-AVHRR-only data, respectively. For comparison, the yellow
(red) line is the original value plus (minus) 0.5 ◦C2. The thin and thick lines denote the daily and
1.5-year low-pass filtered time series, respectively.

Figure 4. The snapshots of mesoscale SST variance in the GSE region based on the (a,b) OI.V2-
AVHRR-AMSR data on (a) 31 May 2002 and (b) 1 June 2002; (c,d) OI.v2-AVHRR-only data on (c) 31
December 2006 and (d) 1 January 2007.

To further verify the enhancement of the TM
′ variance in the OI.v2-AVHRR-only

data in 2007 is an artifact, we also used other high-resolution satellite SST data including
AMSR-E, WindSAT, and TMI data to calculate the TM

′ variance in each WBC region
(Figure 5). Compared with the OI.v2-AVHRR-only data, Figure 5 shows the time series
of 1.5-year low-pass filtered TM

′ variance based on the different satellite SST data in each
region. It is worth noting that as the spatial coverage of the TMI data is confined to
40◦S–40◦N, the latitudinal bands of KE, ARC, and BMC regions in Figure 5 are defined
as 30◦N–39◦N, 37◦S–39◦N, and 30◦S–39◦S, respectively. As the GSE region is outside of
40◦S–40◦N, Figure 5b lacks the value using TMI data. It can be seen that the TM

′ variance
time series exhibit no abrupt enhancement in 2007 using the AMSR-E, WindSAT, and TMI
data in all four regions except for that based on the OI.v2-AVHRR-only data, verifying
that the jump in the OI.v2-AVHRR-only data is an artifact. Moreover, the values based
on the OI.v2-AVHRR-only data are much lower than those using the other satellite SST
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data before 2007, and all levels of these time series remain roughly consistent in each
region after 2007, suggesting that the TM

′ variance based on the OI.v2-AVHRR-only data is
underestimated before 2007 and is credible after 2007. Specifically, Figure 6a,b show the
mean TM

′ variance during 1993–2006 and 2007–2018, respectively. As shown in the black
boxes in Figure 6, in the KE, GSE, ARC, and BMC regions, the mean TM

′ variances during
2007–2018 (1993–2006) are 0.63 (0.42) ◦C2, 1.44 (0.69) ◦C2, 1.29 (0.64) ◦C2, and 0.85 (0.43) ◦C2,
respectively. Therefore, the mean TM

′ variance in the KE, GSE, ARC, and BMC regions
during 1993–2006 are underestimated by 33%, 52%, 50%, and 49%, respectively. As a
result, the mean TM

′ variance in the WBC regions during 1993–2006 is underestimated by
46% compared with that during 2007–2018. Moreover, Figure 6c shows the TM

′ variance
anomaly for the periods of 2007–2018 minus 1993-2006. In addition to the four WBC regions
with the highest discrepancies, the underestimation before 2007 also exists in the Antarctic
Circumpolar Current (ACC), subtropical South Indian Ocean, eastern Australian region,
tropical instability wave (TIW) region, and subtropical North Pacific Ocean. In contrast,
the TM

′ variance during 1993–2006 is slightly larger than that during 2007–2018 in most
tropical regions. Analogously, in the OI.v2-AVHRR-AMSR data, the mean TM

′ variance
in the WBC regions before June 2002 is underestimated by 41%, compared with that after
June 2002. These results indicate that the OI.v2-AVHRR-only (OI.v2-AVHRR-AMSR) data
weakly estimate the strength of the mesoscale SST variation in most subtropical oceans,
especially the WBC regions before 2007 (June 2002), due to an artifact in the data.

Figure 5. Time series of the 1.5-year low-pass filtered mesoscale SST variance in the (a) KE, (b) GSE,
(c) ARC, and (d) BMC regions. The black, yellow, purple, and green lines denote the value based on
the OI.v2-AVHRR-only data, AMSR-E data, WindSAT data, and TMI data, respectively.

According to previous studies, we assumed that the jump of mesoscale SST variability
in 2007 in the OI.v2-AVHRR-only data is mainly due to the changes in the satellite AVHRR
instrument and in situ SST dataset at that time [39,59–61]. As Table 1 (from [60]) shows,
the AVHRR Pathfinder was used during 1981–2006 and then changed to the operational
Navy AVHRR from 2007 to the present. Moreover, the OI.v2-AVHRR-only data were
used with the in situ SST data from the International Comprehensive Ocean-Atmosphere
Dataset release 2.4 (ICOADS 2.4) during 1981–2006, which changed to the National Centers
for Environmental Prediction (NCEP) SST beginning in 2007 and onward. In addition,
Table 2 (from [60]) shows the platform time spans of AVHRR inputs to the daily OISST
data. Only one satellite was available before 2007, and two satellites at a time were used
beginning in January 2007, which result in more accuracy of the OI.v2-AVHRR-only data
after 2007. Moreover, the observations had sparse spatial coverage before 2007, and most
ship observations in the 1985–2006 period were made from insulated buckets, hull contact
sensors, and engine condenser intakes at depths of one to several meters [39]. These
mentioned reasons may all contribute to the weak estimation of mesoscale SST variability
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in OI.v2-AVHRR-only data before 2007. Meanwhile, the abrupt enhancement of mesoscale
SST variance in June 2002 in the OI.v2-AVHRR-AMSR data is likely due to the incorporation
of the AMSR-E product, which is stated in [39] that there existed SST variance jump when
the AMSR became available in June 2002. The in situ SST data and observations are the
same in the OI.v2-AVHRR-only and OI.v2-AVHRR-AMSR data, suggesting that changes in
the satellite AVHRR instrument are the primary factor for the OISST data bias.

Figure 6. Mean mesoscale SST variance distribution derived from OI.v2-AVHRR-only data during
the periods of (a) 1993–2016, (b) 2007–2018, and (c) 2007–2018 minus 1993–2016.

Table 1. Input datasets to the daily OISST data. From [60].

Input Type Reprocessed or
Higher-Quality Data Sets Operational Data Sets

Satellite (AVHRR SSTs) Pathfinder 5.0/5.1 (1981–2006) Navy (2007-present)
In situ SSTs ICOADS 2.4 (1981–2006) NCEP (2007-present)

Sea-ice concentrations GSFC NASA (1981–2004) NCEP (2005-present)

Table 2. Platform time spans of AVHRR inputs to the daily OISST data. From [60].

Data Set Start Date End Date Platform Sensor

Pathfinder 24 August 1981 3 January 1985 NOAA-7 AVHRR/2
4 January 1985 7 November 1988 NOAA-9 AVHRR/2

8 November 1988 13 September 1994 NOAA-11 AVHRR/2
14 September 1994 21 January 1995 NOAA-9 AVHRR/2

22 January 1995 11 October 2000 NOAA-14 AVHRR/2
12 October 2000 31 December 2002 NOAA-16 AVHRR/3
1 January 2003 4 June 2005 NOAA-17 AVHRR/3

5 Jun 2005 31 December 2006 NOAA-18 AVHRR/3

Navy 1 January 2006 31 December 2008 NOAA-17 AVHRR/3
1 January 2007 15 August 2011 NOAA-18 AVHRR/3
1 January 2009 Present MetOP-A AVHRR/3
16 August 2011 Present NOAA-19 AVHRR/2
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We also examined the potential dynamic effects, including the mesoscale eddy num-
ber, the EKE, and the background SST gradient (Figure 7). On the one hand, the strength
of mesoscale eddies can influence the mesoscale air–sea interaction that stronger eddies
correspond to more intense heat transfer between ocean and atmosphere [36]. On the other
hand, the mesoscale SST can be generated by the lateral stirring of mesoscale eddies, dis-
torting the background SST, and therefore, the large background SST gradient is favorable
for enhanced mesoscale SST [73–75]. Figure 7a–d show the eddy numbers in each WBC
region based on the mesoscale eddy dataset. The eddy numbers are counted by the daily
snapshots of the eddies existing in each region, regardless of whether they are the same
eddy on different days. The thin gray lines denote the daily time series, and the thick black
lines denote the 1.5-year low-pass filtered time series. It is shown that the eddy numbers
remained stable in each region during 1993–2018. In addition, the EKE is calculated by

EKE =
g2

2 f 2 [

(
∂h′

∂x

)2

+

(
∂h′

∂y

)2

] (3)

where f is the Coriolis parameter, g is the gravity constant, and h′ is the 200-day high-pass
filtered SSHA because the oceanic mesoscale eddy signals are associated with temporal
scales of 50–200 days [1]. The EKE time series in each WBC region are shown in Figure 7e–h,
indicating that the EKE varies with interannual signals except for the abrupt increase in
2007. Notably, changing the high-pass filter to 4◦ × 4◦ boxcar moving spatial high-pass
filter generates no significant difference in the results. These results rule out that mesoscale
eddy variabilities are the reasons for the abrupt increase in mesoscale SST variations in
2007. We further examined the effect of the background SST gradient based on the OI.v2-
AVHRR-only data (Figure 7i–l). Similar to calculating EKE, we used the 200-day low-pass
filtered SST to represent the background SST, and the background SST gradient can be

defined as

√(
∂SST

∂x

)2
+
(

∂SST
∂y

)2
. As shown in Figure 7i–l, in addition to the well-defined

seasonal variability, the background SST gradient exhibits interannual variability in each
WBC region but without the abrupt increase in 2007, suggesting that the background SST
gradient is not responsible for the enhancement of mesoscale SST variability in 2007. The
above discussions confirm that the underestimated mesoscale SST variability before 2007
in the OI.v2-AVHRR-only data is an artifact.

Figure 7. Time series of (a–d) eddy numbers, (e,f) eddy kinetic energy (EKE), and (i–l) background
SST gradient in the (a,e,i) KE, (b,f,j) GSE, (c,g,k) ARC, and (d,h,l) BMC regions. The thin and thick
lines denote the daily and 1.5-year low-pass filtered time series, respectively.

3.3. Influence

Considering that the large TM
′ variance corresponds to the intense mesoscale air–sea

interaction associated with strong mesoscale eddy-induced SSTA, the underestimated TM
′
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variance before 2007 based on the OI.v2-AVHRR-only data is related to the underestimated
eddy-induced SSTA. To examine this feature, we matched the mesoscale eddies for each
day with the 4◦ × 4◦ boxcar moving spatial high-pass filtered SSTA, and Figure 8 shows the
composite Anticyclonic Eddy (AE)-induced SSTA in each WBC region during the periods
of 1993–2006 and 2007–2017. The composite figures are normalized by the eddy radius, the
circles denote the normalized eddy radius and the dots are the eddy centers. It is shown
that the composite AE-induced SSTA in the WBC regions exhibits monopole patterns,
in agreement with previous studies [21,30,36–38]. Moreover, the levels of AE-induced
SSTA in all WBC regions during 2007–2017 are overall higher than those during 1993–2006.
Similarly, Figure 9 shows the composite Cyclonic Eddy (CE)-induced SSTA in the WBC
regions during 1993–2006 and 2007–2017, showing different negative values in these two
periods. According to previous studies [11,38], the eddy-induced SSTA can be quantified
by the mean SSTA within the eddy radius due to the maximum value that concentrates
within the eddy radius. Therefore, the mean AE/CE-induced SSTAs during the two periods
in each region can be quantified. The AE (CE)-induced SSTAs in the KE, GS, ARC, and
BMC regions during 1993–2006 are 0.28 (−0.31) ◦C, 0.37 (–0.46) ◦C, 0.49 (–0.47) ◦C, and
0.36 (–0.38) ◦C, respectively, which are underestimated by 26 (24)%, 46 (46)%, 35 (34)%, and
40 (36)%, respectively, compared with those in the corresponding regions during 2007–2017.
As a result, the average AE (CE)-induced SSTA in the WBC regions is 0.38 ◦C (−0.41 ◦C)
during 1993–2006, which is underestimated by 37% (36%), compared with that during
2007–2017, with a value of 0.61 ◦C (–0.65 ◦C). Therefore, the underestimated eddy-induced
SSTA before 2007 in the WBC regions based on the OI.v2-AVHRR-only data are related to
the weak mesoscale air–sea interactions. Similar differences in results are obtained from
the OI.v2-AVHRR-AMSR data on the demarcation of June 2002 (figures not shown).

Figure 8. The composite Anticyclonic Eddy (AE)-induced SSTA in the (a,e) KE, (b,f) GSE, (c,g) ARC,
and (d,h) BMC regions during the periods of (a–d) 1993–2006, and (e–h) 2007–2017 based on the
OI.v2-AVHRR-only data. The circles denote the normalized eddy radius, and the dots are the
eddy centers.

The OISST datasets are appropriate for investigating mesoscale SST, but they are also
prevalent in research on large-scale SST variability [20,76,77]. Therefore, it is necessary
to examine whether the abrupt enhancement also exists in the large-scale SST variability.
Figure 10 shows the area-mean 1.5-year low-pass filtered large-scale SST (TL

′) variance
time series in the four WBC regions based on the OI.v2-AVHRR-only data. Noticeably, the
TL
′ variance time series demonstrates interannual variability in each WBC region without

the abrupt increase in 2007, suggesting that there are no artifacts in the OI.v2-AVHRR-only
data when depicting the large-scale SST variability. Similar results are obtained from the
OI.v2-AVHRR-AMSR data (figures not shown).
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Figure 9. The same as Figure 8, except for the Cyclonic Eddy (CE)-induced SSTA.

Figure 10. Time series of the 1.5-year low-pass filtered large-scale SST variance in the (a) KE, (b) GSE,
(c) ARC, and (d) BMC regions based on the OI.v2-AVHRR-only data.

In addition, whether the underestimation of TM
′ variance during 1993–2006 is of

importance to the estimation of total (full-scale) SST variance in the WBC regions is not
clear. Thus, we could measure the different parts of SST variance in different seasons
during 2007–2018 with reference to the value in the period of 1993–2006. We computed the
rate of SST variance change in different seasons in each WBC region based on the OI.v2-
AVHRR-only data (Figure 11). The seasons of spring (autumn), summer (winter), autumn
(spring), and winter (summer) in the Northern (Southern) Hemisphere are defined as March–
May, June–August, September–November, and December–February, respectively. Here,
as mentioned in the Methods Section, we divided the total SSTA (T′) into the mesoscale
SSTA (TM

′) and large-scale SSTA (TL
′); therefore, we could compute the rate of counterpart

SST variance change in each region in different seasons. As Figure 11 shows, the green,
red, yellow, and blue bars indicate the different parts of the SST variance change in spring,
summer, autumn, and winter, respectively, and the black outlines are the average values of
these four seasons. It can be seen that the mean TM

′ variance change in the four seasons
(the black outlines in the second column) is overall larger than the mean TL

′ variance
change (the black outlines in the third column) in all four WBC regions, indicating that
mesoscale SST variability is of great importance to the total SST variability (the black
outlines in the first column). Specifically, in the GSE and BMC regions, the mean TM

′

variance during 2007–2018 increased by 35% and 32%, respectively, while the TL
′ variance

in the corresponding regions increased by 20% and 15%. However, in the KE and ARC
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regions, instead of increasing, the TL
′ variance decreased by 7% and 13%, respectively,

although the total T′ variance increased by 4% and 17% (the black outlines in the first
column in Figure 11a,c), suggesting that the increase in the total T′ variance is contributed
from the increase in the TM

′ variance due to an artifact in the OI.v2-AVHRR-only data.
In addition, the largest underestimation of the TM

′ variance in the WBC regions during
1993–2006 roughly appears in winter (blue bars), except for the GSE region, where the
value is slightly larger in spring than in winter. Overall, the mean underestimation of
the TM

′ variance during 1993–2006 in the four WBC regions is 36% in winter, which is
larger than that in the other seasons and in agreement with previous studies, suggesting
that the mesoscale air–sea interaction is stronger in winter [13,30,33,37,49]. Therefore, the
above discussions indicate that the underestimation of mesoscale SST variability during
1993–2006 in the WBC regions can influence the estimation of the total SST variability,
especially in winter.

Figure 11. The rate of total, mesoscale, and large-scale SST variance change during 2007–2018,
compared with the period of 1993–2006 in different seasons in the (a) KE, (b) GSE, (c) ARC, and
(d) BMC regions based on the OI.v2-AVHRR-only data. The green, red, yellow, and blue bars denote
the seasons of spring, summer, autumn, and winter, respectively. The black outlines are the average
values of the four seasons.

The OI.v2-AVHRR-only data and OI.v2-AVHRR-AMSR data play important roles in
constructing many other datasets, such as the J-OFURO3 data and CFSR data, that are
extensively used in investigating mesoscale eddies [37,78,79]. In the following analysis, we
examine whether the TM

′ variance also exhibits an abrupt increase in the WBC regions in
the J-OFURO3 data and CFSR data. Figure 12 shows the average TM

′ variance time series
in each WBC region during 1993–2013 based on the J-OFURO3 data. Abrupt enhancements
can be seen in June 2002 in all regions, which are the same as the results using the OI.v2-
AVHRR-AMSR data, as the AMSR data were incorporated in the J-OFURO3 data at that
time. The mean TM

′ variance from June 2002 to December 2013 (January 1993 to May 2002)
in the KE, GSE, ARC, and BMC regions are 0.43 (0.32) ◦C2, 0.80 (0.45) ◦C2, 0.84 (0.44) ◦C2,
and 0.50 (0.31) ◦C2, respectively, indicating that the mean TM

′ variance in the corresponding
regions is underestimated by 23%, 44%, 48%, and 38% before June 2002, respectively, based
on the J-OFURO3 data. Moreover, these underestimations of the TM

′ variance also exist
before June 2002 in the CFSR data (Figure 13). The mean TM

′ variance in the KE, GSE, ARC,
and BMC regions from January 1993 to May 2002 is underestimated by 12%, 34%, 37%,
and 28%, compared with that from June 2002 to December 2010, respectively. Therefore,
the underestimation of mesoscale SST variability also exists in the other SST datasets that
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are based on the OISST products, which need to be considered when using these data to
explore mesoscale SST variability.

Figure 12. Time series of the mesoscale SST variance based on the J-OFURO3 data in the regions of
(a) KE, (b) GSE, (c) ARC, and (d) BMC. The thin and thick lines denote the daily and 1.5-year low-pass
filtered time series, respectively.

Figure 13. Time series of the mesoscale SST variance based on the CFSR data in the regions of
(a) KE, (b) GSE, (c) ARC, and (d) BMC. The thin and thick lines denote the daily and 1.5-year low-pass
filtered time series, respectively.

4. Conclusions and Discussion

In summary, this study investigated the interannual variability of the intensity of
mesoscale SST, which is represented by the mesoscale SST variance in the global ocean,
particularly in the four subtropical WBC regions (KE, GSE, ARC, and BMC) for the period of
1993–2018 (Figure 1). The main observed SST data we used were the OISST product, which
are widely used to investigate mesoscale SST signals due to their high resolution and long-
term temporal coverage. To date, the OISST version 2 (OI.v2) data provide two versions,
i.e., OI.v2-AVHRR-only and OI.v2-AVHRR-AMSR. We showed that the time series of the
mesoscale SST variance in the four WBC regions all exhibited an abrupt enhancement in
2007 based on the OI.v2-AVHRR-only data (Figure 2), and similar scenarios existed in June
2002 using the OI.v2-AVHRR-AMSR data. By comparing the results based on the OI.v2-
AVHRR-only data with those using the other high-resolution satellite SST data, such as the
WindSAT, AMSR-E, and TMI data (Figure 5), we showed that there were weak estimations
of the mesoscale SST variability in the OI.v2-AVHRR-only data before 2007 in the WBC
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regions. Specifically, the OI.v2-AVHRR-only data underestimated the mean mesoscale SST
variance in the four WBC regions by 46% in the 1993–2006 period, compared with that
in the 2007–2018 period (Figure 6). Among the four regions, the largest underestimated
mesoscale SST variance during 1993–2006 existed in the GSE region by 52% and decreased
in the order of the ARC, BMC, and KE regions by 50%, 49%, and 33%, respectively. Similarly,
the mean mesoscale SST variance in the WBC regions based on the OI.v2-AVHRR-AMSR
data before June 2002 was underestimated by 41%, compared with that after June 2002.
We assumed that these jumps are likely due to an artifact in the OI.v2-AVHRR-only and
OI.v2-AVHRR-AMSR data. According to previous studies [39,59–61], we assumed that the
abrupt enhancement in the mesoscale SST variability in 2007 in the OI.v2-AVHRR-only
data is likely mainly due to the change in the satellite AVHRR instrument (Table 1), and the
abrupt enhancement of mesoscale SST variability in June 2002 in the OI.v2-AVHRR-AMSR
data is likely due to the incorporation of the AMSR-E product. By further examining the
potential dynamics underlying this phenomenon, we ruled out the mesoscale eddy number
and strength, and therefore, the background SST gradient is responsible for these abrupt
enhancements (Figure 7), confirming that the underestimated mesoscale SST variability
before 2007 is an artifact of the OI.v2-AVHRR-only data. Notably, the underestimation did
not exist in the large-scale SST variance in the WBC regions using OI.v2-AVHRR-only data
and OI.v2-AVHRR-AMSR data (Figure 10).

The intensity of mesoscale SST variability was closely associated with the mesoscale
eddy-induced SSTA, which triggers the mesoscale air–sea interaction. Thus, the mesoscale
eddy-induced SSTA was underestimated based on the OI.v2-AVHRR-only data during
1993–2006 (Figures 8 and 9). Specifically, the average AE (CE)-induced SSTA in the WBC
regions was 0.38 (−0.41) ◦C during 1993–2006, which was underestimated by 37 (36)%, com-
pared with that during 2007–2017, with a value of 0.61 (−0.65) ◦C. In addition, we also found
that the underestimation of mesoscale SST variability can influence the estimation of total
SST variability, especially in winter, when the mesoscale air–sea interaction was strongest
(Figure 11). As the OI.v2-AVHRR-only and OI.v2-AVHRR-AMSR data are crucial compo-
nents in the other SST datasets, such as J-OFURO3 data and CFSR data, the underestimated
mesoscale SST variability also existed in the J-OFURO3 and CFSR data before June 2002,
when the AMSR-E instrument was not incorporated in the OI.v2-AVHRR-AMSR data.

Considering that the OISST products are widely used in exploring the multi-scale
SST variability in the global ocean, the weak estimation of mesoscale SST variation before
2007 may influence the evaluation of the observed high-frequency SST signals and extreme
climate events. For example, [77] suggests a doubling of the number of marine heatwave
days between 1982 and 2016 based on the daily OISST-v.2 dataset. Further analyses are
needed to examine marine heatwaves when considering artifacts in the OISST dataset.
Moreover, the OISST products, as the high-resolution observed SST datasets, are widely
considered the input to reconstruct the oceanic subsurface properties. It is known that
the mesoscale signals can penetrate into kilometers in the ocean, especially in the WBC
regions [4,7,8,11,49]. The underestimation of mesoscale variability in the OISST products
may influence the accuracy of reconstructing three-dimensional oceanic properties. There-
fore, it is necessary to take the weak mesoscale SST variability into consideration when
using OISST and relevant data products to explore the mesoscale processes.
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