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Abstract: Several studies have shown the relevance of satellite systems in detecting, monitoring,
and characterizing fire events as support to fire management activities. On the other hand, up
to now, only a few satellite-based platforms provide immediately and easily usable information
about events in progress, in terms of both hotspots, which identify and localize active fires, and
the danger conditions of the affected area. However, this kind of information is usually provided
through separated layers, without any synthetic indicator which, indeed, could be helpful, if timely
provided, for planning the priority of the intervention of firefighting resources in case of concurrent
fires. In this study, we try to fill these gaps by presenting an Integrated Satellite System (ISS) for fire
detection and prioritization, mainly based on the Robust Satellite Techniques (RST), and the Fire
Danger Dynamic Index (FDDI), an original re-structuration of the Índice Combinado de Risco de
Incêndio Florestal (ICRIF), for the first time presented here. The system, using Moderate Resolution
Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data, provides near real-time integrated
information about both the fire presence and danger over the affected area. These satellite-based
products are generated in common formats, ready to be ingested in Geographic Information System
(GIS) technologies. Results shown and discussed here, on the occasion of concurrent winter and
summer fires in Italy, in agreement with information from independent sources, demonstrate that
the ISS system, operating at a regional/national scale, may provide an important contribution to fire
prioritization. This may result in the mitigation of fire impact in populated areas, infrastructures, and
the environment.

Keywords: satellite; early fire detection; fire danger; automatic near real-time system

1. Introduction

Wildfires are one of the most important causes of ecosystem degradation because of
their strong impact on flora, fauna, and soils [1–3]. On a local scale, fires influence the soil
structure, plant nutrition, composition, and competition among species. Burned areas are
particularly sensitive to leaching nutrients and soil erosion, because of ensuing changes
affecting hydrological processes [2]. Nowadays, wildfires represent a huge problem on
a global scale. A large increase in the fire rate has been recorded globally, with social
impacts including the loss of human life, and economic effects, such as damage to houses
and infrastructures as well as impacts on the climate. Examples are the devastating fires
occurring in 2019–2020 in Siberia [4–6], Australia [6–10], and South America [6,11–13].

The huge economic and environmental damage directly or indirectly related to fires
has constantly pushed the international space agencies (i.e., EUMETSAT, NASA) to better
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exploit satellite observations to detect fires, especially through sensors such as SEVIRI
(Spinning Enhanced Visible and InfraRed Imager), AVHRR (Advanced Very High Resolu-
tion Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), and VIIRS
(Visible Infrared Imaging Radiometer Suite). The performance of those systems relies on the
accuracy of algorithms used to detect thermal anomalies with a low false-positive rate. The
pros and cons of the algorithms and systems used, including their potential in promptly
alerting for fires, have been analyzed in recent studies (e.g., [14,15]).

In addition, satellite remote sensing may provide information about a number of
variables suited to evaluate fire danger ratings [16–18]. Danger estimations can be generally
approached at two temporal scales: short-term and long-term (e.g., [19–21]). Long-term
fire danger estimations provide information useful for management activities, and to plan
prevention strategies. Short-term estimations are suited for operational activities during the
fire emergency phase, for the management of fire-fighting resources, early detection, and
timely attack on the flame front (for a state-of-art review see [19–21]). Those estimations
require dynamic information updated daily (or even hourly) on the moisture content of
the fuel, and additional meteorological parameters, such as temperature, relative humidity,
wind, and precipitation. Moreover, fire danger is typically evaluated using static indices
based on topography, fuel type, and load, which may be also derived from remote sensing
data [21–23].

However, up to now, only a few fire-monitoring systems provide additional infor-
mation about fires and relative flame conditions as separated layers (e.g., meteorological
fire danger maps, weather forecasts, fire perimeters, and susceptibility maps). Among
these, it is worth mentioning some systems such as the European Forest Fire Informa-
tion System (EFFIS, [24]), the Instituto Nacional de Pesquisas Espaciais (INPE, Brazilian
Institute for Space Research [25]), the Advanced Fire Information System (AFIS, [26,27]),
the FSI Fire Alerts System (FAST, [28,29]). The above-mentioned systems are generally
modular web-based platforms at the global (AFIS), continental (INPE over South America,
EFFIS over Europe), or sub-continental (FAST on India) scale. They allow end users to
fully monitor forest fire activity by means of a series of separate modules, which aim at
managing different aspects of fire contrast actions. The active fire detection is the basic
module of these systems and may include hotspots only from polar satellite data (e.g.,
in EFFIS and FAST) or both polar and geostationary satellite data (such as in INPE and
AFIS). The availability of other modules (e.g., fire danger forecast, fire spread modeling,
rapid damage assessment) may vary or differ in terms of spatial resolution according to
the specific system. In all cases, end users may have considerable useful information in
separated layers which may or may not be displayed, but there is no synthetic indicator for
priority action against simultaneous fires. Apart from a few pioneering studies performing
fire prioritization, which required assessment in the field (e.g., [30]), there are no systems
combining/integrating satellite hotspot products and fire danger information to define
priority levels, in operational fire contrast action. On the other hand, the above-mentioned
systems are not generally useful for supporting firefighter activity which needs fire prod-
ucts in real-time mode, i.e., frequently updated and delivered in a timely manner. This
happens, for example, when hotspots are only provided from low-frequency overpass
satellite sensors (e.g., polar orbiting) and/or fire danger products are only furnished daily.
This issue is particularly significant in highly populated areas like the Italian territory.

In this study, we fill these gaps by presenting a satellite-based system called the
Integrated Satellite System (ISS), which combines fire detections in near real-time from
satellite, through the RST-FIRES (Robust Satellite Techniques for FIRES detection and
monitoring) algorithm [15], to an innovative index used to flag the most vulnerable areas,
called the Fire Dynamic Danger Index (FDDI), developed for the prioritization of fire events
in near real-time. In particular, FDDI is structured similarly to the Forest Fire Risk Combined
Index (Índice Combinado de Risco de Incêndio Florestal–ICRIF, [31]), based on the Fire
Weather Index (FWI) [32], which is updated every 24 h. FDDI, instead, is based on the
Fuel Moisture Index (FMI) [33] which, unlike FWI, can be updated hourly. Moreover, two
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synthetic Priority Indicators (PINGEO and PINLEO) are proposed to immediately estimate
the priority order of intervention. This system has been designed for rapid identification,
localization, and danger characterization of active fires over the Italian territory, to support
firefighting activities and fire management.

2. Study Area

The ISS system has been developed to perform over the entire Italian territory. Italy
has two fire regimes: the winter regime, affecting the northern part of the country; and
the summer regime which typically affects the central and southern regions. Drought and
vegetative rest in regions characterized by the Mediterranean climate are the first factors
affecting summer fires, while dry winds (i.e., Föen), combined with a general dryness of the
vegetation are responsible for winter fires in alpine or alpine-like climate regions (e.g., [34]).
Italian local regional authorities are responsible for extinguishing forest fires with the
support of ground teams (Regional Forest Corps, National Fire Corps, volunteers, etc.),
exploiting aerial regional resources (light and medium helicopters). Moreover, the national
forest firefighting air fleet (Canadair aircraft and heavy helicopters) is operative through
the Unified Air Operational Center (COAU), managed by the National Fire Corps [35]. In
this work, we test the proposed system in the case of summer as well as winter fires, which
always represent a challenge for satellite fire detection and monitoring due, for example, to
critical weather conditions (i.e., frequent and dense cloud cover) [36].

3. Data and Methods

The final goal of the ISS system is to establish a suitable priority order of intervention
in the case of concurrent fire events at large scale (e.g., for the Italian territory). To this
end, different data, products, and information are integrated together as shown in Figure 1
All these resources as well as the methods used for their analysis and integration will
be described in the following sub-sections. In more detail, satellite data and products
(Section 3.1.1) are automatically processed through the RST-FIRES (Section 3.2.1) algorithm
to identify active fires. Weather forecasts (Section 3.1.2) are used to produce two dynamic
indices, the Fire Danger Dynamic Index (FDDI, Section 3.2.2), depending on the health
status of the vegetation, and the Wind Intensity (WI, Section 3.2.4), which is calculated for
the same area. Geomorphology data (Section 3.1.3) are used to generate the Morphological
Danger Index (MDI) (Section 3.2.3). Both WI and MDI are produced for polar-orbiting
satellite data only (i.e., AVHRR and MODIS) offering data at higher spatial resolution
(about 1 km) than those provided by geostationary platforms (i.e., SEVIRI). Two synthetic
indicators, PINGEO and PINLEO (Section 6), are then built from the above-mentioned indices.
In the following section, we describe the system inputs and the methodologies used.

3.1. Data
3.1.1. Satellite Data and Products

The ISS system has been developed for a prompt fire identification, exploiting high
temporal resolution data, which are able to detect fires at their early stage and continu-
ously monitor their evolution. ISS analyzes satellite data acquired in the Middle, Thermal
InfraRed, and Visible bands (MIR, TIR, VIS) for this purpose. The system elaborates all
96 daily observations from SEVIRI, aboard Meteosat Second Generation (MSG) geostation-
ary satellites. SEVIRI provides data with a very high temporal sampling (15 min), but also
with a rough spatial resolution (around 13–15 km2 at the considered latitudes). The ISS sys-
tem also uses satellite data at a higher spatial resolution (1 km2), but with a lower frequency
of observation (from 3 to 6 h) from AVHRR and MODIS, respectively, onboard the National
Oceanic and Atmospheric Administration (NOAA)/Meteorological Operational Satellites
(MetOP) and the Earth Observing System (EOS). ISS runs operationally using satellite data
directly acquired at the multi-mission receiving stations (EUMETCast and L+X-band direct
readout antenna) operational at the Institute of Methodologies for Environmental Analysis
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of National Research Council (IMAA-CNR) and the School of Engineering of University of
Basilicata (SI-UNIBAS).
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Figure 1. Integrated Satellite System scheme.

The system analyzes fire danger in terms of the health status of the vegetation. For
this purpose, it implements the EUMETSAT NDVD product (NDVI Decadal, [37]) for
SEVIRI, and the Copernicus 10-day NDVI product for MODIS and AVHRR data [38]. The
NDVD is a decadal aggregated product based on the daily SEVIRI NDVI. Aggregation
is made for days 1 to 10, 11 to 20, and 21 up to the last day of each month. This product,
widely used to characterize vegetation density and vigor as well as to identify vegetation
stress and drought, is distributed by EUMETSAT at the SEVIRI pixel spatial resolution,
together with the raw data. For AVHRR and MODIS, ISS uses the Copernicus Global Land
Service NDVI product. This product is based on the Maximum Value Composite (MVC)
of NDVI, computed over a 10-day period, considering the SPOT/VEGETATION C3 and
PROBA-V C1 satellite data, which are atmospherically corrected and cloud-free. The used
product is distributed at the 1 km resolution within three days of the end of the aggregation
period. Moreover, to characterize fire danger in terms of fuel danger (FD), level three of the
CORINE (Coordination of Information on the Environment) Land Cover 2012 (CLC2012)
map is used.

3.1.2. Weather Forecast

Air temperature, humidity, and wind are key parameters for fire predisposition condi-
tions. They are considered using weather forecasts generated by the COSMO (Consortium
for Small-scale Modeling) meteorological model [39]. We included the forecast from the
LAMI application (Limited Area Model Italy) in the system. As part of the LAMI agree-
ment, Cosmo 5M operational chain provides numerical forecasts on the Mediterranean
area, with a grid of 5 km. The model processes twice a day, at 00 and 12 GMT, and makes
forecasts for a time horizon of three days (72 h), although only 25 h are stored. The two
sets of weather forecasts are always available for each hour of the day. ISS integrates
only the 00 GMT set of forecasts (very similar to 12 GMT as reported in Figure 2), storing
12 GMT as a backup solution, for time computation saving. These products are distributed
in GRIB (GRIdded Binary) format and contain 17 information layers (regarding pressure,
geopotential, temperature, wind, albedo, precipitation, snow). To determine the FDDI,
the ISS system automatically extracts both temperature (T2m) and dew point temperature
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(Td2m) generated at 2 m above ground, and the u and v components of the wind, provided
at 10 m above the ground.
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Figure 2. (a) Transect AB of about 120 km. (b) Temperature trend observed along with the transect
AB for 25 October 2018, 13:00 GMT forecast at 00 GMT (red line) and 12 GMT (green line). It is worth
noting that the trend of both the curves is similar; the difference never exceeds about 1.5 ◦C.

3.1.3. Geomorphology Data

To consider the possible “fire accelerating factors” due to the morphology of the
territory, ISS uses a Digital Terrain Model (DTM) with a resolution of 20 m. Although
this layer (in terms of slope and aspect) has an immediate impact on fire dynamics, it was
upscaled only at the spatial resolution of MODIS and AVHRR (1 km). Indeed, no upscaling
procedure was performed for SEVIRI due to its low spatial resolution, and consequently,
no MDI was generated.

3.2. Methods Implemented and Indices Developed
3.2.1. The RST-FIRES Methodology

The ISS system implements the RST-FIRES algorithm [15] to detect and monitor
fires. This approach was successfully used to detect thermal anomalies related to both
winter (e.g., [36,40]) and summer fires (e.g., [15,41–44]), in different operational contexts.
RST-FIRES is a specific configuration of the RST multi-temporal approach [45–47], which
requires: (i) characterization of the satellite signal under unperturbed conditions; and
(ii) identification of anomalous signals through an automatic change detection scheme.
In particular, RST considers “anomalous” a signal that significantly diverges from the
“normal” condition (i.e., expected value), which is typical of the site and observation time.
The normal unperturbed condition can be defined using multi-annual time series of satellite
records. The ALICE (Absolutely Llocal Index of Change of the Environment, [45–47]) index
detects perturbing events:

⊗V (x, y, t) =
[V(x, y, t)− µV(x, y)]

σV(x, y)
(1)

where V(x,y,t) is the signal observed at time t in a single spectral band or a band combination
at the pixel (x,y); µV(x,y) is the expected value (temporal mean) of the signal, while σV(x,y)
is the temporal standard deviation. Those terms are computed by analyzing homogenous
cloud-free satellite records acquired at the same time of day and period of the year (same
month). The frequency/intensity of fires in the used time-series may possibly contaminate
µV(x,y) and σV(x,y) values; a kσ-clipping procedure such as that described in [15,45] is
applied to exclude corresponding V(x,y,t) values from the reference field computation.

Therefore, the ALICE index quantifies the signal excess of V(x,y,t) in reference to
the mean value µch(x,y), weighted by its natural variability σch(x,y). Since fires emit
the maximum of thermal radiation in the MIR region (3–5 µm), the ALICEMIR index
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analyzing the brightness temperature (BT) measured in the MIR channel of used sensors
(V(x,y,t) = BTMIR(x,y,t)) is computed by RST-FIRES to detect fires. A wide description of
the RST-FIRES methodology, including the other indices that are used to timely detect fires
at an early stage, can be found in previous studies (e.g., [15,36,40]).

3.2.2. The Fire Danger Dynamic Index

The Fire Danger Dynamic Index is an indicator based on a conceptual multiscale
model, which combines satellite-derived indices. FDDI, whose performance is evaluated in
Appendix A, is a dynamic fire hazard index, which analyzes the fuel characteristics and
state of the vegetation. This index is updated hourly, to analyze changes in the weather
parameters during the day. It is calculated for each pixel of satellite imagery and integrates
both structural and meteorological indices:

• Fuel Moisture Index (FMI), derived from meteorological forecast data;
• NDVD index (decadal value of NDVI);
• Fuel Danger (FD).

Figure 3 shows a synthetic scheme.
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The latter is derived from CLC2012 and resampled for each satellite sensor (AVHRR,
MODIS, and SEVIRI). Its values are indicative of the hazard associated with each kind of
land cover and can be updated based on the latest available land use maps. Each pixel
is represented by a vector with 38 elements indicating the fraction area occupied by each
CLC class (Ak). The fuel map was generated by associating a hazard level to each class
(Dk, [31]), as reported in Table 1.
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Table 1. Level 3 of the CLC classes that are associated with the hazard level Dk.

K CLC CODE CLC CLASS (Ak) Hazard Level (Dk)

1 111 Continuous urban fabric 1
2 112 Discontinuous urban fabric 1
3 121 Industrial or commercial units 1
4 122 Road and rail networks and associated land 1
5 123 Port areas 1
6 124 Airports 1
7 131 Mineral extraction sites 1
8 132 Dump sites 1
9 133 Construction sites 1
10 141 Green urban areas 1
11 142 Sport and leisure facilities 1
12 211 Non-irrigated arable land 10
13 212 Permanently irrigated land 5
14 213 Rice fields 1
15 221 Vineyards 1
16 222 Fruit trees and berry plantations 1
17 223 Olive groves 5
18 231 Pastures 10
19 241 Annual crops associated with permanent crops 7
20 242 Complex cultivation patterns 10

21 243 Land principally occupied by agriculture, with significant
areas of natural vegetation 10

22 244 Agro-forestry areas 15
23 311 Broad-leaved forest 25
24 312 Coniferous forest 70
25 313 Mixed forest 30
26 321 Natural grasslands 15
27 322 Moors and heathland 50
28 323 Sclerophyllous vegetation 50
29 324 Transitional woodland-shrub 100
30 331 Beaches, dunes, sands 1
31 332 Bare rocks 1
32 333 Sparsely vegetated areas 5
33 335 Glaciers and perpetual snow 0
34 411 Inland marshes 10
35 412 Peat bogs 10
36 421 Salt marshes 5
37 422 Salines 1
38 511 Water courses 1

The final structural index is a combination of the corresponding area-weighted hazard:

FD(x, y) =
k=38

∑
k=1

(Ak ∗Dk) (2)

The Fuel Moisture Index is a dynamic dimensionless parameter that can be considered
as a direct estimate of the moisture content of the necromass (dead vegetable organic
substance). It is updated hourly, and calculated using a well-known index for assessing fire
danger rating [33]:

FMI = 10 − 0.25 × (T2m − RH) (3)

where T2m and RH are the temperature (in Celsius) at 2 m above ground level and the
relative humidity (in %), respectively. RH is calculated from actual vapor pressure (E) and
saturation vapor pressure (Es), assuming standard atmospheric conditions:

RH = (E/Es) × 100 (4)
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where:
Es = 6.11 × 10 (7.5 × T2m/(237.7 + T2m)) (5)

E = 6.11 × 10 (7.5 × Td2m/(237.7 + Td2m)) (6)

Temperature (T2m) and dew point temperature (Td2m) at 2 m above ground level are
based on the weather forecast. The FDDI is then defined by the following equation:

FDDI(x, y) =
(100−NDVD(x, y))×FD(x, y)

FMI(x, y)
(7)

Figure 4 shows an example of an FDDI map generated for Italy for a particular day
and hour.
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3.2.3. The Morphological Danger Index

The Morphological Danger Index (MDI) is derived by combining two relevant topo-
graphic elements (slope and aspect) used for estimating the fire hazard:

MDI = (SlopeDV × 0.7) + (AspectDV × 0.3) (8)

where DV is Danger Value. We have used a Multi-Criterial Decision Analysis (MCDA) to
attribute appropriate weights.

Table 2 shows the classes relating to the identified topographic static factors and the
attribution of relative weights.
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Table 2. Topographical factors and corresponding weights.

Slope (in ◦)
(Weight 70%)

Aspect (in ◦)
(Weight 30%)

Classes DV Classes DV

0–5
5–10

10–15
15–20
20–25
25–30
30–35
>35

1
2
3
4
5
6
7
8

0–22.5 and 337.5–360
22.5–67.5

292.5–337.5
67.5–112.5
247.5–292.5
112.5–157.5
202.5–247.5
157.5–202.5

1
2
3
4
5
6
7
8

These values were defined, based on the following theoretical considerations:

• the slope determines an increase in the speed of propagation, and thus the danger
correlated to the event. The inclination of the slopes affects the pre-heating capacity of
the fuels by accelerating the combustion process and so the rate of spread of the fire;

• the slope affects the formation of an angle between the surface and the sun’s rays:
the closer this is to 90◦, the greater the calorific value of the sun’s rays on the ground.
Experimental observations [48] estimate that under the same wind conditions, inclina-
tions of up to about 16◦ increase fire speed by two times, and at inclinations of up to
about 30◦, by four times;

• the aspect influences the duration of exposure to the solar irradiation, the type of wind,
and the temperature and humidity. SW exposures, for instance, suffer from more
irradiation than others, heating up more, and thus fuels suffer from greater relative
humidity losses. Consequently, the types of vegetation that are present on the slopes
most exposed will be more combustible than others.

Figure 5 shows the MDI resampled for MODIS data. The figure shows that the index
assumes values from 1 to 8, with the highest values corresponding to mountainous areas.
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3.2.4. The Wind Intensity

Starting from the values of u and v components of wind contained in the COSMO-5M
weather forecast, we generated the values of the indicator of wind intensity (WI) according
to the following relationship:

WI =
√

(u2 + v2) (9)

Figure 6 shows an example of elaboration over Italy (10 December 2019 at 13:00 GMT).
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4. Synthetic Indicators

Within operational conflicts, and mainly in the presence of concurrent events, some
parameters, such as the number of thermal anomalies (i.e., RST-FIRES detections) and the
relative intensity index (in terms of ALICEMIR) should be considered and monitored in
real-time to better evaluate the space-time dynamics of each fire, and timely action against
the most dangerous. Furthermore, in addition to the above-mentioned factors, the danger
evaluation (FDDI) of an area gradually affected by fires should be considered to assess the
actual situation and better prioritize firefighter actions. In addition, the time persistence of
thermal anomalies should be considered when high temporal resolution data are used.

Finally, a synthetic indicator, Priority Index (PIN), which combines the above-mentioned
significant parameters and gives an immediate danger overview as well as a measure for
comparing simultaneous fires, can be defined starting from the different needs of the end-
users and data availability. Thus, the higher the PIN value, the higher the intervention
priority should be.

A potential PIN for geostationary satellites (PINGEO) is presented for SEVIRI data in
equation (10). The index is calculated for each time slot, considering all anomalous pixels
detected by RST-FIRES related to the event within an area of interest (AI).

PINGEO(tcurr, AI) =
tcrr

∑
tu=t0

[ ∑
(x,y) ∈ AI

(k RST∗ALICEMIR(x, y, t) + kFDDI∗FDDI (x, y, t)) + kPT∗NumPT(t) + kES∗NumAnom(t)] (10)

where:

• t0 is the first time slot when thermal anomalies are detected;
• tcurr is the current time slot;



Remote Sens. 2022, 14, 335 11 of 25

• AI is the area affected by the fire;
• kRST is a weighting factor of the ALICEMIR index;
• ALICEMIR(x,y,t) is the value of the ALICEMIR index, at time t, relating to each SEVIRI

anomalous pixel of coordinates (x,y);
• kFDDI is a weighting factor of the FDDI index;
• FDDI(x,y,t) is the value of the FDDI index, at time t, relating to each SEVIRI anomalous

pixel of coordinates (x,y);
• NumPT (t) is the number of time slots in which SEVIRI thermal anomalies related to

the event are detected from the beginning (t0) up to time t, on the area AI;
• kPT is a weighting factor related to the temporal persistence of SEVIRI thermal anoma-

lies on the area under observation;
• NumAnom(t) is the number of SEVIRI thermal anomalies related to the event from the

beginning (t0) to t, over the area AI;
• kES is a weighting factor that accounts for the spatial extension of the thermal anoma-

lies in the area affected by the fire.

In Equation (11), a similar index (PINLEO) is proposed for polar satellite data (MODIS
and AVHRR), giving up temporal persistence for their worse temporal resolution than
SEVIRI, but exploiting useful information about wind (WI) and geomorphology (MDI),
thanks to their greater spatial resolution.

PINLEO(tcurr, AI) =
tcurr

∑
t=t0

[ ∑
(x,y)∈ AI

(kRST∗ALICEMIR(x, y, t)+kFDDI∗FDDI (x, y, t)+kMDI∗MDI(x, y)+kWI∗WI(x, y, t))+kES∗NumAnom(t)] (11)

where t0, tcurr, AI, kRST, ALICEMIR(x,y,t), kFDD, FDDI(x,y,t), NumPT (t), kPT, NumAnom(t),
kES have the same meaning as in relation (10), and

• kMDI is a weighting factor of the MDI index;
• MDI (x,y) is the value of the MDI index for each anomalous AVHRR or MODIS

pixel (x,y);
• kWI is a weighting factor of the WI index;
• WI (x,y,t) is the value of the WI index for each anomalous AVHRR or MODIS pixel (x,y),

at time t.

PINGEO, ALICEMIR, FDDI, and NumPT are weighted respectively by the coefficients
kRST, kFDDI, kPT (equal to 0.3) to consider them at the same importance level; NumAnom
is weighted by the constant kES (equal to 0.1) to take account of possible errors due to
duplication effects, rather than the actual size of a fire. In PINLEO, the parameter related
to the temporal persistence of thermal anomalies is replaced by MDI and WI. These two
indicators could be utilized to characterize an area affected by an event when used with
AVHRR and MODIS data (the weight constants kMDI and kWI are both set equal to 0.15).

5. Results

In this section, we show some preliminary results of the ISS system experimentation.
To perform a first assessment of the system performance, we analyzed some concurrent
fires occurring during the summer and winter seasons. In the first case, the fires analyzed
occurred in central and southern Italy, in the Abruzzo and Sicily regions (shown in blue in
Figure 7) at the end of July 2020. In 2020, the Sicily region registered the largest total burned
area at the national level (more than 23,000 ha, equal to 40% of the total). The Abruzzo
region registered a burned area roughly equal to 27.5 ha, the second largest at the national
level after Sicily (40.8 ha) [49].

In the second case, some fires occurring in Northern Italy at the end of February 2019
were considered. In that period and area, both the number of fires and the area burned
were particularly significant [35]. Liguria and Tuscany (shown in yellow in Figure 7) were
among the Italian regions which were most affected by fires, due to dry wind from the
north, high temperatures, and sparse rainfall [35].
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Table 3 summarizes the fire events occurring between 24 and 26 February 2019, ex-
tracted from the EFFIS fire news section and showing differences in burned areas. In
addition, the table also reports the results from the ISS system in terms of the number of
detected thermal anomalies (referred to as each active event and aggregated in space and
time) and relative intensity levels (ALICEMIR min-max), for both single (i.e., only AVHRR,
MODIS or SEVIRI observations) and integrated satellite systems.

Table 3. Winter forest fires occurring during February 2019 in Northern Italy, and relative results
from the ISS system in terms of fire detections.

Place and Data
DD/MM/YY

Burned
Area
(ha)

SEVIRI AVHRR MODIS ISS

ALICEMIR
(Min–
Max)

No. RST
Thermal

Anomalies

ALICEMIR
(Min–
Max)

No. RST
Thermal

Anomalies

ALICEMIR
(Min–
Max)

No. RST
Thermal

Anomalies

ALICEMIR
(Min–
Max)

Total No.
RST

Thermal
Anomalies

Careggine (LU)
24 February

2019
20 1.6–13.2 22 2.8–6.3 3 - - 1.6–13.2 25

Passo della
Bocchetta (GE)
24–25 February

2019

10 2.1–4.8 3 4.7–11.6 4 - - 2.1–11.6 7

Sillano (LU)
25–26 February

2019
100 2.4–18.3 9 2.7–10.7 17 3.8 1 2.4–18.3 27

Vicopisano (PI)
25–26 February

2019
230 4.3–29.8 133 3.9–16.8 7 6.9–7.2 2 3.9–29.8 142

Sesta Godano
(SP)

25 February
2019

5 4.7 1 - - - - 4.7 1



Remote Sens. 2022, 14, 335 13 of 25

As can be seen in Table 3, the Vicopisano event was the largest one, affecting about
230 hectares. The images in Figure 8 show the area of the Vicopisano fire during (b) and
after (c) the event, in comparison with a pre-event image (a). In addition, Figure 8d shows
the temporal trend of the MIR signal (in red) detected by SEVIRI in correspondence with
the same event. The abrupt increment of the thermal signal, correctly detected by ISS at
09:15 GMT, is in line with the information of local newspapers which report 9:30 GMT as
the start of the event [50,51].
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satellites (29.8 in case of SEVIRI data, 16.8 in case of AVHRR, 7.2 in case of MODIS). 
Moreover, the event is characterized by the highest number of detections (142). The same 
can be observed for the other large fire here analyzed occurring near Sillano (about 100 
hectares of total burned area), which generated a high number of thermal anomalies (27) 
as well as high values of the ALICEMIR index (18.3). 
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Figure 8. RGB combinations (SWIR–NIR–RED) using Sentinel 2/MSI (a,c) and Landsat 8/OLI
(b) data available for the area of Vicoposano pre- (a), during (b), and post-fire (c). (a) In brown
showing evidence of a previous 2018 devasting fire. (b) flames and smoke of the 2019 Vicopisano
event over Landsat 8/OLI image. (c) burned area of the 2019 Vicopisano fire (dashed polygon).
(d) temporal trend of the MIR-SEVIRI signal (in red) measured in correspondence with the Vicopisano
fire during 25 and 26 February 2019, together with the expected value and normal variations of the
same signal (in black and gray tones, respectively).
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In correspondence with the Vicopisano event, as can be seen in Table 3, the values
of thermal signal intensity, in terms of the ALICEMIR index, are the highest observed by
all satellites (29.8 in case of SEVIRI data, 16.8 in case of AVHRR, 7.2 in case of MODIS).
Moreover, the event is characterized by the highest number of detections (142). The
same can be observed for the other large fire here analyzed occurring near Sillano (about
100 hectares of total burned area), which generated a high number of thermal anomalies
(27) as well as high values of the ALICEMIR index (18.3).

Each satellite sensor contributed differently to the ISS results, especially in the presence
of fires just starting and/or short-lived events, which were, in general, better detected using
SEVIRI (e.g., Sesta Godano, Careggine, and Passo della Bocchetta). This analysis reveals
a good correlation between total burned area and analyzed parameters (i.e., number of
thermal anomalies, ALICEMIR values), despite the possible impact of clouds/smoke on
results of thermal anomaly identification. By using the PINGEO and PINLEO indicators, it
was then possible to analyze concurrent fires and their space-time dynamics. Here, we
show some examples of PINGEO and PINLEO applications for the same events in Table 3.
Figure 9 shows the temporal trend of PINGEO for the concurrent fire events:

• Careggine and Passo della Bocchetta during 24 February 2019 (Figure 9a);
• Vicopisano, Sillano, and Sesta Godano during 25 and 26 February 2019 (Figure 9b).
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Figure 9. PINGEO values, calculated using RST-FIRES/SEVIRI detections, for the concurrent event
that occurred: (a) during 24 February 2019 near Careggine, and Passo della Bocchetta; (b) during 25
and 26 February 2019 near Vicopisano, Sillano, and Sesta Godano.

It can be noted how the above-mentioned events were characterized by different
PINGEO values, which were derived at 15 min time intervals by exploiting the high temporal
resolution of SEVIRI data. This analysis provides a first overview of the active fires and
makes available a smart indicator that allows us to compare simultaneous fire events,
promptly evaluating the priority of fire contrast action in operational contexts.

In Figure 9a with more detail, the first PINGEO value (57.3) for Careggine (12:45 GMT)
is greater than the last value (55.5) retrieved at Passo della Bocchetta (11:15 GMT). This
trend was also confirmed in the following hours when the PINGEO value at Careggine
increased up to 87.3 (13:00 GMT). This value is even higher than the PINGEO derived at
Passo della Bocchetta (81.8) fifteen minutes later (i.e., at 13:15 GMT). Those differences
suggest the priority of intervention at Careggine, in agreement with information provided
by local sources, reporting the use of a higher number of ground and aerial resources at
Careggine [52,53] to extinguish flames.
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Figure 9b shows another example of the indicator developed in reference to the
concurrent fire events of Vicopisano, Sillano, and Sesta Godano, at around 13:45 GMT.
Comparing the PINGEO values, the Vicopisano fire is clearly the event to be looked at with
greater attention. Indeed, the value of the index analyzed is from 10 to 36 times greater than
Sillano and Sesta Godano, respectively. Moreover, it is worth noting that already about four
hours before, at 09:30 GMT, the value of the Vicopisano PINGEO is the greatest observed.
The different number of ground and aerial firefighting resources used to extinguish flames,
from local newspapers, confirms the greater danger posed by the Vicopisano event. In
particular, online information records an evident difference in the deployment of resources:
22 ground teams, 1 helicopter, and 3 Canadair aircraft employed at Vicopisano [50], in place
of 5 ground teams, 2 helicopters, and 1 Canadair at Sillano [50] and 1 ground team at Sesta
Godano [54].

Similar findings are derived from PINLEO for the same aforementioned fire events.
Figure 10 shows the values of PINLEO retrieved during the early morning of 26 February
2019, with forest fires simultaneously occurring near Sillano and Vicopisano, whose results
are detectable using AVHRR and/or MODIS data. As for PINGEO, the higher values of the
index recorded at Vicopisano indicate that this fire event required continuous monitoring
and prompt intervention.
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Figure 10. PINLEO values, calculated using RST-FIRES/MODIS-AVHRR detections, for the events of
Vicopisano and Sillano that occurred in the early morning of 26 February 2019.

Analogous outcomes can be found considering the case of two concurrent summer
fires (Table 4), occurring in central and southern Italy on 31 July 2020. July 2020 saw a
high percentage of warm days, mainly in the center-south of Italy, as compared with the
1981–2010 reference period [55]. Abruzzo and Sicily were two of the Italian regions affected
by fires on 31 July 2020 and, in particular, an awful event started around 11:00 GMT in the
Gran Sasso area (L’Aquila Province, Abruzzo), while another fire was active in Petralia
Sottana (Palermo Province, Sicily). Regional Civil Protection Departments had declared
a medium fire susceptibility for L’Aquila Province for that day (Figure 11a, [56]) and a
medium fire danger level (Figure 11b, [57]) for Palermo Province. The Petralia Sottana fire
was identified by RST-FIRES starting from 08:15 GMT, while the first identification of the
Gran Sasso fire was at 10:15 GMT. The total number of RST thermal anomalies identified by
SEVIRI and MODIS gives an idea of the differences in the spatial extension and intensity of
the two events at the end of the day. However, the PIN value trends allow us to highlight
different space-time dynamics during fire evolution.
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Table 4. Summer forest fires occurring in central and southern Italy during 31 July 2020 and relative
results from the ISS system in terms of fire detections.

Place and Data
DD/MM/YY

SEVIRI MODIS ISS

ALICEMIR
(Min–Max)

No. RST
Thermal

Anomalies

ALICEMIR
(Min–Max)

No. RST
Thermal

Anomalies

ALICEMIR
(Min–Max)

Total No. RST
Thermal

Anomalies

Gran Sasso
(AQ)

31 July 2020
1.8–12.9 88 4.2–21.7 17 1.8–21.7 105

Petralia Sottana
(PA)

31 July 2020
2.3–5.8 5 8.0–14.0 3 2.3–14.0 8
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Figure 11. (a) Fire susceptibility foreseen for 31 July 2020 in Abruzzo Provinces; (b) Fire danger
foreseen for 31 July 2020 in Sicily Provinces.

Figure 12 shows, in particular, the integrated use of PINGEO and PINLEO. As described
above, the two PINs are based on different weighted indices and therefore their values
cannot be directly compared. For this reason, the vertical axis on the left of the graph refers
to the PINLEO values, while the vertical axis on the right is related to the PINGEO values.
Comparison of the same PIN for the two events clearly shows that greater attention should
be given to the Gran Sasso fire. In detail, the Gran Sasso PINGEO value turns out to be 178.4
at the first RST-based detection (10:15 GMT); therefore, it is greater than the last available
Petralia Sottana PINGEO (98.0 at 08:15 GMT).

Similarly, the first PINLEO value for Petralia Sottana is 61.1 at 09:59 GMT; during the
following MODIS overpass (at 11:39 GMT), the Petralia Sottana PINLEO value increases
(133.1), but at that time the Gran Sasso PINLEO value (754.7) is five times greater than
Petralia Sottana PINLEO. Therefore, PINLEO comparison also confirms the need for primary
intervention against the Gran Sasso event.

On the other hand, although PINGEO and PINLEO are not directly comparable and
PINLEO can only be computed during polar satellite passages, the information from PINLEO
can strengthen the PINGEO information.

Suggestions from PINGEO and PINLEO are corroborated by online news, which indi-
cates the intervention of several teams of volunteers, an army helicopter, and five Canadair
aircraft against the Gran Sasso fire [58], while the Petralia Sottana fire required a more
limited mobilization of fire-fighting teams and vehicles [59].
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Figure 12. PINGEO and PINLEO values, calculated using RST-FIRES/SEVIRI and RST-FIRES/MODIS
detections, for the concurrent summer events that occurred on 31 July 2020.

Moreover, it should be highlighted that FDDI values foreseen in correspondence with
these two fires fall in the ‘very high’ class (Figure 13). Concerning that point, it is also worth
noting that:

• the FDDI index used in ISS is able to give information on a local scale and with a
1-h update, unlike the forecasts that are used in operational mode by Civil Protection
Departments (daily, at a Province level, see Figure 11);

• the use of the FDDI index alone is not enough to establish prioritization if it is not
coupled with other indices that are at the basis of the PINs.
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Figure 13. (a) Gran Sasso fire, identified by RST-FIRES since 10:15 GMT, overlapped by the FDDI map
foreseen for 10 GMT on 31 July 2020 in Abruzzo; (b) Petralia Sottana fire, identified by RST-FIRES at
08:15 GMT, overlapped by the FDDI map foreseen for 08 GMT on 31 July 2020 in Sicily.

6. Discussion

Preliminary results presented in previous sections have shown the potential of the
ISS system in providing information about fire monitoring and prioritization. Like other
satellite-based systems, however, ISS suffers from some limitations due to the use of optical
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band data for fire detection. Both clouds and smoke obscuring the areas affected by
fires may cause significant omission errors or lead to the underestimation of fire events
(e.g., [14]).

In this study, we retrieved information required to assess the alert from the ISS system
from some of the summer fires as well as the winter fires, aiming at testing the system in
different conditions. The test included fires occurring in the summertime, when meteoro-
logical conditions are generally favorable for satellite fire surveillance, as well as the events
occurring in the winter season, when dense and persistent cloud coverage is more frequent
and capable of obscuring active fires, making them more difficult to be continuously moni-
tored. On the other hand, the reliability of fire detection algorithms in the winter season is
severely tested due to the possibility of having a false alarm proliferation mainly related to
a high MIR signal, observed for example in correspondence with cloud edges.

It is then evident that the capacity of the ISS system for forest fires prioritization needs
to be verified in further cases.

Moreover, accurate validation of fire products, including those provided by the ISS
system, is not a trivial task. This analysis not only requires detailed information about fires
(e.g., starting and end time, duration, size) which may sometimes be derived from local
sources (as for this study), but also information about a number of other important factors,
such as fire propagation speed, space-time dynamics, flame intensity, and front height
and length. This information is usually not available, particularly during the evolution
of fire events. Hence, the results of this study give a first indication of the potential of
the proposed system in providing information of great relevance for firefighting activities
regarding the possibility of better managing available resources.

Regarding the advantages of the ISS system, although it has been developed to perform
over the Italian territory, it can be easily scaled to a local (i.e., regional territory) and
continental scale. This is possible thanks to the use of an efficient fire detection algorithm
(RST-FIRES) exportable to different geographic areas, which may be applied to data from
different sensors (both polar and geostationary).

Clearly, ancillary data (i.e., weather forecasts) are required to implement the ISS
system operationally.

The availability of high-resolution and/or updated layers also at the regional level
(i.e., maps of land use) could further improve the performance of the system developed. It
is customizable to different end-users. Additionally, both PINGEO and PINLEO developed
here are synthetic indicators that can use different weights for the parameters considered.
Specific end-users could then require a different set of PIN constants, based on their
own needs.

7. Conclusions

Fires are a complex environmental risk generally addressed with a multiplicity of systems
at all stages of their development: hazard evaluation, monitoring, and damage assessment.

In this paper, we have presented an automatic satellite-based system for fire detection
and prioritization that, for the first time, integrates two different approaches. The first one is
focused on early warning and monitoring, while the second one is devoted to an assessment
of danger and damage reduction. The ISS system integrates the following modules:

• hot spot real-time detection by using the RST-FIRES technique, implemented with
multi-mission satellite data (AVHRR, MODIS, SEVIRI);

• evaluation of fire ignition/propagation, for each detected hot spot, by using a sim-
plified index, FDDI, to consider the state of vegetation, the wind intensity (WI), and
geomorphological characteristics (MDI) for the area affected by the event;

• construction of synthetic priority indicators, PINGEO and PINLEO, for an immediate
(and continuously updated) overview of the situation.

ISS extends the performance of the RST-FIRES system, which was successfully used in
operational contexts [15] by implementing ancillary information to evaluate, pixel by pixel,
the predisposition and the possibility of the fire occurrence. The system is then capable of
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early fire detection, characterizing some crucial features of the territory potentially affected
by flames. Moreover, it may represent a decision support tool to prioritize active concurrent
fires driving priorities for intervention, by optimizing the use of available ground and
aerial resources to extinguish fires. To perform a first assessment of the developed system,
we analyzed a number of winter fires of different sizes and intensity levels occurring in
northern Italy, exploiting the information from the EFFIS fire news section and local online
newspapers. In addition, the case of two concurrent summer fires was analyzed.

In both cases, the priority synthetic indices, PINGEO and PINLEO, were then calculated
for satellite imagery acquired during the fire events demonstrating their usefulness to
fire prioritization.

Although further analyses are required to fully evaluate the performance of the ISS sys-
tem, it may support civil protection, firefighters, volunteers, and other operators involved
in better managing active fires, minimizing the impact of dangerous and highly destructive
events on populations and the environment, in agreement with European legislation [60].
Finally, the ISS system is also in line with the key objectives (i.e., reduction of the “incidence
and extent of forest fires”) of the EU forest strategy, described in the European Green
Deal [61].

Author Contributions: Conceptualization, G.M., C.F., A.F.; methodology, A.L., N.P., C.F.; software,
A.F.; validation, C.P., F.D.S., G.N., V.S.; formal analysis, A.L., C.F., G.M., T.L., F.M., writing G.M,
C.F., A.L., F.M., T.L.; supervision, N.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the SPOT (Development of a platform for innovative
services based on Earth Observation data) project, funded within the framework of the National
Operational Programme (PON) on Enterprises and competitiveness 2014–2020 and by the project
OT4CLIMA (Development of Innovative Earth Observation Technologies for the Study of Climate
Change and Its Impacts on the Environment), funded by the Italian Ministry of Education, University
and Research (MIUR), in the framework of the National Operational Programme (PON), Research and
Innovation 2014–2020, Specialization Area Aerospace (D.D. 2261 del 6.9.2018, PON R&I 2014–2020
and FSC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank EUMETSAT and the Aeronautica Militare Italiana for
its support in accessing the MSG-SEVIRI data used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AFIS Advanced Fire Information System
AI Area of Interest
ALICE Absolutely Llocal Index of Change of the Environment
AVHRR Advanced Very High Resolution Radiometer
CLC2012 CORINE Land Cover 2012
COAU Unified Air Operational Center
CORINE Coordination of Information on the Environment
COSMO Consortium for Small-scale Modeling
DTM Digital Terrain Model
DV Danger Value
EDI Extremal Dependence Index
EFFIS European Forest Fire Information System
EOS Earth Observing System
FAST FSI Fire Alerts System
FD Fuel danger
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FDDI Fire Danger Dynamic Index
FMI Fuel Moisture Index
FWI Fire Weather Index
GIS Geographic Information System
GRIB GRIdded Binary
ICRIF Índice Combinado de Risco de Incêndio Florestal
INPE Instituto Nacional de Pesquisas Espaciais
ISS Integrated Satellite System
LAMI Limited Area Model Italy
MCDA Multi-Criterial Decision Analysis
MDI Morphological Danger Index
MetOP Meteorological Operational Satellites
MIR Middle InfraRed
MODIS Moderate Resolution Imaging Spectroradiometer
MSG Meteosat Second Generation
MVC Maximum Value Composite
NDVD NDVI Decadal
NDVI Normalized Difference Vegetation Index
NIR Near InfraRed
NOAA National Oceanic and Atmospheric Administration
PIN Priority Indicators
PINGEO PIN for geostationary satellites
PINLEO PIN for polar satellites
POD Probability Of Detection
RST Robust Satellite Techniques
RST-FIRES Robust Satellite Techniques for FIRES detection and monitoring
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SWIR Short Wave InfraRed
TIR Thermal InfraRed
VIIRS Visible Infrared Imaging Radiometer Suite
VIS Visible
WI Wind Intensity

Appendix A

The performance of FDDI in predicting the occurrence of fire events is evaluated here
by assuming wildfires as rare, low-frequency events [62–64]. In these cases, the problem
to be addressed is that the lower the frequency of the events, the more the performance
measure of the prediction model degenerates [62]. The Extremal Dependence Index (EDI),
proposed by [63,65], is less dependent, compared to other validation methods, on the
relative frequency with which the event was observed to occur. Therefore, EDI performs
well in checking for rare event predictions. In [65],the authors calculated EDI with the
following equation:

EDI = (LogF − LogPOD)/(LogF + LogPOD) (A1)

POD is the Probability of Detection and F is the Fire Alarm Rate, described by the
following relation:

POD = a/(a + c) (A2)

where a (hits) is the number of times that the forecast indicates fire danger and fire is
observed, while c (misses) is the number of times that the forecast indicates no fire danger,
but fire is observed.

F = b/(b + d) (A3)

where b (false alarms) is the number of times that the forecast indicates fire danger, but a
fire event is not observed, and d (correct negatives) is the number of times that the forecast
indicates no fire danger, and no fires are observed.
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To calculate EDI, we propose a modification of POD, as shown in Equation (A4)
by considering the largely probabilistic character of the considered phenomenon. Fires
are generally anthropogenic events (especially in Italy). Therefore, to apply EDI in the
validation of FDDI, we accept the simplification of the binary partition of events (fire/no-
fire), but we modify the calculation of the Probability of Detection (POD) considering that
we are verifying the validity of Forecasts of Rare Binary Events of a probabilistic and not a
deterministic nature.

For this purpose, therefore, we consider the number of events in relation to the surface
attributed by the FDDI forecasts to the fire occurrence zone or to the no-fire occurrence
zone. We divided FDDI into 5 danger classes, attributing them to the relative occurrence
zone, as shown in Table A1.

The fire occurrence zone is the area for which FDDI falls into classes 4 and 5, character-
ized by high probability fire events, while a no-fire occurrence zone is referred to as classes
1, 2, and 3 with low probability fire events.

Table A1. FDDI classes and relative occurrence zone.

Class FDDI Value Occurrence Zone Description

1 FDDI ≤ 60
No-fire occurrence zone Low probability fire

events
2 60 < FDDI ≤ 120
3 120 < FDDI ≤ 180
4 180 < FDDI ≤ 240

Fire occurrence zone High probability fire
events5 FDDI > 240

Therefore:
PODmod = amod/(amod + cmod) (A4)

where amod and cmod are the hits and misses categories modified, as indicated above, to
consider the spatialization of values

amod = a/numb_pixel_fire (A5)

cmod = c/numb_pixel_no-fire (A6)

The Fire Alarm Rate is then modified (Fmod) according to following the relations

Fmod = bmod/(bmod + dmod) (A7)

bmod = numb_pixel_fire − a (A8)

dmod = numb_pixel_no-fire − c (A9)

The goal is to demonstrate that fire is more likely to occur in FDDI classes 4 and 5 than
in FDDI classes 1, 2, and 3 by calculating EDI.

We calculated the FDDI index for the Basilicata region during the 2018 fire summer
season, in particular from 12 June 2018 to 30 September 2018, for which official databases
of fire events were available; for the 94 fires that occurred during this period, we generate
the value of FDDI for the corresponding SEVIRI fire pixel, at the start time of the event.

In Figure A1, the results of this classification are reported:

• 97% (91 fires) belong to the non-fire occurrence zone (classes 1–2–3);
• 3% (3 fires) belong to the fire occurrence zone (classes 4–5).

Moreover, considering the area of Basilicata (approximately equal to 952 SEVIRI pixel)
and the 94 time slots corresponding to the start time of the events considered, we have
classified 88,440 SEVIRI pixels of the regional territory. The results (in Figure A2) show
that:

• 86,586 pixels (about 98%) belong to classes 1, 2, and 3 (no-fire occurrence zones);
• 1854 pixels (about 2%) belong to classes 4 and 5 (fire occurrence zones).
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Based on these considerations, we calculated the above-mentioned PODmod and Fmod
to obtain the spatialized value:

amod = 3/1854 = 0.001618 (A10)

cmod = 91/86,586 = 0.001051 (A11)

PODmod = 0.001618/0.002669 = 0.6062 (A12)

bmod = 1854 − 3 = 1851 (A13)

dmod = 86,585 − 91 = 86,495 (A14)

Fmod = 1851/88,310 = 0.021 (A15)

The modified EDI (EDImod) is calculated according to the following equation:

EDImod = (LogFmod − LogPODmod)/(LogFmod + LogPODmod) (A16)

EDImod = (−1.6788 + 0.2174)/(−1.6788 − 0.2174) = −1.4614/−1.8961 = 0.77 (A17)
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Figure A1. Classification of SEVIRI fire pixels in correspondence with the 94 events that occurred in
Basilicata during the 2018 summer fire campaign.
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Figure A2. Classification of 88,440 SEVIRI pixels covering the Basilicata region in correspondence
with the events that occurred during the 2018 summer fire campaign.
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EDI provides a skill score in the range [−1, 1]: 1 is for perfect forecasts, 0 is for random
forecasts. It is >0 for forecasts that have hit rates that converge to 0, and slower than those
of random forecasts, and can be negative in the opposite situation. Therefore, the system
beats a random forecast for values >0 and could be considered skillful as in our case [64].
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