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Abstract: Land surface reflectance (LSR) is well known as an essential variable to understand land
surface properties. The Geostationary Ocean Color Imager (GOCI) be able to observe not only
the ocean but also the land with the high temporal and spatial resolution thanks to its channel
specification. In this study, we describe the land atmospheric correction algorithm and present
the quality of results through comparison with Moderate Resolution Imaging Spectroradiometer
(MODIS) and in-situ data for GOCI-II. The GOCI LSR shows similar spatial distribution and quantity
with MODIS LSR for both healthy and unhealthy vegetation cover. Our results agreed well with
in-situ-based reference LSR with a high correlation coefficient (>0.9) and low root mean square error
(<0.02) in all 8 GOCI channels. In addition, seasonal variation according to the solar zenith angle and
phenological dynamics in time-series was well presented in both reference and GOCI LSR. As the
results of uncertainty analysis, the estimated uncertainty in GOCI LSR shows a reasonable range
(<0.04) even under a high solar zenith angle over 70◦. The proposed method in this study can be
applied to GOCI-II and can provide continuous satellite-based LSR products having a high temporal
and spatial resolution for analyzing land surface properties.

Keywords: geostationary ocean color imager; atmospheric correction; 6S; uncertainty analysis; land
surface reflectance

1. Introduction

Land surface reflectance (LSR) is defined as the ratio of upwelling solar radiation
reflected by a land surface to downwelling solar radiation for specific solar and viewing
geometries [1] and it is determined by the intrinsic property of the land surface as well
as observation geometry [2]. Because LSR is sensitive to changes in land surface caused
by both natural and artificial factors such as vegetation growth, snowfall, desertification,
and urbanization [2–5], it is widely utilized in studies on land environmental changes.
Painter et al. [6] developed a radiative forcing model to retrieve the amount of land surface
radiation caused from light absorption by dirty snow using Moderate Resolution Imaging
Spectroradiometer (MODIS) LSR products. Potapov et al. [7] presented a consistent long-
term LSR database based on Landsat satellite data for detecting changes in land cover both
globally and locally. Thus, accurate LSR data are necessary to understand changes in the
land surface and to analyze land surface properties.

Atmospheric correction to remove atmospheric effects from satellite observations is
essential for terrestrial surface analysis [8–10]. It is divided into relative and absolute
atmospheric corrections [11–13]. Relative atmospheric correction methods such as the em-
pirical line method and improved dark-object subtraction are a statical-based method [14],
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whereas absolute atmospheric correction methods are physical-based methods dependent
on the radiative transfer model (RTM). For LSR retrieval, absolute atmospheric correction
outperforms the empirical method, because it considers local geographic and atmospheric
conditions during RTM simulation [15–17]. Thus, RTMs such as MODerate resolution at-
mospheric TRANsmission (MODTRAN) and Second Simulation of a Satellite Signal in the
Solar Spectrum (6S) have been used with various software programs for atmospheric cor-
rection [18–26]. In addition, RTM has been used in LSR retrieval algorithms of MODIS [27],
the Visible Infrared Imaging Radiometer Suite [28], and Advanced Baseline Imager [29] for
operational purposes.

To remove atmospheric effects through absolute atmospheric correction, a-priori
information such as atmospheric conditions (water vapor and ozone amount, aerosol infor-
mation) and geometric conditions (solar zenith angle [SZA], viewing zenith angle [VZA],
and relative azimuth angle [RAA]) are required. Satellite data products with sufficient
temporal and spatial resolutions have been generally used as a-priori information in atmo-
spheric correction of satellite observations [27]; however, climate data, the European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis data or the National Centers for
Environmental Prediction reanalysis data have also been used [30–32]. However, since such
a priori information is not truth, it contains inherent uncertainty, which directly affects the
quality of the calculated LSR. Especially, error in aerosol optical depth (AOD) is one of the
most influential sources of uncertainty in LSR retrieval [33–35]. This uncertainty can cause
significant errors in subsequent applications and alter the inferred conclusion [36]. Despite
the importance of uncertainty analysis of remotely sensed products, input data-induced
uncertainties in remotely sensed LSR data are rarely quantitatively analyzed [37,38]. Most
operational satellite-based products provide users with the associated quality flags; how-
ever, the obtained information cannot fully explain the data uncertainties [39]. Therefore,
to guarantee the quality of the satellite-based variables, the uncertainties associated with
the sensed variables need to be measured and provided to users.

The Geostationary Ocean Color Imager (GOCI), which is the world’s first geosta-
tionary ocean color sensor, hourly transmits images during the daytime. GOCI totals
eight images per day, by observing a local area of 2500 × 2500 km (center latitude and
longitude are 36◦N and 130◦E, respectively). GOCI has eight spectral bands, from visible
(VIS) light to near-infrared (NIR), and it monitors the marine environment around the
Korean Peninsula [40,41]. These spectral bands allow monitoring of the atmosphere and
land surface because the short blue and NIR bands can reveal aerosols and vegetation,
respectively [42,43]. Thus, GOCI, like other ocean color sensors, is widely used in terrestrial
remote sensing applications. Kim et al. [44] estimated normalized difference vegetation
index (NDVI) data over different composite periods (4, 8, 12, and 16 days) using GOCI
imagery based on an optimized bidirectional reflectance distribution function (BRDF).
Ke et al. [45] estimated NDVI from GOCI LSR and used it to analyze the characteristics of
Landsat-8/OLI-derived NDVI. Son and Kim [46] conducted a feasibility study to produce a
land cover map using principal component analysis, K-means clustering, and GOCI NDVI
via BRDF modeling. Yeom et al. [47] and Kim et al. [48] have suggested novel cloud mask-
ing methods using BRDF-based background surface reflectance and Top-Of-Atmosphere
(TOA) reflectance of GOCI. The abovementioned studies estimated LSR using absolute
atmospheric correction. As input data, they used a daily product that does not consider the
diurnal variability of the atmosphere; however, uncertainty analysis was not performed.

GOCI-II, with 26 operational products, has been developed as the next-generation
instrument of GOCI. To meet the increasing land applications of GOCI, GOCI-II contains
four land variables (LSR, vegetation index, land surface albedo, and land cover) [49]. All
of the GOCI-II land products directly or indirectly use LSR as input data [50]; thus, their
accuracy and stability depend on those of LSR. Therefore, in addition to LSR retrieval and
validation, uncertainty analysis of the data is essential to ensure quality of subsequent
land products.
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In this study, we aimed to (1) develop an operational atmospheric correction algorithm
for GOCI-II using RTM simulations and (2) analyze the accuracy and input data-induced
uncertainty in estimated LSR by comparing the LSR data with in situ reference data. Owing
to the short operation period of GOCI-II (since October 2020), the corresponding reference
data are limited, whereas a large amount of GOCI reference data can be obtained from the
observations of the 2016 Korea–United States (KORUS) campaign; therefore, we used GOCI
measurements as proxy data instead of GOCI-II. In addition, the channel specifications and
observation systems of GOCI are similar to those of GOCI-II.

The remaining parts of this paper are organized as follows: Section 2 describes the
materials used in this study. Section 3 explains the methods for retrieval, validation, and
uncertainty analysis of LSR. Section 4 presents the result of qualitative comparison with
other satellite-based LSR, and the accuracy and uncertainty analysis results of estimated
LSR. Lastly, Section 5 summarizes our findings.

2. Materials
2.1. Satellite Data

The GOCI mounted on the Communication, Ocean and Meteorological Satellite was
designed with a target area of 2500 km × 2500 km, to monitor the color of the ocean
surrounding the Korean Peninsula, Northeast Asia (Figure 1). GOCI has eight spectral
channels, whose specifications are presented in Table 1. GOCI provides hourly observations
from 00 UTC to 07 UTC, with a spatial resolution of 500 m, which exceeds those of other
geostationary satellites observing Northeast Asia, such as the Advanced Meteorological
Imager (AMI) and Advanced Himawari Imager [40]. Owing to its advantage of high
spatial and temporal resolutions, GOCI has been widely used for land surface, atmosphere,
and ocean monitoring [47,48]. In this study, we used GOCI Level 1B (L1B) and GOCI
AOD products for atmospheric correction. These datasets were provided by the Korea
Ocean Satellite Center (KOSC) in the Korea Institute of Ocean Science and Technology
(KIOST). GOCI L1B data were saved as a digital number (DN). We converted the data to
top-of-atmosphere (TOA) radiance using calibration coefficients (Equation (1)):

Li = DNi × ai + bi (1)

where Li is the TOA radiance (W·m−2·sr−1·µm−1) of GOCI image in band i; DNi is the
digital number from the GOCI image in band i; ai and bi are calibration coefficients for gain
and offset, respectively.

The GOCI AOD product was generated using the Yonsei aerosol retrieval (YEAR) ver-
sion 2 algorithm, which features updated cloud masking and LSR calculation methods [51].
Cloud masking was performed in 13 steps using GOCI TOA reflectance. The details of the
threshold for cloud masking can be found in Choi et al. [51]. Through these improvements
in the YAER version2 algorithm, GOCI AOD shows good agreements with Aerosol Robotic
Network (AERONET) measurements. Especially, for the land domain, GOCI AOD products
have a lower uncertainty (±(0.079 + 0.137 × AOD) [44]) than the Advanced Himawari
Imager AOD product (±(0.1 + 0.3 × AOD) [52]). Therefore, GOCI AOD is suitable for
atmospheric correction and was used not only as input data for atmospheric correction,
but also for masking clouds and snow cover.

For qualitative comparison, we also used the MODIS LSR (MOD09) swath product,
which satisfies the validation stage 2 criteria of the Committee on Earth Observation Satel-
lites’ Land Product Validation subgroup. The atmospheric correction accuracy of MODIS
LSR is ±(0.005 + 0.05 × LSR) under favorable conditions (non-high aerosol amount) [53].
The spectral ranges of MODIS red and NIR bands are similar to those of the corresponding
GOCI bands and are widely used in land surface environmental analyses; therefore, we
used only MODIS LSR of bands 1 (red) and 2 (NIR). These bands have a spatial resolution
of 250 m; however, we used data aggregated into 500 m resolution to match the resolution
with the GOCI spatial resolution.
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Figure 1. RGB true-color images of study area on 02:16 UTC, 20 September 2016. R, G, and B
correspond to GOCI bands 2 (443 nm), 3 (555), and 6 (680 nm), respectively.

Table 1. GOCI channel specifications (Ryu et al. [40]).

Band
Central

WaveLength
(nm)

Band Width
(nm) Primary Use

Band 1 412 20 Yellow substance and turbidity

Band 2 443 20 Chlorophyll absorption maximum

Band 3 490 20 Chlorophyll and other pigments

Band 4 555 20 Turbidity, suspended sediment

Band 5 660 20 Baseline of fluorescence signal, chlorophyll,
suspended sediment

Band 6 680 10 Atmospheric correction and
fluorescence signal

Band 7 745 20 Atmospheric correction and baseline of
fluorescence signal

Band 8 865 40 Aerosol optical thickness, vegetation, water
vapor reference over the ocean

2.2. Copernicus Atmosphere Monitoring Service Near-Real-Time Data

Since January 2015, after the Monitoring Atmospheric Composition and Climate
project (2009–2014), atmospheric composition and climate have been monitored by the
ECMWF-operated Copernicus Atmosphere Monitoring Service (CAMS) [54]. The CAMS
combines numerical models and observations from remote sensing satellites and other
sources such as ground-based observation stations, aircraft, ships, and sondes. Based on
the observations, it provides continuous data and value-added information on atmospheric
composition and its variabilities at global and regional scales. The CAMS assimilation
system uses incremental four-dimensional variational data assimilation. It is based on



Remote Sens. 2022, 14, 360 5 of 21

the ECMWF integrated forecasting system and was developed during three Monitoring
Atmospheric Composition and Climate research projects [55]. The CAMS offers three
types (analysis, forecast, and reanalysis) of information about trace gases, greenhouse
gases, and aerosols. The CAMS near-real-time dataset includes daily analyses and forecasts
of geophysical variables of air quality and atmospheric composition, ozone layer and
ultraviolet radiation, emissions and surface fluxes, solar radiation, and climate forcing.
These products are validated by CAMS-84, which is a CAMS subproject for validating
service products every three months at global and regional scales [56]. In this study, CAMS-
provided total precipitable water (TPW), and total column ozone (TCO) data were used
in the atmospheric correction process to consider atmospheric conditions at observation
times. Although these data have lower temporal and spatial resolutions (daily and 0.125◦,
respectively) than GOCI data, they are suitable because they do not have high sensitivity in
LSR estimation, and GOCI TPW and TCO are unavailable [33]. CAMS TPW and TCO used
in this study were interpolated from 0.125 degrees to 0.25 km to match spatial resolution
with GOCI by a cubic-spline interpolation. Since only one CAMS data can be acquired per
day, it is not interpolated according to time. CAMS TPW and TCO of specific dates were
used for atmospheric correction of all 8 GOCI observations (from 00 to 07 UTC) acquired
on the same date.

2.3. AERONET Data

The AERONET project is a federation of ground-based remote sensing aerosol net-
works greatly expanded by collaborators from universities, national agencies, and institutes.
The project provides aerosol properties, inversion products, and precipitable water for
wavelengths of 340–1640 nm [57]. For several decades, AERONET has provided numerous
observations that cover large spatial and temporal ranges, and its data have been used
for various purposes, including satellite product validation. We used a level-2 AOD prod-
uct that contained TPW, TCO, and AOD to generate in situ reference LSR datasets and
calculated uncertainties in atmospheric parameters. Level 2 is the highest quality level
among Version 3 AOD data and means “quality assured”. The quality assurance criteria
can be found in Holben et al. [57]. We obtained AERONET measurements for 28 sites from
the AERONET website (https://aeronet.gsfc.nasa.gov/ (accessed on 13 September 2021)).
Additional information of AERONET sites used in this study is presented in Table 2. The
differences between two measurements temporally and spatially can introduce errors on
validation and uncertainty analysis [58]; therefore, in this study, only data satisfying all
of the following criteria were used for further analysis: 1) the difference in observation
time between AERONET and GOCI must be less than 10 minutes, 2) The location of the
AERONET site must be within half a pixel of the GOCI. The large amounts of data were
discarded due to spatiotemporal criteria, and we used 4855 matchups for validation and
uncertainty analysis.

Table 2. List of AERONET sites used in this study.

Sites Latitude (◦) Longitude (◦) Altitude (m) Number of
Matchups

Anmyon 36.53854 126.3302 47 326

Baengnyeong 37.96611 124.6303 136 266

Chiba_University 35.6247 140.1038 60 228

DRAGON_GangneungWNU 37.771 128.867 60 2

DRAGON_Hankuk_UFS 37.33883 127.2658 167 21

EPA-NCU 24.96753 121.1855 144 9

Fukuoka 33.524 130.475 30 103

Gangneung_WNU 37.771 128.867 60 452

https://aeronet.gsfc.nasa.gov/
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Table 2. Cont.

Gosan_SNU 33.29222 126.1617 72 67

Gwangju_GIST 35.22828 126.8431 52 132

Hankuk_UFS 37.33883 127.2658 167 201

Hokkaido_University 43.0755 141.3407 59 162

KORUS_Baeksa 37.41156 127.5691 64 144

KORUS_Daegwallyeong 37.68712 128.7587 837 37

KORUS_Iksan 35.9622 127.0052 84 173

KORUS_Kyungpook_NU 35.88999 128.6064 65 151

KORUS_Olympic_Park 37.52165 127.1242 45 122

KORUS_Songchon 37.33849 127.4895 90 115

KORUS_Taehwa 37.31248 127.3103 152 90

KORUS_UNIST_Ulsan 35.5819 129.1897 106 133

Niigata 37.846 138.942 10 243

Noto 37.33444 137.1369 200 130

Osaka 34.65093 135.5906 50 204

Pusan_NU 35.23535 129.0825 78 333

Seoul_SNU 37.45806 126.9511 116 312

Taipei_CWB 25.01468 121.5384 26 6

Ussuriysk 43.7004 132.1635 280 368

Yonsei_University 37.56443 126.9348 97 325

3. Methods

The following three processing steps were used in this study: (1) LSR retrieval, (2) val-
idation, and (3) uncertainty analysis. The adopted method, assumptions, and background
for each step are described in the following subsections.

3.1. LSR Retrieval

For LSR estimation from GOCI, we used the 6S vector (6SV) radiative transfer code,
which is an improved version of the Simulation of a Satellite Signal in the Solar Spec-
trum [59]. This code is based on successive orders of scattering approximations and can
describe the polarization effect using four Stokes vector components [60]. 6SV is one of the
widely used radiative transfer codes for atmospheric correction of satellite images because
of its high accuracy. According to Kotchenova et al. [61], 6SV showed an error lower than
1% when compared with the Monte Carlo code and Coulson’s tabulated value, which are
well-known benchmarks. This error is lower than the results of other RTMs (spherical
harmonics [SHARM], MODTRAN, and radiative transfer [RT3]) [61]. In the 6SV, the LSR
can be calculated from TOA radiance measured by satellite through Equation (2).

ρs(θs, θv, φ) =

L(θs ,θv ,φ)
Tg(θs ,θv)T↓(θs)T↑(θs)

− ρR+A
T↓(θs)T↑(θs)

1 + S
(

L(θs ,θv ,φ)
Tg(θs ,θv)T↓(θs)T↑(θs)

− ρR+A
T↓(θs)T↑(θs)

) (2)

where, ρs means the LSR; L is the TOA radiance; θs, θv and φ indicates the SZA, VZA, and
RAA, respectively; Tg is total transmittance of atmospheric gases such as water vapor and
ozone; T↓ and T↑ are total transmittances of the atmosphere for upward and downward
radiance paths, respectively; ρR+A is total scattering of molecules and aerosols; S is spherical
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albedo. The 6SV provides three coefficients called xa, xb, and xc to simplify Equation (2).
Using these coefficients, Equation (2) can be presented as following equations:

ρs(θs, θv, φ) =
xa·L(θs, θv, φ)− xb

1 + xc(xa·L(θs, θv, φ)− xb)
(3)

with
xa =

1
Tg(θs, θv)T↓(θs)T↑(θs)

(4)

xb =
ρR+A

T↓(θs)T↑(θs)
(5)

xc = S (6)

In the above equations, xa is inverse of the transmittance; xb is atmospheric reflectance;
xc reflects the spherical albedo. However, atmospheric effect simulation using the 6SV
code is time-consuming because of complex computation; thus, it is difficult to use 6SV
directly for operational atmospheric correction of a satellite image. Therefore, in this
study, we used the lookup table (LUT) approach, which is widely used in 6SV-based
atmospheric correction for operation and research purposes [28,62,63]. The LUT approach
involves a simple index-based calculation instead of the complex calculation of 6SV, and
avoids repetitive calculations; thus, it can significantly reduce processing time. However,
although the LUT approach is suitable for the operational algorithm, the interval of LUT
entries can cause errors in the retrieved LSR; especially, the relative error can rise to
60% at 470 nm when SZA exceeds 70◦ [64,65]. In general, the narrow interval of LUT
entries reduces computational efficiency but improves accuracy, while the rough interval
increases computational efficiency but reduces accuracy. For this reason, the increments
of LUT entries have to be determined by considering both accuracy and computational
efficiency [66]. In this study, the entries for pre-construction of 6SV LUT were determined
from Liang et al. [29] (Table 3). These entries were used for atmospheric correction of the
GOES-R operational system. In addition, it is well known that 4–5◦ is suitable for the
increase in the SZA and the VZA, considering the volume and calculation accuracy when
constructing the LUT for LSR retrieval [64,66]. We performed a 6SV simulation for all
combinations of entries in Table 3, and then the three coefficients (xa, xb, and xc) were
collected and stored as LUT form. Moreover, we used the multivariate interpolation method
to minimize uncertainty due to the interval of LUT entries. Because the pre-constructed
6SV LUT used in this study has six dimensions (SZA, VZA, RAA, TPW, TCO, and AOD), a
six-dimensional (6D) interpolation method involving repeated bilinear interpolations was
applied using a python function. This method can estimate atmospheric parameters with
high accuracy and calculation efficiency [67,68].

We estimated LSR from GOCI measurements using 6SV LUT and Equation (3) for
cloud-free and daytime pixels. Water pixels were removed using a land/water mask
provided by the KOSC of KIOST, and the daytime pixels were discriminated using a simple
SZA threshold (SZA < 80◦). Cloudy pixels were removed using the quality flag of GOCI
AOD V2 products. Discriminating between snow and clouds was difficult because GOCI
has only shortwave channels, from 412 to 865 nm; therefore, snow-covered pixels were also
removed using the flag of GOCI AOD V2 products.
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Table 3. The entries for preconstruction of 6SV LUT.

Entries of LUT Range Increment

Geometric
condition

Solar zenith angle (◦) 0~80 5
Viewing zenith angle (◦) 0~80 5

Relative Azimuth angle (◦) 0 ~ 180 10

Atmospheric
condition

Total precipitable water
(g/cm2) 0~5 1

Total column ozone (atm-cm) 0.25~0.35 0.05
atmospheric profile US62

Aerosol
condition

Aerosol optical depth 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0
Aerosol type Continental

Spectral
condition

Spectral Response Function of each channel
(every 2.5 nm)

3.2. Validation

LSR varies with geometric conditions and spectral response functions. Moreover, the
differences in atmospheric conditions caused by differences in observation time can lead to
the error in validation of satellite-based LSR [69]. Thus, ground measurements and satellite
measurements obtained at the same time and under the same spectral conditions must
be compared with remotely sensed LSR. However, ground measurements for validating
satellite-based LSR are strongly limited both spatially and temporally [29]. As one of
the alternative methods, constructing the reference datasets of LSR using reliable RTM
simulation and in-situ measurements was presented by the Earth Observation System
(EOS) community [70,71]. This approach is currently applied to direct-validation of satellite-
based LSR product for operational purpose [35,72]. We used the 6SV RTM and AERONET
measurements to generate reference datasets for GOCI-II. As previously mentioned, of
the several RTMs, 6SV shows the highest agreement with the Monte Carlo code. The
Monte Carlo is a three-dimensional RT code that follows the path through the atmosphere
from the moment one photon is emitted at a time [73]. This RT code is generally used
for comparison with other RTMs as a reference because it has no limitation except for
being time-consuming [61]. In order to construct reference datasets for validation of
estimated GOCI LSR, firstly, we calculated atmospheric correction parameters using 6SV
directly, without the LUT approach, for a specific observation condition and GOCI’s spectral
response function. For this, atmospheric parameters (TPW, TCO, and aerosol properties)
measured by AERONET sites were used as input data of 6SV simulation. AERONET
measurements are one of the best sources because these are automatically generated and
quality-assured through AERONET’s processing system [71]. Then, the reference datasets
for LSR were calculated using GOCI’s L1B data and atmospheric correction parameters
calculated through 6SV.

As a quantitative indicator of GOCI LSR, we used three scalar metrics: bias, root
mean square error (RMSE), and correlation coefficient (R). These indicators are widely used
to assess the accuracy of remotely sensed variables, which have continuous values. The
equations of the used metrics are as follows:

Bias =
∑n

i=1(xk − yk)

n
(7)

RMSE =

√
∑n

i=1(xk − yk)
2

n
(8)

R =
∑n

i=1(xk − x)(yk − y)√
∑n

k=1(xk − x)2
√

∑n
k=1(yk − y)2

(9)
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where n denotes the number of data used in the validation stage; xk and yk are the k-th
reference and GOCI LSR, respectively; and x and y denote the means of x and y, respectively.

3.3. Uncertainty Analysis

To estimate LSR from GOCI TOA radiance, RT simulations were conducted, and
several input data parameters such as cloud mask, TPW, TCO, and AOD, were used.
Both of the simulation procedures and input data can cause uncertainty in LSR retrievals.
Atmospheric effect simulation using 6SV introduced some uncertainties; however, TOA
reflectance simulated by 6SV agreed well with the reference TOA reflectance generated
using Monte Carlo codes, with relative difference within±0.5% (absolute error ranged from
−0.0012 to 0.0005 at a wavelength of 440 nm and from −0.0011 to 0.0005 at 640 nm) [73].
Thus, the 6SV-induced uncertainty in LSR retrieval was negligible and not considered.
However, the quality of input data affected the magnitude of uncertainty in estimated
LSR. Therefore, in order to understand the quality of satellite-based LSR products, it is
important to quantify the uncertainty caused by the input data [74,75]. In this study, input
data-induced uncertainty in estimated GOCI LSR was analyzed using the law of uncertainty
propagation proposed by Bureau International des Poids et Mesures (BIPM) [76]. Accord-
ing to the Guide to the Expression of Uncertainty in Measurement (GUM), the standard
uncertainty in y, which is the estimate of the measurand Y, can be obtained by combining
the uncertainties in input estimates (x1, x2, . . . , xn). This uncertainty propagation law is
expressed as Equation (10):

u2
c (y) =

N

∑
i=1

[
∂ f

∂xi

]2

u2(xi) + 2
N−1

∑
i=1

N

∑
j=i+1

∂ f

∂xi

∂ f

∂xj

u
(
xi, xj

)
(10)

where uc(y) denotes the combined standard uncertainty in y;
∂ f
∂xi

is the partial derivative

of y with respect to input parameter xi (sensitivity coefficient); u(xi) denotes Type A or B
uncertainty in input parameter xi; u

(
xi, xj

)
is the covariance between input parameter xi

and xj. If the input parameters are independent, u
(
xi, xj

)
can be set to 0.

AOD, TPW, and TCO were selected as input parameters for estimating the combined
standard uncertainty in GOCI LSR. Cloud misclassification can lead to a significant positive
bias in LSR retrieval. However, the magnitude of uncertainty is highly variable and depends
on cloud properties (e.g., thickness, altitude) and angular conditions (e.g., SZA, VZA) at
the observation time; thus, uncertainties due to cloud misclassification were excluded in
this analysis. Moreover, in Equation (10), we set u

(
xi, xj

)
to 0 because we assume that

AOD, TPW, and TCO are independent. Therefore, the combined standard uncertainty in
estimated LSR (uLSR) can be expressed as Equation (11):

uLSR =

√[
∂LSR
∂AOD

]2
u2

AOD +

[
∂LSR
∂TPW

]2
u2

TPW +

[
∂LSR
∂TCO

]2
u2

TCO (11)

where ∂AOD, ∂TPW , and ∂TOZ are the differences between observation and reference AOD,
TPW, and TCO data, respectively. ∂LSR denotes the change in LSR caused by ∂AOD, ∂TPW ,
and ∂TCO; thus, ∂LSR

∂AOD
, ∂LSR

∂TPW
, and ∂LSR

∂TCO
are the sensitivity coefficients of AOD, TPW, and TCO

in LSR estimation, respectively. uAOD, uTPW , and uTCO are uncertainties in AOD, TPW, and
TCO, respectively, and uLSR denotes the total combined uncertainty in LSR caused by errors
in input parameters (AOD, TPW, and TCO). According to data from a previous study [44],
the uncertainty in AOD was set to ±(0.079 + 0.137 × AOD). The uncertainties in TPW and
TCO are calculated as the standard deviation of data for a specific period [77]; however,
considering the large spatiotemporal variability, uncertainties derived from comparison
with AERONET observation data were used in this study.

We also used En scores for the evaluation of the agreement between the GOCI and
reference LSR. This index is used for the proficiency test and is usefully used to evaluate
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how close the participant’s ability to obtain a result is within the expanded uncertainty [78].
En scores can be calculated as follows:

En =
x1 − x2√
U2

1 + U2
2

(12)

where, x1 and x2 are GOCI and reference LSR, respectively; U1 and U2 are the expanded
uncertainties of x1 and x2 with k = 2, respectively. The agreement between the compared
values is considered satisfactory if |En| ≤ 1 and non-satisfactory if |En| > 1. When uncer-
tainties are estimated in a way consistent with the GUM, En scores express the validity of the
expanded uncertainty estimate associated with each result. A value |En| < 1 provides objective
evidence that the uncertainty estimate is realistic and consistent with GUM definition.

4. Results and Discussion
4.1. Qualitative Comparison with MODIS LSR Products

To evaluate the spatial consistency, we compared our results with operational MODIS
LSR products. Quantitative comparison between LSRs from different satellites is limited
because of LSR sensitivity to geometric conditions (SZA, VZA, and RAA), atmospheric
conditions, and the spectral response of satellite-mounted sensors. Yeom et al. [79] found
the RMSE between GOCI and MODIS LSRs as 0.11 and 0.134 for red and NIR bands,
respectively, although they applied the semi-empirical BRDF model to remove surface
anisotropy effects in the LSRs. This discrepancy may inevitably occur due to differences in
methods and assumptions used within the algorithm [80]; therefore, we only performed a
qualitative comparison. Figures 2 and 3 show the geographical distributions of GOCI and
MODIS LSRs at red (680 nm) and NIR (865 nm) channels for 9 April and 7 July 2016. Other
bands also show similar results; however, they are excluded for brevity. Our results show
comparable geographic distributions with MODIS at both red and NIR channels, although
there are differences between GOCI and MODIS LSRs. The RMSEs of LSR at red (NIR)
channels for 9 April and 7 July 2016, are 0.0458 (0.0554) and 0.0372 (0.0630), respectively,
which agrees with the results of previous studies [79]. In addition, our results capture the
changes in LSR with vegetation growth well. 9 April (Figure 2) corresponds to early spring,
when vegetation begins to grow in northeastern China and Korean Peninsula. Conversely,
7 July (Figure 3) is the post-growth and corresponds to the maturity phase [81]. These
phenological dynamics are well illustrated in RGB true-color images. Northeastern China
and the Korean Peninsula with sparse vegetation cover are indicated as yellow ochre in
Figure 2e. In contrast, they are shown as green in Figure 3e because of healthy vegetation
cover. Because of this, the Figure 3 shows a higher GOCI LSR in the NIR band than the
Figure 2, but a lower LSR in the red band. These results demonstrate that GOCI LSR can
effectively reflect changes according to the state of the land surface; thus, it can be used for
land surface monitoring.

However, GOCI and MODIS use different cloud masks; thus, their LSR spatial distri-
bution is different. In particular, both dates contained a few clouds in the RGB True Color
image, but GOCI was unable to retrieve the LSR on the bright land surface of Mongolia.
This limitation may be caused by the uncertainty of cloud masking due to the absence of
Infrared channels in GOCI. GOCI-II will be able to overcome this limitation by using the
AMI cloud mask product, which can cover the temporal and spatial coverages of GOCI-II
with reliable accuracy (the probability of detection and false alarm ratio of the AMI cloud
mask are 92% and 13%, respectively [82]).
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Figure 2. LSRs of red (680 nm) and NIR bands (865 nm) for GOCI (a,c) and MODIS (b,d); (e) GOCI
RGB true-color image on 02:16 UTC, 9 April 2016. The times in (a–d) are observation times.

Figure 3. Same as Figure 2, but for 02:16 UTC, 7 July 2016.

4.2. Validation with Reference LSR

For quantitative evaluation of estimated GOCI LSR, we compared our results with
in situ reference LSR. In this analysis, 4855 matchup pairs were used. Figure 4 shows
the scatterplot between the GOCI LSR and in situ reference LSR for each channel. Our
results show good agreement compared to the reference data set with RMSE less than
0.02, R greater than 0.9, and bias less than ±0.01 for all channels. With decreasing central
wavelength, the RMSE slightly increases (from 0.0075 at 865 nm to 0.0196 at 412 nm), while
the relative error (percentage ratio of RMSE to mean LSR) significantly increases (from
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3.02% at 865 nm to 48.87% at 412 nm). In addition, in the Band 1 to 3, points are distributed
far from the one-to-one correspondence line. The biases of bands 1 and 2 are 0.009 and
0.0111, respectively, while the biases of bands 7 and 8 are−0.0014 and−0.0028, respectively.
Because of this discrepancy, the slope of regression lines for VIS bands is less than the
slope for NIR bands, but the intercept is greater. This trend was similar to the results of the
ABI LSR validation [35] and was assumed to be related to the greater atmospheric effects
(particularly the effects of aerosols) at shorter wavelengths [83]. Figure 5 shows RMSE of
LSR in Band 1 compared to in-situ reference LSR for each station. The RMSE ranges from
0.0115 to 0.04682 and is lower than 0.0266 at most stations (25 stations). Only three sites
(DRAGON_GangneungWNU, DRAGON_Hankuk_UFS, and Taipei_CWB), colored orange
to dark red in Figure 5, show RMSEs of over 0.03. However, these sites had very small
matchup pairs (2, 21, and 6, respectively), considering that the total number of matchup
pairs was 4855. There is no significant relationship between RMSE and geospatial locations
of AERONET stations. The remaining GOCI bands (2–8) exhibited similar results; however,
they were excluded for simplicity.

Figure 4. Density plot of estimated GOCI LSR and in situ reference data for each channel: (a) band 1;
(b) band 2; (c) band 3; (d) band 4; (e) band 5; (f) band 6; (g) band 7; (h) band 8. The color indicates the
point density in each bin (0.01 by 0.01), and the red dashed line is the regression line.

Figure 6 presents the time series of GOCI LSR and in situ reference LSR in red and
NIR bands for three stations (Chiba University, Ussuriysk, and Yonsei University), which
have different land covers. For all three sites, GOCI LSR agreed well with in situ reference
LSR for bands 4 and 8. In addition, the ratio of GOCI LSR to in situ reference LSR in the
near-infrared band showed a relatively stable time series close to 1, but showed relatively
large variability in the red band. As mentioned earlier, the large variability in the red band
was regarded to be due to the greater influence of the atmosphere and lower magnitude of
reflectance. Our results also well indicate the seasonal variation of LSR in different land
types. Chiba University is located at a downtown site in Japan and the surrounding 500 m
radius is mainly composed of man-made structures and asphalt (Figure 6a); thus, GOCI
LSR shows little temporal variability in LSR for both bands 4 and 8 throughout 2016. GOCI
LSR decreases until summer when SZA gradually reduced. On the contrariwise, since
September 2016, GOCI LSR increases with increasing SZA. This result indicates that GOCI
LSR well expresses the seasonal change in LSR according to SZA. Ussuriysk is located in
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Russia and, as shown in its RGB true color images (Figure 6b), it is surrounded by vegetation
cover. Therefore, its LSR is dominantly affected by the spectral characteristics of vegetation.
In practice, GOCI LSRs in band 4 and 8 have shown typical vegetation reflectance (high NIR
and low Visible) during the vegetation growing season (May to November). A 500 m radius
of the Yonsei University site includes both man-made structures and some vegetation
(Figure 6c). Therefore, the vegetation cover partially affects the LSR of this site. In this site,
the GOCI LSR showed a temporal change similar to that of Chiba University. However, in
response to the spectral characteristics of vegetation, GOCI and in situ LSR of band 8 were
slightly increased, unlike Chiba University. The results of time-series analysis also indicated
that GOCI LSR well expresses the change in LSR according to land type and phylogeny.

Figure 5. RMSEs of GOCI LSR for band 1 at 28 AERONET sites. The color bar indicates the RMSE for
each AERONET site.

4.3. Uncertanties Introduced by Input Parameters

To estimate the uncertainty in LSR, the uncertainties in CAMS TPW and TCO were
derived by comparing CAMS data with AERONET measurements. Figure 7 shows the
validation results of CAMS TPW and TCO. For both TPW and TCO, CAMS data showed
poor agreement with AERONET measurements. Each point was far from the diagonal
and appeared to be randomly distributed, with R values of −0.2968 and −0.4636 for TPW
and TCO, respectively. The RMSEs were 1.4846 and 0.0614 for TPW and TCO, respectively,
and biases were 0.0055 and −0.0345, respectively. This error may be due to the low spatial
resolution (0.125◦) and temporal resolution (daily) of the CAMS. To estimate the uncertainty
in LSR retrieval introduced by this discrepancy, the uncertainties in TPW and TCO were set
as 87.76% and 18.39%, respectively, which are the relative errors. The uncertainty in AOD
was determined from a previous study [51].
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Figure 6. Time series of GOCI LSR (triangle) and in situ reference LSR (plus symbol) for bands 4 (red and
blue) and 8 (orange and navy) for three sites with different land types: (a) urban, (b) vegetation cover, and
(c) mixed. The RGB images in each figure were obtained from Google Map. The orange plus symbol and
circle indicate locations of ground observations and a radius of 500 m, respectively. The green and purple
circles in plots below each figure indicate ratio of GOCI to AERONET LSR for band 4 and 8, respectively.

Figure 7. Density scatterplots of CAMS data versus AERONET measurements: (a) TPW and (b) TCO.
The color bar of each figure denotes the data counts in 0.05 × 0.05 and 0.004 × 0.04, respectively.
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Table 4 presents the total combined uncertainty in estimated LSR (uLSR) caused by
input parameters, calculated using Equation (11). The uLSR values of bands 1 to 8 ranged
from 0.0072 to 0.0240 and generally decreased as the central wavelength increases. The
results were similar to the results presented in Figure 4. The uncertainty component of AOD
significantly contributed to the uLSR (over 48% for all channels). Thus, AOD contributions
in the visible spectrum (100%, 97.54%, 83.44%, 67.64%, 69.98%, 75.64% for channels 1–6,
respectively) were higher than the contributions in the NIR spectrum (48.64 and 65.30% for
bands 7 and 8, respectively). The uncertainties in TPW in bands 1–3 hardly affected the
uLSR, but bands 5, 7, and 8 showed a relatively high contribution to uncertainty (15.5%,
40.94%, and 34.70%, respectively). The contribution of uncertainty in TCO to uLSR also
varies with central wavelength. Band 4 shows the greatest contribution (33.16%), while
bands 1 and 8 show no contribution. The spectral-dependent uncertainty was related to
the spectral characteristics of each atmospheric component. In addition, the absolute value
of uncertainty in LSR due to the error of TPW and TCO is low. This is consistent with the
results of previous studies [33]. The percentage ratio of the TPW-induced uncertainty in
LSR to the mean reference LSR in band 7 is only 2%. It was reasonable considering the
high uncertainty in TPW (87.76%). The uLSR for bands 3–8 could be able to reduce by using
AMI TPW and GEMS TCO. These products have higher temporal and spatial resolutions
than CAMS near-real-time products; thus, they allow for more realistic representations
of the spatial and temporal variations of atmospheric compositions. Figure 8 shows the
mean En scores for GOCI channels. Similar to the previous results, the En score tends to
increase as the center wavelength decreases. However, En shows range between −1 to 1 for
all channels (0.35 for band 1 and −0.02 for band 8). This result was pointed out that GOCI
LSR has good agreement with reference LSR, and the uncertainty of GOCI LSR derived
from this study was valid.

Table 4. Uncertainties introduced by AOD, TPW, and TCO, and total combined uncertainty in LSR.
The numbers in parentheses indicate the contribution degree (percentage) of each input parameter to
the total uncertainty in LSR.

Input
Parameter

Band 1
(412 nm)

Band 2
(443 nm)

Band 3
(490 nm)

Band 4
(555 nm)

Band 5
(660 nm)

Band 6
(680 nm)

Band 7
(745 nm)

Band 8
(865 nm)

AOD 0.0240
(100%)

0.0205
(97.5%)

0.0165
(83.4%)

0.0112
(67.6%)

0.0096
(70.0%)

0.0088
(75.6%)

0.0054
(48.4%)

0.0068
(65.3%)

TPW 0
(0%)

0
(0%)

0
(0%)

0.0001
(0.7%)

0.0021
(15.5%)

0.0004
(3.2%)

0.0046
(40.9%)

0.0036
(34.7%)

TCO 0
(0%)

0.0005
(2.5%)

0.0033
(16.6%)

0.0053
(31.7%)

0.0020
(14.5%)

0.0025
(21.2%)

0.0012
(10.7%)

0
(0%)

Total uncerainty 0.0240 0.0205 0.0168 0.0124 0.0100 0.0091 0.0072 0.0077

Figure 9 presents the uLSR of eight GOCI bands depending on SZA, which was one of
the variables that greatly influence uncertainty in LSR. The uLSR increased with decreasing
central wavelength. For the VIS bands (1–6), as SZA increases, the uLSR increased (the
regression line slopes for bands 1–6 are 0.00021, 0.00017, 0.00013, 0.00013, 0.00004, and
0.00004, respectively). In band 1, the maximum uLSR is 0.0324, corresponding to an SZA of
60◦. The large decrease in uncertainty at SZA above 60◦ may be related to the small amount
of data. In the two NIR bands (7 and 8), the slope of the regression line was close to 0, and
the variation of the uLSR with SZA was not shown. For all GOCI bands and SZA, the uLSR
was less than 0.04. These results indicated that the estimated GOCI LSR has reasonable
uncertainty for most observation conditions [84].
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Figure 8. Mean En scores for GOCI channels. Total, 4855 pairs were used in this analysis.

Figure 9. Total combined uncertainty in LSR according to SZA for eight GOCI spectral bands (colored
solid line with circle symbol). The blue bar plot indicates the data count used in each SZA.

5. Conclusions

We developed an LSR retrieval algorithm for GOCI-II operation and describe the
input data-induced uncertainty in estimated LSR. We estimated LSR using the absolute
atmospheric correction method because of its atmospheric effect simulation accuracy under
various geometric, atmospheric, and spectral conditions, although prior information was
needed. We used the 6SV LUT, which was constructed via comprehensive RTM calculation.
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Moreover, we used the 6D interpolation method to avoid the errors of intervals associated
with the 6SV LUT. The cloud mask and AOD, which are important variables for LSR
retrieval from satellite-mounted sensor measurements, were obtained from operational
GOCI AOD algorithms. CAMS TPW and TCO data were selected as atmospheric input
data in our algorithm. Despite their lower resolutions than GOCI data, they are suitable, as
they do not have high sensitivity in LSR estimation.

The estimated GOCI LSR mostly agreed well with MODIS LSR for vegetation growth
and post-vegetation growth periods. In some regions, especially that of a bright land
surface in Mongolia, GOCI could not retrieve LSR, despite the clear-sky condition. This
limitation is due to the GOCI channel configuration; the GOCI has only VIS to NIR channels
and thus is limited in discriminating clouds and bright surfaces. This problem can be
overcome using an AMI cloud mask when applying the proposed algorithm with GOCI-II.
The results also agreed well with in situ reference LSR, with a high R of over 0.9 and
low RMSE of less than 0.02 for all channels. All sites except three (which had fewer
observations) showed reliable RMSEs. Among the GOCI eight bands, band 1 showed
the highest RMSE (0.0115–0.0266). In addition, time-series analysis showed that GOCI
LSR well expressed seasonal variation according to changes in SZA and the phenological
dynamics of vegetation. In all bands, AOD contributed the most to uncertainty in LSR.
TPW and TCO data also affected uncertainty in LSR for certain spectral channels. Data with
improved spatiotemporal resolution and accuracy, such as AMI products, are needed to
reduce the CAMS TPW- and TCO-induced errors in GOCI LSR. Nevertheless, the estimated
GOCI LSR showed reasonable uncertainty (<0.04) even under high SZA (≥70◦) conditions.

Our proposed algorithm can be used with GOCI-II, and it can provide data for analysis
of changes in land surface, land use [85], and phenological dynamics [86], with a high
spatial resolution of 250 m and hourly temporal resolution. In addition, the algorithm
can provide continuous and sustained LSR products from the GOCI series for Northeast
Asia that can be applied to climate change studies. In this study, the uncertainty in LSR
retrieval caused by the uncertainty of the input parameter was analyzed, but this is cannot
interpret the uncertainty of methods used in this study. Since the assumptions used in
the 6SV simulation (e.g., fixed atmospheric profile and Lambertian assumption) are not
always valid, further uncertainty analysis should be performed in future studies for robust
uncertainty analysis. In addition, for more reliable assessment, additional validation
exercises should be performed using directly measured in-situ LSR and high-resolution
satellite-based LSR products.
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