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Abstract: Spatial pattern-oriented evaluations of distributed hydrological models have contributed
towards an improved realism of hydrological simulations. This advancement has been supported
by the broad range of readily available satellite-based datasets of key hydrological variables, such
as evapotranspiration (ET). At larger scale, spatial patterns of ET are often driven by underlying
climate gradients, and with this study, we argue that gradient dominated patterns may hamper
the potential of spatial pattern-oriented evaluation frameworks. We hypothesize that the climate
control of spatial patterns of ET overshadows the effect model parameters have on the simulated
patterns. To address this, we propose a climate normalization strategy. This is demonstrated for the
Senegal River basin as a modeling case study, where the dominant north-south precipitation gradient
is the main driver of the observed hydrological variability. We apply the mesoscale Hydrological
Model (mHM) to model the hydrological cycle of the Senegal River basin. Two multi-objective
calibration experiments investigate the effect of climate normalization. Both calibrations utilize
observed discharge (Q) in combination with remote sensing ET data, where one is based on the
original ET pattern and the other utilizes the normalized ET pattern. As objective functions we
applied the Kling-Gupta-Efficiency (KGE) for Q and the Spatial Efficiency (SPAEF) for ET. We identify
parameter sets that balance the tradeoffs between the two independent observations and find that the
calibration using the normalized ET pattern does not compromise the spatial pattern performance of
the original pattern. However, vice versa, this is not necessarily the case, since the calibration using
the original ET pattern showed a poorer performance for the normalized pattern, i.e., a 30% decrease
in SPAEF. Both calibrations reached comparable performance of Q, i.e., KGE around 0.7. With this
study, we identified a general shortcoming of spatial pattern-oriented model evaluations using ET in
basins dominated by a climate gradient, but we argue that this also applies to other variables such as,
soil moisture or land surface temperature.

Keywords: evapotranspiration; spatial patterns; model evaluation; remote sensing; hydrological
modeling; climate normalization

1. Introduction

The distinct spatial variability of hydrological processes leads to complexity inherent
to a range of environmental and societal concerns such as floods, droughts and climate
change impacts. To tackle such concerns, spatially distributed modelling is required to sup-
port targeted decision making. The integration of satellite remote sensing data marked an
important step in the last decade of spatially distributed hydrological model development.
Satellite remote sensing provides spatially explicit data that have the potential to effectively
improve spatial realism of hydrological simulations through improved parametrization
schemes in conjunction with spatial pattern-oriented model evaluation frameworks. With
respect to the enhanced parametrization, spatio-temporal vegetation data derived from
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satellite systems were, for example, successfully applied to spatially distributed vegeta-
tion related parameters, such as root depth and crop coefficient [1–4]. In broader terms,
seamless parameter distributions that comprise consistent spatial patterns have proven
to overcome pitfalls of spatially distinct, i.e., unit-based, model parametrizations [5,6].
The second aspect, namely spatial pattern-oriented model evaluation, has proven to be
extremely insightful for diagnosing structural model deficiencies relating to the spatial pat-
tern performance [7,8] or as objective functions in multi-variable calibration frameworks [9]
which typically combine discharge observations with a remotely sensed variable such as
evapotranspiration (ET) [10], land surface temperature (LST) [11] or soil moisture (SM) [12].
It is often found that the temporal model evaluation using discharge is complementary to
the spatial pattern evaluation using satellite derived data and that tradeoffs are often very
limited [1]. Furthermore, the potential of satellite remote sensing data is also to constrain
model calibrations for data scarce regions.

In the recent literature on spatial pattern-oriented model evaluation, we found that the
investigated patterns were often spatially linked to distinct climate or landscape characteris-
tics of the study sites. This often resulted in a very satisfying pattern performance, because
the dominating processes causing the spatial pattern, i.e., a distinct precipitation gradient,
overshadowed the imprint of model parameters on the simulated spatial pattern. For
example, SM and ET patterns of the Volta Basin that exhibit a strong north-south gradient
caused by a corresponding precipitation gradient led to very satisfying and comparable
results for a variety of tested calibration experiments [12]. A similar impression could
be obtained from a model evaluation of the U.S using remotely sensed LST data. The
LST patterns at this scale are dominated by air temperature, which resulted in correlation
coefficients above 0.95 for most of the evaluated LST patterns [13]. LST was also utilized
to evaluate the performance of a hydrological model of a Mexican basin with a 2400 m
elevation range [14]. LST obviously followed the topography gradient and a correlation
coefficient greater than 0.8 could be attested to most of the evaluated patterns. Moreover,
several ET datasets were compared at pan-European scale and at basin scale and it was
found that the continental ET patterns were in better agreement with each other than the
patterns at basin scale [15]. This is a consequence of the fact that at European scale, the
patterns are driven by climate variability, whereas at catchment scale, land cover and soil
characteristics emerge as dominant drivers of spatial variability.

With this study, we intend to investigate if the effectiveness of a spatial pattern-
oriented model evaluation is limited by dominating gradients that are beyond the control
of model parameters. We expect the sensitivity of model parameters to be hampered for
such patterns and we suggest normalizing the spatial patterns to enhance the sensitivity of
the model parameters. The idea of normalization, with the aim to decipher overshadowed
hydrological processes, is not novel as such. The evaporative fraction (EF), i.e., actual
ET normalized by potential ET, has been linked to SM to diagnose model functioning at
larger scale across the U.S. [16,17], which has been utilized to evaluate models but also
to gain process understanding. The EF has also been applied to evaluate a catchment
model in Denmark [18]. Here, instantaneous ET was normalized by the available energy to
remove the effect of diverging energy inputs between the evaluated models. The notion of
precipitation normalization is the principal element of the Budyko framework [19], where
ET and potential ET are normalized by precipitation, resulting in the evaporation index
and the aridity index, respectively. This allows the dominance of water or energy limitation
of a basin to be studied. The Budyko hypothesis has successfully been applied to evaluate
hydrological models [20]. The evaporative index has been utilized to discriminate perfor-
mance of various hydrological models for the Indian sub-continent [21]. The evaluation
has been conducted grid-based as well as basin-based and allowed insights into diverging
precipitation partitioning across models. In more general terms, the concept of process con-
straints, defined as expert knowledge based ratios of simulated fluxes and model forcings,
has been introduced to enable model evaluation also for ungauged basins [22].



Remote Sens. 2022, 14, 315 3 of 19

We hypothesize that normalizing spatial patterns of satellite based hydrological ob-
servations that exhibit a clear gradient, which is caused by processes not represented in
hydrological models, conveys alternative information relevant for calibration. To investi-
gate this research topic, we set up a hydrological model of the Senegal River basin, which
is characterized by a distinct north-south gradient in precipitation. This gradient is the
dominant driver of the spatial variability of hydrological fluxes of the basin. We focus on
discharge observations in combination with spatial ET patterns as target variables for the
model evaluation. In this context, we suggest a novel normalization method of the ET
pattern that utilizes a fitted polynomial trend relating the observed ET to precipitation.
Through two calibration experiments we intend to explore the implications of calibrating a
hydrological model against a normalized pattern of ET.

In terms of model code, we opt for the mesoscale Hydrological Model (mHM) v.11.1 [23,24],
which allows for an enhanced realism of the simulated spatial pattern of hydrological
states and fluxes. This is achieved by means of comprehensive parameter regionalization
frameworks that are built into the parametrization scheme of mHM.

2. Materials and Methods
2.1. Study Site

The study was carried out in the 350,000 km2 large Senegal River, which is the second
largest basin in West Africa (Figure 1). The Senegal River spans four riparian states, namely
Guinea, Mali, Senegal and Mauritania, and extends over diverse hydroclimatic conditions
from an arid climate in the northern Sahel zone to a tropical climate in the southern Guinean
zone. The distinct North-South precipitation gradient ranges between 200 mm yr−1 to
over 1500 mm yr−1 with clear implications for the hydrology of the basin. Almost 50% of
the generated discharge observed at the Bakel station originates from the southern Dakka
sub-catchment which covers only approximately 5% of the Bakel drainage area [25].
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Figure 1. The Senegal River basin delineated as eight sub-catchments. The seven sub-catchments with
available discharge records are stated by station names. The long-term average annual precipitation
is based on CHIPRS 2.0 for the period of 1990–2019. The overview figure depicts the location of the
Senegal River in Western Africa.

Besides the distinct spatial variability, the temporal flow regime follows a clear sea-
sonality that is characterized by a 6-month rainy season that has its onset in June. Ap-
proximately 95% of the annual precipitation of the Senegal River (600 mm yr−1) occurs
in the months June till October (Figure 2). Peak flows at the Bakel station range between
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2000 m3 s−1 and 4000 m3 s−1 and typically occur in the months August and September.
The Manantali dam, just downstream of the Makana station is the largest reservoir of the
Senegal River basin and artificializes the downstream flow regime [26]. The four stations
that are located upstream of major hydraulic infrastructures, where close-to natural flow
conditions can be assumed, are Qualia, Gourbassa, Dakka and Makana.
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Figure 2. Long-term climatologies of monthly evapotranspiration and precipitation for the Senegal
River basin. Precipitation data are based on CHIPRS 2.0 and evapotranspiration data are retrieved
from MODIS’ MOD16A2.006 product.

2.2. Hydrological Model

We applied the mesoscale Hydrological Model (mHM) v.11.1 [27] to model the hydro-
logical cycle of the Senegal River basin at daily timestep. mHM is a spatially distributed,
grid-based, conceptual hydrological model that was specifically developed for providing
physically meaningful and spatially explicit predictions of hydrological variables through
a multiscale parameter regionalization framework (MPR) [23,24,28]. Canopy interception,
soil moisture dynamics, infiltration, surface runoff, discharge generation, evapotranspi-
ration, subsurface storage, deep percolation, baseflow, and river routing are among the
processes that are accounted for in mHM. The MPR framework consolidates model in-
put data across spatial scales, i.e., high resolution geophysical basin characteristics (e.g.,
elevation, soil texture or vegetation) and coarse resolution meteorological forcing (e.g.,
precipitation, temperature and potential evapotranspiration). The hydrological model
routines that generate output are executed at an intermediate scale that lies in between
the high-resolution basin characteristics and the coarse meteorological forcing. Model
parameters are regionalized through simple and well-established transfer functions linking
the spatially distributed basin characteristics to seamless parameter fields. The transfer
functions are controlled via global parameters which allows for efficient model calibration
with a limited number of calibration parameters. It has also been documented that mHM
parameters are scale independent, which allows the model to be calibrated computationally
efficient at coarse resolution and subsequently to be applied at high spatial resolution with
the same parameters [29]. To further improve realism of spatially distributed model output,
two transfer functions have recently been implemented in mHM [1]. The first links fully dis-
tributed vegetation characteristics, i.e., remotely sensed Leaf Area Index (LAI), to a spatially
distributed crop coefficient that is used for scaling the potential evapotranspiration (PET) to
account for heterogeneous landcover. The second utilizes spatially distributed soil texture
information to derive a field capacity dependent spatially varying root depth parameter.
Both transfer functions are essential for the effective integration of satellite based observa-
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tions, of e.g., evapotranspiration, through a spatial pattern oriented calibration framework
aiming at increasing realism of the spatially distributed model simulations [1,10].

mHM has successfully been applied for several West African basins using a variety of
forcing data and observational data as calibration targets [12,30–32]. In our model setup
for the Senegal River basin, elevation was retrieved from the Shuttle Radar Topographic
Mission. While available in multiple resolutions, the 500 m resolution was used for the
purpose of this study. The required slope, aspect, flow direction and flow accumulation
data were derived from this elevation dataset. Soil texture variables, clay content, sand
content and bulk density were derived from the AfSoilGrids250 m dataset [33]. The
variables are available at 250 m resolution for six layers with varying depths covering
the top 200 cm and were resampled to 500 m. Annual land use maps for the Senegal
River were generated based on the MODIS’ MCD12Q1.006 product, which has a native
resolution of 500 m [34]. Land use was reclassified into three classes, namely permeable,
impermeable and forest. Long-term monthly LAI climatologies used to calculate a spatio-
temporally varying crop coefficient were based on MODIS’ MCD15A2H.006 product [35].
The original eight-day composite dataset was aggregated to long-term monthly means at
a spatial resolution of 500 m. Daily averaged air temperature data were processed based
on the ERA-5 reanalysis dataset at 0.1◦ resolution [36]. PET was estimated based on the
Hargreaves–Samani [37] model using ERA-5 air temperature data (daily min, max and
mean) as input. For this purpose, the PyETo Python library (https://pyeto.readthedocs.io,
last accessed 5 December 2021) was applied. Daily gridded precipitation data was obtained
from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 2.0 dataset,
which has a native resolution of 0.05◦ [38,39]. For the Senegal River basin mHM model
the following spatial resolutions have been defined: 500 m for the basin characteristics,
5 km for the intermediate modeling resolution and 10 km for the meteorological forcing. A
16-year period (1996–2011) with a 2-year warming period was simulated at daily timestep.

2.3. Observational Data

The model performance was evaluated against two independent hydrological fluxes,
namely discharge (Q) and evapotranspiration (ET). Continuous daily Q observations were
available from 1996 to 2005 at seven stations in the Senegal River basin (Figure 1), three of
which are located downstream of major dams (Bakel, Kayes and Manantali). Hence, the
flow regimes are heavily altered and, since mHM does not represent the effect of dams
and only simulates natural flow conditions, the three stations were excluded from the
model evaluation.

Spatial patterns of ET were derived from MODIS’ MOD16A2.006 product [40], referred
to as MOD16 hereafter. The ET data were processed for the period 2002 to 2011 for Terra
and Aqua satellite systems. First, average monthly maps were calculated taking only
high-quality data into account and, subsequently, monthly climatologies were calculated
by averaging each month over the 10 year period. Since the mHM model was executed at
spatial resolution of 5 km, the MOD16’s native resolution of 500 m was resampled to 5 km
using the mean function. Due to expected large uncertainties of ET over lakes and urban
areas, the two land cover classes were removed from the ET dataset. Finally, the monthly
climatologies (Figure 2) were aggregated to rainy- and dry-season, where the rainy season
was defined as the 6-month period of June till November. Based on MOD16, the monthly
basin average ET of the six rainy season months is above 10 mm mth−1 with a peak in
August and September of approximately 65 mm mth−1. The purpose of aggregating the ET
data in time to a rainy season climatology was to obtain a robust pattern that is informative
for model calibration. It is expected that the climatology is more sensitive to calibration
parameters of the hydrological model, whereas ET snapshots at daily or weekly scale
are more linked to climate variability. Similar processing has been reported for related
spatial pattern-oriented calibration studies [3,41]. Alternative satellite-based ET datasets
are readily available [42], but since the motivation of this study is not to assess uncertainties
related to ET we have only processed and utilized a single ET product (MOD16).

https://pyeto.readthedocs.io
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2.4. Model Evaluation

The model performance was evaluated using two multi-component objective functions.
For the temporal evaluation of simulated Q at daily timestep, the Kling-Gupta-Efficiency
(KGE) was applied [43]:

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (1)

where r is the Pearson correlation coefficient between observed and simulated Q, α is the
standard deviation fraction of observed and simulated Q and β is the bias fraction relating
the observed and simulated average Q.

For the spatial pattern evaluation of simulated ET, the Spatial Efficiency metric (SPAEF)
was utilized for the rainy season ET climatology [1,10]:

SPAEF = 1 −
√
(r − 1)2 + (α − 1)2 + (γ − 1)2 (2)

where r is the Pearson correlation coefficient between observed and simulated spatial
patterns of ET, α is the coefficient of variation fraction of observed and simulated ET and
γ quantifies the fraction of the histogram intersection based on the z-scores of observed
and simulated ET. The three SPAEF components are bias-insensitive, which is an important
consideration for a spatial pattern-oriented model evaluation. The magnitude of the
observed spatial patterns may be uncertain, but the data contain valuable spatial pattern
information. Both, KGE and SPAEF have a range from −∞ to the optimum of 1. It is
difficult to formulate generic guidelines for the desired range of SPAEF and KGE since the
benchmark may vary. For example, using the mean of the observation as benchmark would
result in a lower bound of −0.41 for KGE [44] and −0.73 for SPAEF.

2.5. Climate Normalization

We introduce a novel climate normalization framework that aims at removing the
precipitation induced trend that is evident in the spatial patterns of ET in the Senegal
River. In principle, the framework is generic and applicable for alternative variables
as well, for example trends in any spatially distributed hydrological variable driven by
precipitation, temperature, etc. can be analyzed. We formulate a simple function to calculate
the normalized spatial pattern of ET (ETnorm) by subtracting the precipitation induced
trend ( f (Precip)) from the ET observation:

ETnorm = ET − f (Precip), (3)

For the trend function we fitted a 4th degree polynomial function with truncated tails
to model ET based on precipitation as the only input. A polynomial function was chosen
due to its capability of modelling a broad range of non-linear relationships. The coefficient
of determination (R2) between the fitted polynomial trend function and the data is 0.96.
The method is illustrated in Figure 3, where the North-South precipitation gradient that
causes the ET trend is apparent. The upper tail of the ET and precipitation relationship is
flat, suggesting energy limited conditions. The high ET values found for low precipitation
values are located in the western coastal region of the Senegal River basin and are likely
caused by intensive irrigation activities in the delta. The effect of climate normalization
becomes apparent in Figure 3, the original ET pattern is a direct imprint of the precipitation
pattern, whereas the normalized pattern conveys more complexity of the hydrological
processes taking place in the basin. The normalized pattern is normally distributed with
a mean of zero and captures the deviation of the original ET pattern to the fitted trend
model. Positive values are partly correlated with a higher clay content, due to the better
water-holding capacity of clayey soils and LAI is found to be higher for positive values of
normalized ET (not shown).



Remote Sens. 2022, 14, 315 7 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

trend model. Positive values are partly correlated with a higher clay content, due to the 
better water-holding capacity of clayey soils and LAI is found to be higher for positive 
values of normalized ET (not shown). 

For the spatial pattern evaluation of the simulated normalized ET we employed the 
same trend function as applied to normalize observed ET. To accommodate any potential 
bias between the observed ET and the hydrological model, the ET bias of the model is 
added to the trend function before the normalization is applied. 

 
Figure 3. Panel (a) depicts the long-term (2002–2011) average monthly rainy-season (June–Novem-
ber) evapotranspiration based on MOD16A2.006. Panel (b) shows the long-term average monthly 
rainy-season (June–November) precipitation based on CHIPRS 2.0. Panel (c) presents the precipita-
tion normalized rainy-season evapotranspiration. The fitted polynomial model applied for the nor-
malization is shown in panel (d). 

2.6. Calibration Experiments 
Two calibration experiments were performed with the model-independent Ostrich 

optimization software [45] using the ParaPADDS search algorithm. ParaPADDS is a par-
allelized multi-objective Dynamically Dimension Search (DDS) [46] algorithm that identi-
fies a Pareto front of non-dominated optimal solutions, which is particularly useful for 
multi-objective calibrations. The ParaPADDS algorithm was run with the user settings of 
2000 iterations, with 3 parallel runs, a 0.2 perturbation value and the ExactHyperVolu-
meContribution as the selection metric. In this study, two objective functions (OFs) were 
used for the model calibration. Ostrich minimizes any given OF and since KGE and SPAEF 
have an optimal value of 1 we calculated the squared residuals for each of the two OFs. 𝑆𝑅 = (1 − 𝑆𝑃𝐴𝐸𝐹) , (4)

where 𝑆𝑅  represents the squared residuals for the long-term average rainy season ET 
model performance applying SPAEF as OF. For Q, KGE was calculated at four stations 
and here we used the sum of squared residuals. 

Figure 3. Panel (a) depicts the long-term (2002–2011) average monthly rainy-season (June–November)
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tion is shown in panel (d).

For the spatial pattern evaluation of the simulated normalized ET we employed the
same trend function as applied to normalize observed ET. To accommodate any potential
bias between the observed ET and the hydrological model, the ET bias of the model is
added to the trend function before the normalization is applied.

2.6. Calibration Experiments

Two calibration experiments were performed with the model-independent Ostrich
optimization software [45] using the ParaPADDS search algorithm. ParaPADDS is a par-
allelized multi-objective Dynamically Dimension Search (DDS) [46] algorithm that iden-
tifies a Pareto front of non-dominated optimal solutions, which is particularly useful for
multi-objective calibrations. The ParaPADDS algorithm was run with the user settings of
2000 iterations, with 3 parallel runs, a 0.2 perturbation value and the ExactHyperVolume-
Contribution as the selection metric. In this study, two objective functions (OFs) were used
for the model calibration. Ostrich minimizes any given OF and since KGE and SPAEF have
an optimal value of 1 we calculated the squared residuals for each of the two OFs.

SRET = (1 − SPAEF)2, (4)

where SRET represents the squared residuals for the long-term average rainy season ET
model performance applying SPAEF as OF. For Q, KGE was calculated at four stations and
here we used the sum of squared residuals.

SSRQ = ∑4
i (1 − KGEi)

2, (5)



Remote Sens. 2022, 14, 315 8 of 19

where SSRQ represents the sum of squared residuals for the Q performance at four dis-
charge stations using KGE as OF.

We have designed two calibration experiments to investigate the potential benefits of
climate normalization. Both calibrations used SSRQ as objective function. An additional
objective function, Cal1, used SRET based on the original rainy season ET climatology,
whereas Cal2 used SRET based on the normalized rainy season ET climatology. In the
SPAEF formulation, α is the coefficient of determination fraction. To avoid division by
zero for the coefficient of determination, SPAEF for the normalized patterns was based
on the fraction of standard deviations for the α component, as opposed to the fraction of
coefficients of determination Equation (2). This is justifiable, because normalization will
result in spatial patterns with a mean of zero.

Prior to calibration, we conducted a comprehensive sensitivity analysis to select the
calibration parameters. The sensitivity analysis was based on a one-at-a-time (OAT) per-
turbation of model parameters and the change in OF was recorded to assess sensitivity.
In order to overcome the limitation of the OAT perturbation, which only captures local
sensitivity, we designed an ensemble approach taking multiple initial parameter sets into
consideration [47]. We selected 8 behavioral initial parameter sets for the OAT sensitivity
analysis, i.e., KGE for all four Q stations and SPAEF for the original ET pattern greater
than 0.33 as well as a positive SPAEF for the normalized ET pattern. The behavioral
parameter sets were obtained from a Latin Hypercube Sampling (LHS) of 300 initial pa-
rameter sets. The flow chart in Figure 4 provides an overview of the modelling steps and
calibration experiments.
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Figure 4. Flow chart of the conducted modelling work and calibration experiments.

3. Results
3.1. Sensitivity Analysis

The results of the sensitivity analysis are based on the eight behavioral parameter
sets that were employed in a local OAT sensitivity analysis. The sensitivity for a given
parameter perturbation was recorded for the three defined OFs, namely KGE at four
discharge stations, and SPAEF for the original and the normalized rainy season ET pattern.
Each set of sensitivities was normalized per OF by the maximum to range between 0 and 1.
In total, 21 out of the 45 parameters were selected for subsequent model calibration and
the sensitivities for those parameters are shown in Figure 5. The 21 parameters are stated
in Table 1.
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Table 1. The 21 mHM parameters selected for calibration and their calibrated values for the featured
runs of Cal1 and Cal2. Pedo transfer function is abbreviated with ptf.

Parameter Name Description Cal1 Cal2

canintfact canopy interception factor 0.110 0.120
ptflowconst ptf saturated water content: constant 0.876 0.700
ptflowclay ptf saturated water content: coefficient clay content 0.002 0.001
ptflowdb ptf saturated water content: coefficient bulk density 0.255 0.159

ptfhigconst ptf saturated water content: constant 0.749 0.795
ptfhigdb ptf saturated water content: coefficient bulk density 0.100 0.100

ptfksconst ptf hydraulic conductivity: constant 0.574 0.600
ptfkssand ptf hydraulic conductivity: coefficient sand content 0.012 0.013
ptfksclay ptf hydraulic conductivity: coefficient clay content 0.015 0.015

rotfrcoffor root fraction coefficient forest 0.990 0.990
rotfrcofsa root fraction coefficient sand 0.001 0.001
rotfrcofcl root fraction coefficient clay 0.995 0.993

fcmin field capacity scaling: minimum 0.108 0.044
fcdelta field capacity scaling: range 0.300 0.496
jarvis jarvis soil moisture threshold 0.996 0.994

infshapef infiltration shape factor 1.610 1.410
pet_af PET scaling: minimum forest 0.504 0.500
pet_ap PET scaling: minimum permeable 0.552 0.516
pet_b PET scaling: range 2.190 2.880
pet_c PET scaling: shape 0.154 0.145

With respect to the different OFs, different parameters were identified as sensitive.
Discharge is controlled by the root fraction parameter for forest (rotfrcoffore) and the soil
type dependent root fraction parameter (rotfrcofcl). These parameters control the vertical
distribution of roots and thereby they affect the water balance, i.e., the partitioning into soil
water available for transpiration and runoff generation. Furthermore, two pedo transfer
function parameters that control the saturated water content (ptflowconst and ptflowdb)
are identified as being sensitive for the simulation of discharge. The spatial pattern of
ET is sensitive to the root fraction parameters as well as for the PET scaling function that
estimates a spatially distributed crop coefficient. The most sensitive parameters are the
maximum and minimum of the crop coefficient (pet_b and pet_a, respectively), as well as
the shape of the exponential function (pet_c). The sensitivities for the normalized ET pattern
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diverge with respect to the original ET pattern. Here, the pedo transfer parameters, as well
as the PET scaling function, are more sensitive and the forest root fraction (rotfrcoffore)
is less sensitive. The variability of the ensemble is apparent for some, but not for all
parameters. For example, the soil type dependent root fraction parameter (rotfrcofcl) is the
most sensitive parameter for all eight initial parameter sets for the normalized ET patterns,
whereas the sensitive for forest root fraction (rotfrcoffore) parameter varies between the
eight initial parameter sets for SPAEF calculated for the original ET patterns.

3.2. Pareto Front

The results of the two calibration experiments are presented in 6. Each calibration
comprised 2000 model runs and the non-dominated runs, which mark the pareto front,
were identified by Ostrich. The characteristic of a non-dominated run is that one OF cannot
be improved without compromising the other. Ostrich does not provide the user with an
optimal run, instead it is up to the user to study the tradeoff between the applied OFs to
select a parameter set or an ensemble for subsequent model application. The distribution
of runs along the pareto front contains an element of randomness as it is a result of the
ParaPADDS search algorithm. Both calibrations depict a clear pareto front describing the
tradeoff between the temporal discharge performance and the spatial ET performance. The
SPAEF residuals for the normalized ET patterns are larger than for the original ET patterns
which indicates that the simulated patterns after normalization are more dissimilar to the
normalized target pattern than the original ET patterns. Opposed to this, the discharge
performance is comparable between the two calibrations.

In order to investigate the two calibration experiments in more detail, we have selected
a subset of the non-dominated runs. This subset contained balanced runs which are located
around the optimum, disregarding the tails of the pareto front which focus solely on a
single OF. This selection results in what is referred to as the balanced sets in Figure 6a,b.
For the selection, the tail of high KGE residuals was truncated by the median KGE plus one
standard deviation and the for the SPAEF residuals, values that exceed median SPAEF plus
three standard deviations were excluded. For each calibration, a single run was selected as
a featured run in order to visualize simulation results and the parameter sets of the featured
runs of Cal1 and Cal2 are stated in Table 1.

For Cal1, the amount of selected balanced runs was 28, and for Cal2, 42 runs were
selected as balanced runs. The deviation is simply a result of how ParaPADDS samples
the parameter space and should not be understood as a degree of robustness of the two
calibrations. Table 2 provides an overview of the median and standard deviation of the
applied OFs computed for the balanced runs of Cal1 and Cal2. The discharge performance
is comparable with a slight advantage of Cal1. The spatial pattern performance of ET,
expressed as SPAEF, is also comparable between the calibrations even though Cal2 is not
explicitly calibrated against the original ET patterns. Differences between the calibrations
become apparent for the normalized ET performance. Here, Cal2, which is calibrated
against the normalized patterns, stands out with an improvement in SPAEF by 0.1 with
respect to Cal1. The three SPAEF components are also given in Table 2. For the original
patterns, correlation is the dominating component which is close to optimal in both cali-
brations. Here, the variability component was simulated poorest by both calibrations. For
the normalized ET evaluation, the scores of the individual SPAEF components varies more
distinctly. In this case, the variability component was simulated best by both calibrations,
whereas the correlation has the lowest scores and also the most apparent difference between
Cal1 and Cal2.
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Figure 6. Calibration results for Cal1 (panel (a)) and Cal2 (panel (b)). Each multi-objective calibration
features 2000 runs (gray) of which the non-dominated runs (orange) were identified. The balanced
runs (blue) represent an ensemble that is located around the pareto optimum. A single featured run
(green) for both calibrations was selected to present simulation results.

Table 2. Summary of the calibration results taking only the balanced runs into consideration. The
number of runs that are contained in the ensemble varies between the two calibrations and median
and standard deviation (std) of the ensembles are presented. The three components of the SPAEF are
stated: Correlation (r), variability (α) and distribution (β).

Q ET Normalized ET

KGE SPAEF r α β SPAEF r α β

Cal1 n = 28
median 0.73 0.49 0.97 0.56 0.74 0.23 0.28 1.07 0.75

std 0.05 0.02 0.00 0.01 0.01 0.08 0.05 0.12 0.04

Cal2 n = 42
median 0.70 0.52 0.97 0.58 0.75 0.33 0.37 0.99 0.78

std 0.05 0.02 0.00 0.01 0.01 0.05 0.04 0.07 0.02

3.3. Evapotranspiration Evaluation

In order to further evaluate the simulated pattern of ET, Figure 7 elucidates the
statistics provided in Table 2 in more detail. The balanced runs of Cal1 and Cal2 are
cross-evaluated, i.e., the balanced runs obtained from Cal2 are also evaluated against the
original ET patterns using SPAEF. Both calibrations show similar performance for the
original ET pattern performance, in spite of the fact that Cal2 is only calibrated against the
normalized pattern. The correlation component is close to one with a minimal variability.
Cal1 and Cal2 show similar performance based on all three SPAEF components for the
evaluation of the original ET pattern. For the normalized ET evaluation, Cal2 finds more
accurate solutions (i.e., closer to 1) than Cal1. This results in an overall increase in SPAEF.
Opposed to the original ET pattern evaluation, the normalized evaluation is less dominated
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by the correlation term and the inter-quantile range for each metric of the balanced runs
is also larger.
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The climate normalization of the simulated ET data is visualized in Figure 8. The
proposed normalization framework accepts any potential bias inherent to the simulation.
Thus, the polynomial model fitted to the observed ET data is shifted, taking into account
the simulation bias. In our case, the model has a positive bias of around 30 mm mth−1. The
simulation captures the flattening of the relationship between precipitation and ET once
energy-limited conditions are present. The observed flattening at the dry end, which is
evident in the MOD16 data, is not captured accordingly by the model and instead simulated
ET continuous to decrease with decreasing precipitation. Furthermore, the high ET rates
found at the dry end of the plot in Figure 3, which can be attributed to irrigation, are not
captured since irrigation is not among the described processes in mHM. Both Table 2 and
Figure 7 underline that the variability component is captured quite accurately by Cal1 and
Cal2 for the normalized pattern. Basically, this component describes the deviation from
the trend line and by taking the model bias into account, the variability can be adequately
matched by the model despite any potential bias.

The simulated spatial patterns of ET obtained from the balanced runs from Cal1 and
Cal2 with respect to the observed rainy season pattern (MOD16) are shown in Figure 9.
Despite the notable bias, the original pattern of Cal1 and Cal2 both reflect the north-south
trend accordingly. Since the calibration utilizes a bias insensitive objective function, i.e.,
SPAEF, the simulation bias in ET is acceptable. The SPAEF-based evaluation attests a
slightly better pattern performance to Cal2 than Cal1. The normalized rainy season ET
pattern contains more complexity, and it becomes obviously more challenging to achieve a
satisfying pattern performance. Based on the SPAEF evaluation Cal2 is more accurate than
Cal1 in capturing the normalized ET pattern. Visually, there lacks resemblance between
the observed normalized pattern for both calibrations. Some similarity is notable, e.g.,
negative values in the northern part, central part and eastern part of the Senegal River
basin. However, many details of the spatial pattern are not captured by the model.
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Figure 9. Reference ET (MOD16) (a,b) and simulation results (c–f) of the featured runs of Cal1 and
Cal2. Top row presents the long-term rainy-season ET climatology whereas the bottom row depicts
the precipitation normalized climatology. The spatial pattern evaluation (SPAEF) with respect to the
reference is given for the panels showing simulation results (c–f).

3.4. Discharge Evaluation

Figure 10 presents the discharge evaluation at the four gauging stations using contin-
uous daily observations over a 10-year period. The simulated Q was obtained from the
featured runs (Figure 6) and in terms of KGE, Cal1 tends to perform better or at least as
good as Cal2 at all four stations. The Gourbassa station obtained the highest KGE scores
for both calibration experiments, whereas the Dakka stations showed the poorest results.
For the latter, the model failed to reproduce the delayed flows towards the end of the rainy
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season. Overall, interannual variability is captured by the model since magnitude of the
high flows follows the observations.
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Figure 10. Simulation results of the featured runs of Cal1 and Cal2. Discharge is evaluated for the
entire 10-year simulation period at the 4 stations used in calibration. The KGE scores are given in the
title of each panel. The left panel shows timeseries based on daily values and the right panel shows
the flow duration curves.

4. Discussion
4.1. Normalization Method

The proposed grid-based normalization method is based on a fitted polynomial trend
model. The deviation of ET with respect to the trend model provides information on to
what extent ET, at a given location with a certain precipitation input, is higher or lower
than an expected ET flux derived from the trend model. In principle, this information is
expected to relate to physical basin properties, i.e., better water holding capacity in clayey
soils resulting in positive normalized values and sparse vegetation resulting in negative
normalized values as a consequence of reduced transpiration and increased surface runoff
or recharge. This process heterogeneity can be related to model parameters that are optimiz-
able through calibration. An alternative precipitation normalization strategy is to simply
calculate the evaporation index by dividing ET with precipitation [21]. This index provides
information on the degree of water limitation and precipitation partitioning of a grid cell,
but does not reflect any potential non-linearity contained in the relationship between ET
and precipitation. Further, a potential bias in the simulation may pose a challenge in the
calculation and comparison between an observed and a simulated evaporation index.

In the proposed normalization, the simulation bias is taken into account by shifting
the trend model up or down based on the sign and magnitude of the bias. This works
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effectively (Figure 8) and falls in line with the general notion of bias-insensitivity for spatial
pattern-oriented model evaluations [10,13].

An advantage of the proposed normalization method is that, in principle, the method
is applicable for different variables causing a gradient associated to an observed spatial pat-
tern. This could for example be PET or air temperature when evaluating the spatial pattern
performance of a large-scale basin with a distinct climate gradient or a smaller basin with a
distinct topography gradient. The topography and air temperature normalization would
especially be relevant for LST evaluations whereas PET normalization would be useful
for ET evaluations. We consider normalization of remotely sensed SM as an alternative
prospect since gradients in SM, just like ET, are often controlled by precipitation or other
climate variables [12]. In basins with more complex gradients, multi-variate trend models
could also be an option for the normalization.

The Senegal River basin, with its distinct north-south climate gradient, was a perfect
testbed for developing the proposed normalization technique. Future research should
investigate basins with gradients driven by alternative processes.

4.2. Calibration Strategy

The Pareto fronts obtained by the ParaPADDS algorithm showed well-defined trade-
offs between Q and ET performance for both calibration experiments. In theory, all Pareto
optimal solutions (non-dominated) can be considered candidates for the “best fit” param-
eter set. In this study, we tried to avoid identifying a single run as the optimal solution,
although “featured runs” were selected for visualization purposes. Instead, we focused on
selecting a subset of the full Pareto front containing balanced solutions. This subset was
treated as an ensemble and the statistics of the OFs were subsequently analyzed.

The multi-component SPAEF metric allows the spatial pattern performance of a model
to be interpreted in more detail. For example, we found that Cal1 was largely dominated
by correlation, because the allocation of high and low ET was constrained by the precip-
itation input and thus, the effect of model parameters was largely overshadowed. The
correlation component of SPAEF in Cal2 was largely reduced since the normalized pattern
was not controlled by the precipitation forcing and instead the effect of model parameters
is expected to be more prominent. The Q performance can be regarded as comparable
between the two calibration experiments, even though Cal1 is slightly in favor with respect
to the balanced runs (Table 2). It was not anticipated that the balanced runs of Cal2 resulted
in a better spatial pattern performance for the original ET pattern than Cal1. However,
the slightly reduced Q performance of the balanced runs of Cal2 may explain this. In
general terms, this may also relate to the way the balanced runs were selected and how the
calibration evolved.

Any potential bias inherent to the selected ET reference dataset is addressed in multiple
ways. First, the three components of the SPAEF metric are bias insensitive which puts
sole focus on the spatial pattern evaluation, because our credibility of the magnitude of
the pattern contained in remotely sensed ET datasets is low, but we regard the spatial
pattern information as more trustworthy [15]. Second, the SPAEF is calculated based on
simulated and observed log-term average climatologies of ET, which are in principle less
uncertain, because uncertainties at monthly or sub-monthly timescales due to uncertain
climate variability are alleviated. Third, the proposed climate normalization strategy takes
the simulation bias into account by adding the bias to the trend model.

Even though the improvement with respect to the normalized pattern performance
of Cal2 (SPAEF = 0.33) in comparison to Cal1 (SPAEF = 0.23) is clear, i.e., a 30% decrease
going from Cal2 to Cal1, the visual assessment of the featured runs in Figure 9 is difficult
to interpret. The normalized pattern from Cal2 possesses more variability, especially in
the southern part of the Senegal River basin, which resulted in an improved SPAEF score
with respect to Cal1. The incapacity of the model to further improve the normalized ET
pattern performance through calibration may related to the quality of the input data, i.e.,
spatially distributed soil data or vegetation data, or a limited flexibility of the applied
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parametrization scheme. Moreover, the reference ET dataset, which was derived from
MODIS for the purpose of this study, may be inadequate and investigating alternative
sources of ET could be an additional way to proceed.

4.3. Limitations

A limitation of the normalization strategy is that manual fitting of the polynomial
trend model is required. This may pose problems when calibrating multiple basins, utiliz-
ing alternative ET sources, or just evaluating a different time period, because an individual
trend model has to be fitted for each normalization. A more general limitation of the study
is that only a single combination of precipitation and ET sources have been applied in the
calibration. It has been highlighted that the quality of ET products varies greatly across
Africa [42] and given the low density of ground-truth flux towers it remains a challenge
to identify a single most useful product. The same holds for precipitation [48]. Ideally,
the related uncertainties are explored in detail by an ensemble approach where combi-
nations of alternative precipitation and evapotranspiration data sources are utilized in a
comprehensive calibration experiment [31,32]. Additionally, a multi-model ensemble can
be implemented to explore uncertainties associated to model structure [49,50] or even com-
bining the multi-model approach with multi forcing datasets [51]. However, since the focus
of this study was to initially test the climate normalization strategy, such a comprehensive
calibration experiment was beyond the scope. The robustness of the calibration experiments
and the effectiveness of the proposed normalization strategy should be investigated in
more detail in future studies.

Along these lines, the usefulness of a normalized spatial pattern of a remotely sensed
hydrological variable depends on the quality of the data. In this study, the quality of the
precipitation data is essential, and precipitation uncertainties may introduce errors in the
normalized pattern which may hamper the calibration. Nevertheless, the precipitation
utilized in the normalization is the same as being used as forcing in the hydrological model.
Therefore, artefacts in the normalization caused by erroneous precipitation data may be
compensated by the hydrological model which uses the same data as input.

With respect to the selected satellite-based ET product, MOD16, it must be highlighted
that by choosing the MODIS ET product, we do not imply that it is the most suitable for
the Senegal River basin. There are numerous alternative ET datasets readily available and
as shown, for Africa, their accuracy varies greatly [42]. It was found that, based on the
water balance approach (precipitation minus runoff) annual ET for the Senegal River basin
is below 500 m yr−1 and the bias of nine studied ET products ranges from −125 mm to
+200 mm. However, since we apply a bias insensitive spatial pattern objective function
(SPAEF) the magnitude of the satellite-based ET product is less crucial and the accuracy of
the spatial pattern, which is targeted by the chosen objective function, is difficult to assess.

5. Conclusions

Recent advances of spatial pattern-oriented model evaluations utilizing satellite remote
sensing data have motivated us to investigate the Senegal River basin, a basin dominated
by a strong climate gradient, in more detail. We conducted two calibration experiments
using remotely sensed ET patterns in an original and precipitation normalized form as
objective functions to test our hypothesis that climate gradients overshadow the sensitivity
of model parameters on the simulated spatial patterns. We can draw the following main
conclusions from our work:

(1) The multi-objective calibration of the Senegal River basin resulted in a well-defined
Pareto front that highlighted tradeoffs between the temporal Q performance at four
stations and the spatial pattern performance for long-term average rainy-season ET.

(2) Climate normalizing of ET was successfully implemented using a polynomial trend
model linking the distinct north-south gradient in precipitation to the spatial pattern
of ET. The normalized spatial pattern conveys more complexity, i.e., hydrological
processes related to soil and vegetation variability, than the original spatial pattern.
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(3) The sensitivity of model parameters varied between the original ET pattern and the
normalized ET pattern which supported the conclusion that the normalized pattern
contained alternative information related to different processes.

(4) Calibrating against climate normalized patterns did not compromise the performance
of the original patterns and a very comparable performance was obtained between
the two calibration experiments for the original ET pattern. However, the spatial
pattern performance for the normalized pattern increased from SPAEF = 0.23 in Cal1
to SPAEF = 0.33 in Cal2.
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