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Abstract: Three-dimensional (3D) synthetic aperture radar (SAR) imaging provides complete 3D
spatial information, which has been used in environmental monitoring in recent years. Compared
with matched filtering (MF) algorithms, the regularization technique can improve image quality.
However, due to the substantial computational cost, the existing observation-matrix-based sparse
imaging algorithm is difficult to apply to large-scene and 3D reconstructions. Therefore, in this
paper, novel 3D sparse reconstruction algorithms with generalized Lq-regularization are proposed.
First, we combine majorization–minimization (MM) and L1 regularization (MM-L1) to improve SAR
image quality. Next, we combine MM and L1/2 regularization (MM-L1/2) to achieve high-quality
3D images. Then, we present the algorithm which combines MM and L0 regularization (MM-L0) to
obtain 3D images. Finally, we present a generalized MM-Lq algorithm (GMM-Lq) for sparse SAR
imaging problems with arbitrary q (0 ≤ q ≤ 1) values. The proposed algorithm can improve the
performance of 3D SAR images, compared with existing regularization techniques, and effectively
reduce the amount of calculation needed. Additionally, the reconstructed complex image retains
the phase information, which makes the reconstructed SAR image still suitable for interferometry
applications. Simulation and experimental results verify the effectiveness of the algorithms.

Keywords: three-dimensional (3D) sparse imaging; synthetic aperture radar (SAR); majorization–
minimization (MM); Lq-regularization

1. Introduction

Synthetic aperture radar (SAR) is an active all-day, all-weather microwave imaging
technology that is widely used in remote sensing [1,2], geographic disaster detection [3],
security inspection [4], and aircraft stealth performance testing [5]. However, for conven-
tional two-dimensional (2D) SAR imaging, the real three-dimensional (3D) imaging scene
is projected onto the 2D range–azimuth plane, prone to shadow effects and height direction
aliasing. These defects seriously affect subsequent image interpretation and application.
Three-dimensional SAR imaging has characteristics of high imaging accuracy and com-
plete scene spatial information and can overcome the shadow effect, which is a research
hotspot [6–8]. Generally, MF methods have high computational efficiency, but they are
seriously affected by noise and sidelobes, which restricts the application scenarios [9].

In recent years, compressive sensing (CS) has been applied to many fields, such as
medical imaging [10–12] and geographic remote sensing [13–15].

In 2001, M. Cetin et al. [16] introduced the regularization method into SAR imaging
for the first time, realized target image feature enhancement, and obtained SAR images
with higher resolution than the traditional method. In 2007, Bhattacharya et al. [17] pro-
posed using the CS framework to quickly compress SAR raw data to meet the computing
requirements of spaceborne processing. Then, G. Rilling et al. [18] established a mixed
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sparse model to significantly improve image quality. After that, sparse reconstruction
and CS have been widely used in radar image processing, such as SAR tomography [19],
inverse synthetic aperture radar (ISAR) [20], and multiple-input multiple-output (MIMO)
radar [21]. Austin et al. [22] proposed a wide-angle 3D image reconstruction method based
on signal domain reconstruction sparsity to improve the limitations of sparse measurement.
They applied the sparse signal processing method to the 3D SAR imaging of multicircles
and arbitrary flight paths. X. Zhu et al. [23] introduced a regularization method into to-
mographic SAR imaging, proposed a model selection and sparse reconstruction algorithm
based on L1 norm minimization, and realized tomographic 3D spaceborne SAR imaging.
W. Z et al. [24] proposed a generalized iterated shrinkage algorithm (GISA) for non-convex
sparse coding. Glentis et al. [25] proposed a strategy to further reduce the computational
complexity of the algorithm, including the piece-wise iterative adaptive approach (IAA)
method and approximate quasi-Newton technique. Yang. Z et al. [26] combined CS with a
range migration algorithm (RMA) and optimized the L1 norm to restore satisfactory 3D
SAR images and reduce the workload of data acquisition. Compared with the MF method,
the sparse reconstruction method can significantly improve image quality, such as reduc-
ing sidelobes and suppressing noise. However, the conventional sparse reconstruction
method based on regularization needs to transform the echo data matrix into vectors to
reconstruct the observation scene, which is time-consuming and challenging for large-scene
and 3D imaging. Sun et al. [27] outlined the majorization–minimization (MM) algorithm
framework, which can provide guidance for deriving problem-driven algorithms at low
computational costs. Fang et al. [28] proposed a new 2D CS-SAR imaging model, which
is based on the approximate SAR observations derived from the inverse of the focusing
process. For a large scene 2D SAR image, Bi et al. [29,30] proposed a sparse reconstruction
method based on 2D satellite images, that significantly reduced the computational com-
plexity of 2D large-scene sparse reconstructions. To reduce the computational complexity
of sparse reconstructions of 3D SAR images, novel sparse reconstruction algorithms com-
bining the majorization–minimization (MM) and regularization techniques is proposed in
this paper.

The main contributions of this paper are as follows. Firstly, we present a novel 3D
sparse SAR imaging algorithm, which combines MM and L1 regularization (MM-L1).
Next, due to L1 regularization generally leading to bias effects [31], we developed 3D
MM-L1/2 that combines MM and L1/2 regularization. After that, the algorithm combining
majorization–minimization (MM) and L0 regularization (MM-L0) is presented. The three
algorithms above are used for some specific values of q. Therefore, a generalized MM-
Lq algorithm (GMM-Lq) is proposed for sparse SAR imaging with arbitrary q(0 ≤ q ≤ 1)
values. Compared with MF, the proposed algorithms can effectively improve the quality of
SAR images. Compared with conventional sparse reconstruction methods based on the
observation matrix, the algorithm in this paper reduces the calculation time and retains the
phase information (PI) of the image, which allows the reconstructed image to be applied to
the fields requiring phase information.

The remaining content of this article is organized as follows. Section 2 describes
the details of the array SAR observation model and introduces the observation-matrix-
based sparse SAR reconstruction model. In Section 3, taking the observation-matrix-
based image model as a reference, MM-L1, MM-L1/2, MM-L0, and GMM-Lq are derived
through combining the MM framework and regularization technique. In Section 4, we
experimentally validate the proposed algorithm and conduct a performance analysis. In
Section 5, we further discuss the characteristics of the proposed algorithm. Finally, the
article is concluded in Section 6.

2. Array SAR Observation Model and Observation-Matrix-Based Sparse SAR
Reconstruction Model

This section focuses on the array SAR system observation model and the observation-
matrix-based SAR reconstruction model.
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2.1. Array SAR Observation Model

Figure 1 presents the array SAR system. A rectangular coordinate system represents
the geometric relationship of imaging. The target scene coordinate system is established
with the center of target scene O’ as the coordinate origin. The observation scene coordinate
system is established with O as the coordinate origin. The z-direction is the elevation
direction, the x-direction is the cross-track direction, and the y-direction is the along-track
direction [32]. In this paper, the transmitting signal of the imaging system is a stepped-
frequency (SF) signal.

Figure 1. The geometric relationship of target observation.

The expression of the SF signal is as follows:

s(t) =
N−1
∑

n=1
u(t− nT1)ej2π fnt where fn = f0 + n∆ f is the temporal frequency,

n = 0, 1, 2, . . . , N − 1, ∆ f is the increment of the temporal frequency, N = Bw
∆ f , f0 is

the start temporal frequency, and Bw denotes the bandwidth of the signal. u(t− nT1) can
be expressed as

u(t− nT1) =

{
1, 0 < t− nT1 < T2;
0, otherwise;

(1)

where T2 is pulse width, and T1 is the pulse repetition period.
The transmitted signal enters the free space through the transmitting antenna and

interacts with the scattering point of the target to generate the scattered electromagnetic
wave. After the receiving antenna receives the transmitted signal, the echo signal of the
scattering point rk at the antenna position (m, p) is obtained.

sr(l, m, p) =
N−1

∑
n=1

δ(rk)u(t(l)− nT1 − τ(m, p; rk))ej2π fn [t(l)−τ(m,p;rk)], (2)

where δ(rk) is the scattering coefficient of the scattering point rk.
The sampling number in the elevation, along-track and cross-track directions of an

echo signal are L, M, and P, respectively. After discretizing the imaging space, Nx, Ny,
and Nz become the grid numbers of the whole scene in the range, azimuth, and ele-
vation directions, respectively. The total number of 3D discrete imaging space grids is
Ms = Nx · Ny · Nz. According to scattering center theory [5], 3D SAR imaging can be
regarded as a linear observation system. Hence, the echo of the whole scene at the antenna
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position (m, p) can be expressed as the linear superposition of the echo of all scattering
points in the imaging scene.

s(l, m, p) =
Ms

∑
k=1

δ(rk)
N−1

∑
n=1

u(t(l)− nT1 − τ(m, p; rk))ej2π fn [t(l)−τ(m,p;rk)] (3)

1 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ p ≤ P, 1 ≤ k ≤ Ms, (4)

where τ(m, p; rk) is the time delay from scattering point rk to array element (m, p).

2.2. The Observation-Matrix-Based Sparse SAR Reconstruction Model

Let vector xs ∈ CMs×1 be the scattering coefficient vector of all the grid cells in the 3D
imaging space:

xs = {δ(rk)}, k = 1, 2, · · ·, Ms. (5)

The time delay phase measurement vector as(l, m, p) ∈ CMs×1 corresponding to the
echo s(l, m, p) is

as(l, m, p) = {exp(j2π fn[t(l)− τ(m, p; rk)])}. (6)

Thus, the echo signal can be expressed as the vector form

s(l, m, p) = as(l, m, p)Txs. (7)

The vector form of all echoes of linear array SAR is

y = {s(l, m, p)}, l = 1, 2, · · ·, L, m = 1, 2, · · ·, M, p = 1, 2, · · ·, P. (8)

The sparse SAR imaging model based on fully sampled raw data can be expressed as

y = Ax + ns, (9)

where A is the measurement matrix of the 3D SAR echo, and ns is the noise vector. After
downsampling the echo data, the imaging model can be expressed as

yD = ADy = ADAx + ns = Rx + ns, (10)

where AD is the downsampling matrix, and R is the SAR imaging measurement matrix.
According to the model in (10), the sparse reconstruction of the observation scene is

acquired by solving the complex Lq (0 ≤ q ≤ 1) norm-regularization problem of (11)

ySs = min
x

{
‖yD − Rx‖2

2 + λ‖x‖q
q

}
, (11)

where λ represents the regularization parameter.

2.3. Sparse Reconstruction Combining MM and Regularization

The optimization problem (11) is challenging to solve and has a high computational
cost. Therefore, we use the MM framework to construct a surrogate function [27]. If we let
f (x) = ‖yD − Rx‖2, the surrogate function is as follows:

_

f
(

x, xi−1
)
= f (xi−1) +

〈
x− xi−1, ∇ f (xi−1)

〉
+ (1/2µ)

∥∥∥x− xi−1
∥∥∥2

2
+ λ‖x‖q

q, (12)

where µ ∈ (0, 1/L) is step size, λ > 0 is regularization parameters, and L is the Lipschitz
constant of the gradient ∇ f .
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For any x, the surrogate function meets the following conditions :

_

f
(
x, xi−1) ≥ f (x)

_

f
(
xi−1, xi−1) = f (xi−1).

(13)

Then, we update x in the minimization step xi ∈ arg min
_

f (x), and we can obtain the
following relationship:

f (xi) ≤
_

f
(

xi, xi−1
)
≤

_

f
(

xi−1, xi−1
)
= f (xi−1). (14)

By simplifying the surrogate function and ignoring the constant term, (15) is obtained

_

f
(

x, xi−1
)
= (1/2µ)

∥∥∥x−
(

xi−1 − µ∇ f (xi−1)
)∥∥∥2

2
+ λ‖x‖q

q. (15)

For different regularizations, different proximal regularization operators are used to
obtain xi:

ySs = xi = τq

(
xi−1 − µ∇ f (xi−1); µλ(i)

)
, (16)

where τq(; ) is the proximal regularization operator, which is described in detail in Section 3.

3. The Sparse Reconstruction Method Combining MM and Lq Regularization

In this section, we introduce the proposed sparse reconstruction method based on
MM and Lq regularization. First, we introduce MM-L1. Then, due to the fact taht L1
regularization often introduces extra bias in estimations [31], MM-L1/2 is introduced. Next,
MM-L0 is presented. Finally, GMM-Lq is also presented.

3.1. The Sparse Reconstruction Method Combining MM and L1 Regularization

The L1 regularization problem can be seen as being equivalent to the convex quadratic
optimization problem, so it can be very effectively solved. L1 regularization is widely used
to solve the sparsity problem [28]. Therefore, we derived 3D sparse SAR imaging methods
combining MM framework and L1 regularization.

The full sampling SAR imaging model based on the image matrix operation can be
expressed as [30]

Y = WX + N, (17)

where Y is the echo data matrix, W is the system observation matrix, X is the backscattering
coefficient matrix of the observation scene, and N is the noise matrix. After downsampling
the echo data, the imaging model can be expressed as

YD = GY = GWX + N = HX + N, (18)

where G is the downsampling matrix, H is the SAR imaging measurement matrix, and N is
the noise matrix.

For the model of (18), the reconstruction of the observation scene can be obtained by
solving (19):

YSp = min
X

{
‖YD −HX‖2

F + λ‖X‖1

}
, (19)

where YSp is the reconstructed backscattered coefficient of X, ‖·‖F is the Frobenius norm of
a matrix, and λ represents the regularization parameter. However, the observation matrix
H cannot be directly constructed because of the range-array coupling of echo data. The
method introduced in Section 2.2 is an alternative, but its computational complexity is huge
for 3D scene reconstructions. Therefore, we define the inverse of MF imaging procedure as
T(·) = M−1(·).
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If we let M(·) denote the MF imaging process, then:

YMF = M(YD) = M(HX), (20)

where YMF represents the complex image data based on MF, and X represents the scattering
distribution of the observation scene, YMF is always the approximate value of X due to the
existence of sidelobe and noise, and MH ≈ I [28].

T(X) = M−1(X) ≈ HX (21)

After MF processing (18), we obtain

M(Y) ≈ M(T(X)) + M(N)
YMF ≈ X + NM.

(22)

After that, we can reconstruct the imaging by solving (23)

YSR = min
X

{
‖YMF − X‖2

F + λ‖X‖1

}
, (23)

where YSR is the recovery result of X, and ‖·‖F is the Frobenius norm of a matrix.
If we let F(X) = ‖YMF − X‖2

F; we can then construct the surrogate function using the
MM idea for question (23).

_

F
(

X, Xi−1
)
= (1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖1. (24)

The imaging scene is reconstructed by solving the following optimization problem:

YSR = min
X

{
(1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖1

}
. (25)

The proximal operator for L1 regularization is used to solve (24):

YSR = Xi = τ1

(
Xi−1 − µ∇F(Xi−1); µλ(i)

)
, (26)

where τ1(; ) is the proximal regular operator for L1 regularization.
The procedure of MM-L1 is shown in Algorithm 1, which is used to solve the opti-

mization problem of (25) to obtain the reconstructed 3D SAR image.∣∣∣Y(i)
SS

∣∣∣
k+1

is the (k + 1)th largest amplitude element of image
∣∣∣Y(i)

SS

∣∣∣, µ is the step size, the

parameter k denotes the scene sparsity, and τ1

(
Y(i)

SS; µλ(i)
)

is the proximal regular operator
for L1 regularization, which is defined as follows

τ1

(
Y(i)

SS; µλ(i)
)
= sign(Y(i)

SS)max(
∣∣∣Y(i)

SS

∣∣∣− µλ(i), 0). (27)

3.2. Sparse Reconstruction Method Combining MM and L1/2 Regularization

When q = 1/2, the sparse reconstruction of the scene is realized by solving (28):

YSR = min
X

{
‖YMF − X‖2

F + λ‖X‖1/2
1/2

}
. (28)

We reconstructed the scene through the surrogate function and proximal regular
operator for L1/2 regularization [31]. The surrogate function was as follows:

_

F
(

X, Xi−1
)
= (1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖1/2

1/2. (29)
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Algorithm 1 The procedure of MM-L1

Input: 3D complex image data YMF; Error parameter ε; Step size µ; Maximum number of
iterations Imax; Reconstruction image Y(0)

S = 0.
While 1 ≤ i ≤ Imax and Rs > ε do

t(i) = 0.5
(

1 +
√

1 + 4t(i−1)2
)

Y(i)
SS = µQ(i−1) + Y(i−1)

S + t(i−1)−1
t(i)

(
Y(i−1)

S − Y(i−2)
S

)
λ(i) =

∣∣∣Y(i)
SS

∣∣∣
k+1

/µ

Q(i) = YMF − Y(i−1)
S

Y(i)
S = τ1

(
Y(i)

SS; µλ(i)
)

Rs =
∥∥∥Y(i)

S − Y(i−1)
S

∥∥∥
F

µ = µ/2

i = i + 1
End While

Output: Sparse reconstruction image without PI reservation YSR = Y(i)
S ; Sparse reconstruc-

tion image with PI preserved YSS = Y(i)
SS.

After this, the imaging scene was reconstructed by solving the following optimiza-
tion problem:

YSR = min
X

{
(1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖1/2

}
. (30)

The proximal operator is used to solve (30):

YSR = Xi = τ1/2

(
Xi−1 − µ∇F(Xi−1); µλ(i)

)
, (31)

where τ1/2(; ) is the proximal regular operator for L1/2 regularization.
To effectively and efficiently obtain 3D images, we adopted the MM-L1/2 algorithm.

The detailed procedure of MM-L1/2 is shown in Algorithm 2.

τ1/2

(
Y(i)

SS; µλ(i)
)

is defined as follows:

τ1/2

(
Y(i)

SS; µλ(i)
)
=

{
g
(

Y(i)
SS; µλ(i)

)
,
∣∣∣Y(i)

SS

∣∣∣ > (54)1/3
(

µλ(i)
)2/3

/4
0, otherwise,

(32)

where g
(

Y(i)
SS; µλ(i)

)
is defined as follows:

g
(

Y(i)
SS; µλ(i)

)
=

2
3

Y(i)
SS

1 + cos

2π

3
− 2

3
arccos

λ(i)µ

8


∣∣∣Y(i)

SS

∣∣∣
3

−
3
2



 (33)
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Algorithm 2 The procedure of MM-L1/2

Input: 3D complex image data YMF; Error parameter ε; Step size µ; Maximum number of
iterations Imax; Reconstruction image Y(0)

S = 0.
While 1 ≤ i ≤ Imax and Rs > ε do

t(i) = 0.5
(

1 +
√

1 + 4t(i−1)2
)

Y(i)
SS = µQ(i−1) + Y(i−1)

S + t(i−1)−1
t(i)

(
Y(i−1)

S − Y(i−2)
S

)
λ(i) =

√
96
(∣∣∣Y(i)

SS

∣∣∣
k+1

)3/2
/9µ

Q(i) = YMF − Y(i−1)
S

Y(i)
S = τ1/2

(
Y(i)

SS; µλ(i)
)

Rs =
∥∥∥Y(i)

S − Y(i−1)
S

∥∥∥
F

µ = µ/2

i = i + 1
End While

Output: Sparse reconstruction image without PI reservation YSR = Y(i)
S ; Sparse reconstruc-

tion image with PI preserved YSS = Y(i)
SS.

3.3. Sparse Reconstruction Method Combining MM and L0 Regularization

When q is 0, the sparse reconstruction of the scene is realized by solving (34):

YSR = min
X

{
‖YMF − X‖2

F + λ‖X‖0

}
. (34)

The surrogate function and proximal regular operator for L0 regularization were used
to reconstruct the scene. The surrogate function was as follows:

_

F
(

X, Xi−1
)
= (1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖0. (35)

Then, the imaging scene was reconstructed by solving the following optimization prob-
lem:

YSR = min
X

{
(1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖0

}
. (36)

The proximal operator was used to solve (36):

YSR = Xi = τ0

(
Xi−1 − µ∇F(Xi−1); µλ(i)

)
, (37)

where τ0(; ) is the proximal regular operator for L0 regularization.
The detailed procedure of MM-L0 is shown in Algorithm 3.
The proximal regular operator for L0 regularization τ0

(
Y(i)

SS; µλ(i)
)

is defined as follows:

τ0

(
Y(i)

SS; µλ(i)
)
=

{
sign

(
Y(i)

SS

)∣∣∣Y(i)
SS

∣∣∣, Y(i)
SS > µλ(i)

0, otherwise
(38)
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Algorithm 3 The procedure of MM-L0

Input: 3D complex image data YMF; Error parameter ε; Step size µ; Maximum number of
iterations Imax; Reconstruction image Y(0)

S = 0.
While 1 ≤ i ≤ Imax and Rs > ε do

Y(i)
SS = µQ(i−1) + Y(i−1)

S

λ(i) =
∣∣∣Y(i)

SS

∣∣∣
k+1

/µ

Q(i) = YMF − Y(i−1)
S

Y(i)
S = τ0

(
Y(i)

SS; µλ(i)
)

Rs =
∥∥∥Y(i)

S − Y(i−1)
S

∥∥∥
F

µ = µ/2

i = i + 1
End While

Output: Sparse reconstruction image without PI reservation YSR = Y(i)
S ; Sparse reconstruc-

tion image with PI preserved YSS = Y(i)
SS.

3.4. Generalized MM-Lq (0 ≤ q ≤ 1) Method

In this subsection, we illustrate a generalized MM-Lq (0 ≤ q ≤ 1) algorithm via
combining MM and the generalized proximal regular operator. The surrogate function for
Lq was as follows:

_

F
(

X, Xi−1
)
= (1/2µ)

∥∥∥X−
(

Xi−1 − µ∇F(Xi−1)
)∥∥∥2

F
+ λ‖X‖q

q. (39)

The proximal operator for Lq was used to reconstruct the imaging scene:

YSR = Xi = τGq

(
Xi−1 − µ∇F(Xi−1); µλ(i)

)
. (40)

Then, we provided a concise derivation of Th. Let x and y be elements of matrices X
and YSS, respectively.

v(x) =
1
2
(x− y)2 + λ|x|q. (41)

The first and second derivatives of v(x) are as follows:

v′(x) = x− y + λqxq−1

v′′(x) = 1 + λq(q− 1)xq−2
(42)

Let v
′′
(x
′′
) = 0,

x
′′
= [λ(1− q)]1/(2−q). (43)

So v(x) is convex in the range of
(

x
′′
,+∞

)
. Thus, we obtained Th and its correspond-

ing xq via solving the nonlinear equation [24]:

1
2
(
xq − Th(λ)

)2
+ λ

(
xq
)q

=
1
2
(Th(λ))2 (44)

xq − Th(λ) + λq
(
xq
)q−1

= 0, (45)
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We substituted (45) into (44) to obtain the following relationship:(
xq
)q
(

2λ(1− q)−
(
xq
)2−q

)
= 0. (46)

Thus, in the range of
(

x
′′
,+∞

)
, the unique solution is as follows:

xq = (2λ(1− q))1/(2−q), (47)

and Th is
Th(λ) = [2λ(1− q)]1/(2−q) + λq[2λ(1− q)](q−1)/(2−q), (48)

The generalized proximal regularization operator is as following Algorithm 4:

Algorithm 4 The generalized proximal regularization operator
Input: q; λ; YSS.

Th = [2λ(1− q)]1/(2−q) + λq[2λ(1− q)](q−1)/(2−q)

If
∣∣YSS

∣∣ ≤ Th
τGq
(
YSS; µλ

)
= 0

Else j = 0, Y(j)
Gq =

∣∣YSS
∣∣

Iterate on j = 0, 1, 2

Y(j+1)
Gq =

∣∣YSS
∣∣− λq

(
Y(j)

Gq

)q−1

j = j + 1
τGq
(
YSS; µλ

)
= sign

(
YSS

)
Y(j)

Gq
End If

Output: τGq
(
YSS; µλ

)
.

The detailed procedure of GMM-Lq is shown in Algorithm 5 for solving Lq (0 ≤ q ≤ 1)
regularization problems.

Algorithm 5 The procedure of GMM-Lq

Input: 3D complex image data YMF; Error parameter ε; Step size µ; Maximum number of
iterations Imax; Reconstruction image Y(0)

S = 0.
While 1 ≤ i ≤ Imax and Rs > ε do

t(i) = 0.5
(

1 +
√

1 + 4t(i−1)2
)

Y(i)
SS = µQ(i−1) + Y(i−1)

S + t(i−1)−1
t(i)

(
Y(i−1)

S − Y(i−2)
S

)
λ(i) =

∣∣∣Y(i)
SS

∣∣∣
k+1

/µ

Q(i) = YMF − Y(i−1)
S

Y(i)
S = τGq

(
Y(i)

SS; µλ(i)
)

Rs =
∥∥∥Y(i)

S − Y(i−1)
S

∥∥∥
F

µ = µ/2

i = i + 1
End While

Output: Sparse reconstruction image without PI reservation YSR = Y(i)
S ; Sparse reconstruc-

tion image with PI preserved YSS = Y(i)
SS.
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4. Results and Analysis

In this section, several simulations and experiments are presented to verify the effec-
tiveness of the proposed method. We used target-to-background ratio (TBR) and image
entropy (ENT) [33] as the quantitative evaluation criteria to evaluate the effect of the sparse
reconstruction algorithm. These are defined by:

TBR = 20log10

NB ∑
(v1,v2,v3)∈T

|Y|(v1,v2,v3)

NT ∑
(v1,v2,v3)∈B

|Y|(v1,v2,v3)

, (49)

ENT = −∑
h(i)

pi log pi, (50)

where T and B are the set of targets and background points, respectively, NB is the number
of pixels contained in the background, NT is the number of pixels contained in the target
region, pi is the proportion of pixels with amplitude i in the image, and h(i) is the total
gray value of the image histogram. The larger the value of the TBR, the more obvious the
noise suppression effect. The smaller the ENT value, the clearer the image.

Firstly, a combat-vehicle model was used for 3D simulation imaging. Then, to verify
the noise suppression effect of algorithms in this paper, we added additive white Gaussian
noise (AWGN) to the simulated echo data of aircraft and then reconstructed the scene using
MF, MM-L1, MM-L1/2, MM-L0, and GMM-Lq, respectively. Finally, two sets of real 3D
ground-based array SAR data were used to verify the effectiveness of the algorithms. The
real data of the complex scene was provided by [34]. The imaging model was a 3D linear
array SAR.

4.1. Combat-Vehicle Model

The combat-vehicle model simulation was carried out without noise to verify the effect
of sidelobe suppression. Simulation parameters were as follows. The center frequency
was 37.5 GHz, the bandwidth was 163.8 MHz, the platform height was 1000 m, and the
inear antenna array length was 3× 3 m. The dimensions of the 3D image matrix were
512× 101× 101. We set q to 0.8 to verify the feasibility of GMM-Lq. The elevation, along-
track and cross-track resolutions were 0.915 m, 1.333 m, and 1.333 m, respectively.

Figures 2 and 3 show the imaging results of the MF, MM-L1, MM-L1/2, MM-L0, and
GMM-L0.8 corresponding to the 100% and 75% sampling rates, respectively. It can be seen
that the proposed algorithms improve the image quality and suppress the sidelobe.

The TBR values of the MF results and sparse imaging are listed in Table 1. The TBR
of MF was 32.2816 dB and 28.7322 dB at sampling rates of 100% and 75%, respectively.
When the sampling rate was 100%, the TBR of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8
were 56.8821 dB, 58.1102 dB, 55.5013 dB, and 57.2132 dB, respectively. When the sampling
rate was 75%, the TBR of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were 55.8019 dB,
56.2296 dB, 52.3123 dB, and 56.1083 dB, respectively. Compared with MF, the MM-L1,
MM-L1/2, MM-L0 ,and GMM-L0.8 suppress the sidelobe effectively with a TBR value that
increased by approximately 25 dB. The ENT values of the MF results and sparse imaging
are listed in Table 2. For full sampling, the ENT of MF was 2.1957 while those of MM-L1,
MM-L1/2, MM-L0, and GMM-L0.8 were 0.1123, 0.0616, 0.1231, and 0.0976, respectively.
When the sampling rate was 75%, the ENT of MF was 2.9766, while those of MM-L1,
MM-L1/2, MM-L0, and GMM-L0.8 were 0.1345, 0.0867, 0.1401, and 0.1205, respectively.
Compared with the ENT of MF, the ENT of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8
decreased by approximately 2, which shows that the reconstructed image quality of the
proposed methods improved.
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(a) (b) (c)

(d) (e)

Figure 2. The imaging results of the combat vehicle corresponding to the 100% sampling rate.
(a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0 result. (e) The
GMM-L0.8 result.

(a) (b) (c)

(d) (e)

Figure 3. The imaging results of the combat vehicle corresponding to the 75% sampling rate.
(a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result . (d) The MM-L0 result. (e) The
GMM-L0.8 result.
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Table 1. The TBR of the Combat Vehicle.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 32.2816 56.8821 58.1102 55.5013 57.2132
75% 28.7322 55.8019 56.2296 52.3123 56.1083

Table 2. The ENT of the Combat Vehicle.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 2.1957 0.1123 0.0616 0.1231 0.0976
75% 2.9766 0.1345 0.0867 0.1401 0.1205

4.2. 3D Aircraft Imaging with AWGN

The aircraft modeled using AWGN was used to verify the effectiveness of the proposed
method in a complex environment. The simulation parameters were as follows. The center
frequency was 37.5 GHz, the bandwidth was 163.8 MHz, the platform height was 1000 m,
and the linear antenna array length was 3× 3 m. The dimension of image matrix was
512× 101× 101

The elevation, along-track and cross-track resolutions were 0.915 m, 1.333 m, and
1.333 m, respectively. Figure 4 shows the imaging results of MF, MM-L1, MM-L1/2, MM-L0,
and GMM-L0.8 with AWGN on the simulated echo data at 100%. Figure 5 shows the imaging
results of MF, MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 with AWGN on the simulated
echo data at 75%. Compared with MF, using MM-L1, MM-L1/2, MM-L0, and GMM-L0.8
can efficiently suppress noise and improve the imaging results of the aircraft. Quantitative
analysis with TBR is listed in Table 3. The ENT of different algorithms is listed in Table 4.

(a) (b) (c)

(d) (e)

Figure 4. The imaging results of the aircraft corresponding to the 100% sampling rate. (a) The MF
result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0 result. (e) The GMM-L0.8 result.

When the sampling rate was 100%, the TBR of MF, MM-L1, MM-L1/2, MM-L0, and
GMM-L0.8 were 25.3125 dB, 55.1235 dB, 56.4503 dB, 53.5276 dB, and 55.1685 dB, respectively.
When the sampling rate was 75%, the TBR of MF, MM-L1, MM-L1/2, MM-L0, and GMM-
L0.8 were 24.2586 dB, 54.2167 dB, 55.5226 dB, 53.0124 dB, and 55.0645 dB, respectively.
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Compared with the TBR of MF, the TBR of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8
increased by approximately 30 dB. For full sampling, the ENT of MF was 2.9295, while
those of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were 0.1037, 0.0853, 0.1069, and 0.0988,
respectively. When the sampling rate was 75%, the ENT of MF was 3.1164, while those
of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were 0.1091, 0.0866, 0.1098, and 0.1084,
respectively. Compared with the ENT of MF, the TBR of MM-L1, MM-L1/2, MM-L0, and
GMM-L0.8 decreased by approximately 3. The results show that the proposed algorithms
effectively improve the quality of SAR images.

(a) (b) (c)

(d) (e)

Figure 5. The imaging results of the aircraft corresponding to the 75% sampling rate. (a) The MF
result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0 result. (e) The GMM-L0.8 result.

Table 3. The TBR of the Aircraft.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 25.3125 55.1235 56.4503 53.5276 55.1685
75% 24.2586 54.2167 55.5226 53.0124 55.0645

Table 4. The ENT of the Aircraft.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 2.9295 0.1037 0.0853 0.1069 0.0988
75% 3.1164 0.1091 0.0866 0.1098 0.1084

4.3. Experiments Based on Ground-Based Array SAR Data

A ground-based array SAR system was used to verify the effect of the proposed
algorithms. System parameters were as follows. The carrier frequency was 10 GHz, the
signal bandwidth was 2 GHz, and the array size was 1.5× 1.5 m. The range, along-track
and cross-track resolutions were 0.075 m, 0.05 m, and 0.05 m, respectively.

The experimental scenario is shown in Figure 6a. We obtained the echo of the scene
through the array SAR system and performed 3D imaging using MM, MM-L1, MM-L1/2,
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MM-L0, and GMM-L0.8. The imaging results of the different algorithms corresponding to
the 100% and 75% sampling rates are shown in Figures 7 and 8, respectively.

(a) (b)

Figure 6. The experimental scenario. (a) The two spheres. (b) The snip.

(a) (b) (c)

(d) (e)

Figure 7. The imaging results of the real ground-based array SAR data corresponding to the 100%
sampling rate. (a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0

result. (e) The GMM-L0.8 result.

The results of the quantitative analysis with TBR are listed in Table 5. When the
sampling rate was 100%, the TBR of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were
33.0913 dB, 70.6076 dB, 72.0131 dB, 68.7402 dB, and 71.2652 dB, respectively. When the
sampling rate was 75%, the TBR of MF, MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were
31.5164 dB, 69.1123 dB, 71.0673 dB, 67.6913 dB, and 70.5451 dB, respectively. Compared
with the TBR of MF, the TBR of the proposed algorithms increased significantly. The ENT
values of the different algorithms are listed in Table 6. For full sampling, the ENT of MF
was 2.6935, while those of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were 0.0398, 0.0209,
0.0419, and 0.0236, respectively. When the sampling rate was 75%, the ENT of MF was
2.9392, while those of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 were 0.0403, 0.0211, 0.0422,
and 0.0254, respectively. The ENT of the proposed algorithms was much smaller than that
of MF. Therefore, the image quality was effectively improved.
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(a) (b) (c)

(d) (e)

Figure 8. The imaging results of the real ground-based array SAR data corresponding to the 75%
sampling rate. (a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0

result. (e) The GMM-L0.8 result.

Table 5. The TBR of the Ground-Based Array SAR Data.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 33.0913 70.6076 72.0131 68.7402 71.2652
75% 31.5164 69.1123 71.0673 67.6913 70.5451

Table 6. The ENT of the Ground-Based Array SAR Data.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 2.6935 0.0398 0.0209 0.0419 0.0236
75% 2.9392 0.0403 0.0211 0.0422 0.0254

4.4. Real SAR Data of Complex Scenes

Another set of real data of complex scenes was used to verify the effectiveness and
robustness of the proposed algorithm. Figure 6b shows the experimental scenario. We
placed a snip into the backpack for imaging. The center frequency was 78.8 Ghz. The range,
along-track and cross-track resolutions were 0.042 m, 0.003 m, and 0.003 m, respectively. The
imaging results of the different algorithms corresponding to the 100% and 75% sampling
rates are shown in Figure 9 and Figure 10, respectively. The TBR and ENT values are listed
in Tables 7 and 8, respectively. Compared with the result of the MF results, the imaging
results of the proposed algorithms have improved significantly.

Table 7. The TBR of the SAR Data of the Complex Scene.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 20.1336 54.0925 55.3405 53.9772 54.2199
75% 19.0196 53.2565 54.1911 52.9027 53.2659
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(a) (b) (c)

(d) (e)

Figure 9. The imaging results of real complex target SAR data corresponding to the 100% sampling
rate. (a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0 result. (e) The
GMM-L0.8 result.

(a) (b) (c)

(d) (e)

Figure 10. The imaging results of real complex target SAR data corresponding to the 75% sampling
rate. (a) The MF result. (b) The MM-L1 result. (c) The MM-L1/2 result. (d) The MM-L0 result. (e) The
GMM-L0.8 result.

Table 8. The ENT of the SAR Data of the Complex Scene.

Sampling Rates MF MM-L1 MM-L1/2 MM-L0 GMM-L0.8

100% 4.2374 0.1309 0.1025 0.1367 0.1171
75% 4.7267 0.1360 0.1161 0.1405 0.1295
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5. Discussion

In this section, taking the Section 4.2 aircraft model as an example, we illuminate the
calculation time and phase-retention ability of the algorithms in this paper. The dimension of
the 3D image matrix are 512× 101× 101. We compare the calculation times of the proposed
algorithms in this paper with the iterative soft threshold algorithm (IST) for L1 regularization
based on the observation matrix [11]. The calculation times of the different algorithms at
sampling rates of 100% are listed in Table 9. The calculation time of the IST is 48,019.97 s. The
calculation times of MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 are 1.73 s, 6.16 s, 2.75 s, and
6.63 s, respectively. Even considering the calculation time of MF (542.71 s), the calculation time
of the proposed algorithms in this paper was significantly lower compared with those of IST.

To compare the imaging performance of the proposed algorithms with IST, we present
the imaging results of full sampling data in Figure 11. The TBR and ENT values are listed
in Table 9. MM-L1, MM-L1/2, MM-L0, and GMM-L0.8 achieve equivalent imaging results
to those of IST from the fully sampled raw data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. The imaging results of the aircraft corresponding to fully sampled data. (a) The The IST
result. (b) The MM-L1 result with PI. (c) The MM-L1 result without PI. (d) The MM-L1/2 result with
PI. (e) The MM-L1/2 result without PI. (f) The MM-L0 result with PI. (g) The MM-L0 result without
PI. (h) The GMM-L0.8 result with PI. (i) The GMM-L0.8 result without PI.
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Table 9. The Time, TBR and ENT of the Aircraft.

Method Time (s) TBR (dB) ENT

IST 48,019.97 56.8645 0.0995
MM-L1 with PI 1.73 55.1236 0.1037

MM-L1 without PI 55.0183 0.1056
MM-L1/2 with PI 6.16 56.4521 0.0853

MM-L1/2 without PI 56.2314 0.0855
MM-L0 with PI 2.75 53.5286 0.1069

MM-L0 without PI 53.4768 0.1088
GMM-L0.8 with PI 6.63 55.1743 0.0988

GMM-L0.8 without PI 55.1651 0.0991

In addition, the proposed algorithms can also obtain imaging results that retain scene-
phase information. Figure 12a shows the reference phase. Figure 12b–f show the phase
slices of IST, MM-L1, MM-L1/2, MM-L0, and GMM-L0.8, respectively. Figure 13a–e show
the difference between the reference phase and the phase slices of the reconstructed images.
The values of each point in the phase difference between the proposed algorithms and
the reference phase are 0. The algorithms in this paper can obtain 3D images with phase
information, while the IST algorithm, based on the observation matrix, cannot retain
phase information.

(a) (b) (c)

(d) (e) (f)

Figure 12. Phase slices. (a) The reference phase. (b) The IST result. (c) The MM-L1 result. (d) The
MM-L1/2 result. (e) The MM-L0 result. (f) The GMM-L0.8 result.

Finally, taking GMM as an example, we verify the reconstruction performance of the
proposed algorithm under lower sampling rates (50%, 25%, and 10%). Figure 14 shows the
GMM-L0.8 imaging results at sampling rates of 50%, 25%, and 10%. The results show that
the quality of the reconstructed image will decrease, and the noise and sidelobe suppression
effect will decrease if the sampling rate continues to decrease. With a continuous decrease
of the sampling rate, the proposed method will not be able to reconstruct the target scene
successfully when the downsampling ratio is less than 25%.
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(a) (b) (c)

(d) (e)

Figure 13. Phase differences. (a) The difference between IST and the reference phase. (b) The
difference between MM-L1 and the reference phase. (c) The difference between MM-L1/2 and the
reference phase. (d) The difference between MM-L0 and the reference phase. (e) The difference
between GMM-L0.8 and the reference phase.

(a) (b) (c)

(d) (e) (f)

Figure 14. The imaging results of the GMM-L0.8. (a) The MF result corresponding to the 50% sampling
rate. (b) The MF result corresponding to the 25% sampling rate. (c) The MF result corresponding to
the 10% sampling rate. (d) The GMM-L0.8 result corresponding to the 50% sampling rate. (e) The
GMM-L0.8 result corresponding to the 25% sampling rate. (f) The GMM-L0.8 result corresponding to
the 10% sampling rate.

6. Conclusions

In this study, a novel 3D sparse SAR reconstruction method combining the MM
framework and Lq regularization was proposed. Firstly, MM-L1, MM-L1/2, and MM-
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L0 were presented to solve the L1, L1/2, and L0 regularization optimization problem,
respectively. Although the above three methods can improve SAR image quality, they are
all intended for use on some specific values of q. Therefore, a generalized Lq (0 ≤ q ≤ 1)
method GMM-Lq was proposed to obtain high-quality 3D SAR images. Compared with
MF methods, the proposed methods can effectively improve image quality, such as sidelobe
and noise suppression. Compared with the existing observation-matrix-based sparse
reconstruction method, the methods in this article significantly reduce computation time.
In addition, the proposed method both improves the image quality and preserves the phase
information of the complex image. Therefore, the reconstructed complex image can be
used in the field when phase information is required. The 3D simulation is used to verify
the effect of the proposed method. Finally, real ground-based array SAR data is also used
to demonstrate the effectiveness and universality of the method in a real environment.
In future research, we will study novel sparse imaging methods based on convolutional
neural networks to achieve 3D SAR image with higher accuracy and efficiency.
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