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Abstract: The early and accurate acquisition of crop yields is of great significance for maintaining
food market stability and ensuring global food security. Unmanned aerial vehicle (UAV) remote
sensing offers the possibility of predicting crop yields with its advantages of flexibility and high
resolution. However, most of the existing remote sensing yield estimation studies focused solely on
crops but did not fully consider the influence of soil on yield formation. As an integrated system, the
status of crop and soil together determines the final yield. Compared to crop-only yield prediction,
the approach that additionally considers soil background information will effectively improve the
accuracy and reduce bias in the results. In this study, a novel method for segmenting crop and soil
spectral images based on different vegetation coverage is first proposed, in which pixels of crop and
soil can be accurately identified by determining the discriminant value Q. On the basis of extracting
crop and soil waveband’s information by individual pixel, an innovative approach, projected non-
negative matrix factorization based on good point set and matrix cross fusion (PNMF-MCF), was
developed to effectively extract and fuse the yield-related features of crop and soil. The experimental
results on winter wheat show that the proposed segmentation method can accurately distinguish
crop and soil pixels under complex soil background of four different growth periods. Compared
with the single reflectance of crop or soil and the simple combination of crop and soil reflectance, the
fused yield features spectral matrix FP obtained with PNMF−MCF achieved the best performance in
yield prediction at the flowering, flag leaf and pustulation stages, with R2 higher than 0.7 in these
three stages. Especially at the flowering stage, the yield prediction model based on PNMF-MCF had
the highest R2 with 0.8516 and the lowest RMSE with 0.0744 kg/m2. Correlation analysis with key
biochemical parameters (nitrogen and carbon, pigments and biomass) of yield formation showed that
the flowering stage was the most vigorous season for photosynthesis and the most critical stage for
yield prediction. This study provides a new perspective and complete framework for high-precision
crop yield forecasting using UAV remote sensing technology.

Keywords: yield prediction; unmanned aerial vehicle; image segmentation; spectral features fusion;
projected non-negative matrix factorization; winter wheat; soil

1. Introduction

As one of the world’s most important food crops, wheat is consumed as a staple
food by more than a third of the global population [1,2]. In recent years, food security is
becoming the most challenging topic globally due to the recurrence of COVID-19 and the
intensification of regional conflicts [3]. Accurate food production forecasts are of great
importance to maintain food market stability and ensure global food security [4,5].

The traditional methods of yield prediction are mainly through field surveys, which
are inefficient and destructive to crops [6]. With the diversification of remote sensing
(RS) platforms and the improvement of data access quality [7], RS technology has been
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recognized as an effective method for crop yield prediction [8]. In the past decades, satellite
RS technology has been widely used for large-scale agricultural monitoring [9,10]. However,
its application is hampered by satellite revisit cycles and complicated weather conditions,
such as clouds and rain [11]. Unmanned aerial vehicle (UAV) RS has the advantages of high
flexibility and mobility, which can quickly and effectively acquire high spatial resolution
RS images in the farmland scale [12,13].

However, most yield RS studies based on UAV platforms do not consider differen-
tiating crop and soil pixels [13–15]. Obviously, when extracting the spectral information
from targeted study areas for crop yield prediction studies, the neglect of the soil back-
ground will inevitably decrease the prediction results [16]. Therefore, the segmentation of
crop and soil in the targeted images is the first and very important step in farmland yield
prediction [17,18]. The main crop and soil segmentation methods currently are color index-
based, learning-based and threshold-based segmentation [19]. However, color index-based
methods are not accurate enough [20], and learning-based methods have high training costs
and low universality [21]. The accuracy of segmentation using threshold-based methods
is easily influenced by variations of the light environment and vegetation covers [19]. To
date, there is no definitive and quantitative crop and soil segmentation method applicable
to different periods and scenarios. Therefore, there is an urgent need for a high-precision
segmentation method for crop and soil under different light environments and different
cover conditions, which is the key and basis for realizing pixel-level accurate extraction and
fusion applications of crop and soil multispectral information in farmland UAV images.

In addition, the nutrient changes in soils are closely related to crop yield [22,23].
However, the existing remote sensing yield estimation methods are mostly from the crop
perspective only, ignoring the influence of soil information on yield formation [24–26].
Different from crop yield research that excludes soil background, yield studies that compre-
hensively consider crop and soil are more consistent with the mechanism of yield formation
and can reduce yield errors caused by only studying crops [27,28]. Therefore, how to fully
exploit and integrate soil and crop information, and further improve the accuracy of yield
estimation is another urgent problem to be solved.

In order to achieve high-precision yield estimation with the effective fusion of crop
and soil spectral features, accurately identifying crop and soil pixels and extracting spectral
information under different vegetation coverages and light conditions is an important step.
Focusing on the above objectives, this study firstly proposes a discriminant Q, constructed
based on crop spectral features by preserving the difference between red edge and red and
attenuating the difference between NIR and red edge, which can effectively identify crop
and soil pixels under complex and variable vegetation coverages and light conditions in
agricultural fields. On the basis of the precise segmentation of crop and soil pixels, a new
method based on the Projected Nonnegative Matrix Factorization (PNMF) [29], optimized
by Good Point Set theory [30], named PNMF−MCF is proposed, which can effectively
extract and fuse the yield features of crop and soil. This study will provide a feasible
solution for using RS techniques to accurately segment crop and soil pixels and predict
yield by fusing crop and soil spectral features.

The paper is organized as follows. Section 2 introduces the experiment designs in
this study and a detailed description regarding the proposed crop and soil segmentation
method, and the crop and soil spectral yield features fusion method called PNMF−MCF.
The results of crop and soil spectral image segmentation and crop yield prediction are
presented in Section 3. The comparison of the proposed segmentation method with other
methods based on HSV and Deep Learning, the influence of fused parameters on yield
predictive performance of PNMF−MCF, the correlation between fused matrix FP and other
physiological parameters are discussed in Section 4. The paper concludes in Section 5 with
a summary of the results.
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2. Materials and Methods
2.1. Experiment Design

The experimental site was National Station for Precision Agriculture (116.4◦E, 40.2◦N)
in Beijing, China, which has a temperate monsoon climate with brown soil and moderate
humus content [31]. Winter wheat was planted on 29 September 2020 and harvested on
17 June 2021. The brown soil had a nitrate nitrogen content ranging from 3.16 to 14.82 mg/kg,
ammonium nitrogen content ranging from 8.2 to 14.52 mg/kg, fast-acting potassium content
ranging from 86.83 to 120.62 mg/kg, effective phosphorus content ranging from 3.14 to
21.18 mg/kg, and soil organic matter content ranging from 15.8 to 20.0 g/kg in the 0–0.3 m
soil layers.

The field experiment was conducted in the jointing stage (9 April), flag leaf stage
(25 April), flowering stage (11 May), and pustulation stage (26 May) in 2021. To increase
the difference in winter wheat growth, two winter wheat varieties, Jinghua 11 (P1) and
Zhongmai 1062 (P2), were planted in 32 experimental plots (135 m2 each). The four urea
fertilization levels for each variety were N0 (0 kg/hm2), N1 (195 kg/hm2), N2 (390 kg/hm2)
and N3 (585 kg/hm2). Three irrigation levels were W0 (Natural Rainwater), W1 (148 mm)
and W2 (271 mm). Set 1 m buffer strip in the interval regions to eliminate mutual influence
and four replicates for each plot. A sample area of 1 m2 within each plot was selected for
the segmentation of crop and soil pixels, fusion of yield feature spectral matrix and the
final yield determination. The experimental site is shown in Figure 1.
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Figure 1. Diagram of the experimental site.

Data Acquisition

The spatial resolution and spectral resolution are constrained by each other and
because of the requirement of pixel-level image segmentation in this study. The DJI
Phantom 4 UAV (DJI, Inc., Shenzhen, Guangdong, China) carrying six CMOS sensors was
selected. The UAV weighs 1375 g; has a 350 mm wheelbase, a maximum flight time of
28 min and a maximum flight speed of 20 m/s; and carries a GPS/GLONASS satellite
positioning module. The UAV’s sensors include an RGB sensor for visible imaging and
five single-band sensors for multispectral imaging, each with 2.08 million effective pixels.
The five sensors for multispectral imaging are centered at 450, 560, 650, 730 and 840 nm,
respectively, with a lens FOV of 94◦ 8.8 mm/24 mm. JPEG (visible imaging) + TIFF
(multispectral imaging) images with a maximum resolution of 1600 × 1300 pixels can
be captured.

The DJI Phantom 4 UAV carried the camera to take the area multispectral images at
30 m altitude on four growth stages, which correspond to the spatial resolution of 1.5 cm.
The UAV heading overlap was 80% and the side overlap was 70%, and the waypoints were
marked in DJI Terra software to generate S-shaped routes. The radiometric calibration was
performed using a MAPIR standard calibration plate, which carries four diffuse reflectance
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plates with different reflectance. Before takeoff, the calibration plate was placed flat on
the ground, and the UAV’s lens was manually controlled to shoot vertically downward to
ensure no shadows were on the calibration plate. The co-registration, geometric correction,
radiometric calibration and band alignment of the UAV multispectral image data were all
conducted in DJI Terra software (V3.5.5).

At harvest time, all crop ears collected in 1 m2 sample area from each plot were heated
to 105 Celsius until they reached a constant weight in the laboratory [4]. The dried grain
was then manually collected from the ear and the final dry weight of the grain in kilograms
was recorded. In addition, in each 1 m2 sample area at the four growth stages before harvest,
the nitrogen content of crop and soil, the carbon content of crop and soil, the chlorophyll A
and chlorophyll B contents, carotenoid content and the crop biomass were measured. The
measurement methods were according to references [32–35] and Table 1.

Table 1. The determination method of nutrient content.

Nutrients Materials Instruments Methods

Crop Nitrogen
Crop Carbon

20 healthy crops in each 1 m2 study area.
The leaves, stalks and leaf sheaths were

dried, chopped and mixed.

Dumas Automatic
Tester

(Primacs SN-100)

Dumas high-temperature
combustion method.

Soil Nitrogen
Soil Carbon

At 30 cm below the each collected crop,
1 kg soil was collected, dried and sieved.

Dumas Automatic
Tester

(Primacs SN-100)

Dumas high-temperature
combustion method.

Chlorophyll A
Chlorophyll B

Carotenoid

Fresh leaves of the collected crop were
cut and then ground into a homogenate

by adding acetone.

Spectrophotometer
(UV-1700)

Measure the absorbance of the
homogenate at 470 nm, 633 nm

and 645 nm; calculate the
content according to the

Lambert–Beer law.

Crop Biomass
20 healthy crops in each 1 m2 study area.
The leaves, stalks and leaf sheaths were

dried, chopped and mixed.
Scale Total weight of the dried crop

divided by the sampling area.

2.2. Crop and Soil Piecewise Segmentation Method

Crop and soil, as the most important components of farmland, are the two most
fundamental factors for yield estimation [36]. The accurate segmentation of crop and soil on
spectral images is the key step for making full use of crop and soil spectral information [16].
Crop-specific spectral characteristics, a sharp increase from the red band to the Near-
Infrared (NIR) band, is a key characteristic in differentiating from soil [36–38], which makes
NDVI a commonly used indicator for crop identification [39]. However, in complex and
variable farming conditions, there is no fixed evaluation standard to determine the NDVI
value that can distinguish crop from soil, and the segmentation function of NDVI will fail
due to NDVI saturation under high vegetation coverage [40].

To address the above problems, this study proposes a piecewise segmentation method
for crop and soil, which includes two steps: vegetation coverage determination and thresh-
old fine discrimination.

2.2.1. Vegetation Coverage Determination Function

In order to determine a quantitative value to judge the vegetation coverage under
different growth conditions and different growth periods, a general vegetation coverage
determination function is proposed as Equation (1). Kv represents the vegetation coverage
level. If Kv ≥ 1, the area is considered as high vegetation coverage. Otherwise, the area is
considered as a low vegetation coverage. For most cases, this function takes into account the
NDVI of all pixels within the targeted scene. Thus, it can ensure the accurate segmentation
of crop and soil in different growing environments.

Kv =

√
NAVG − NMIN
NMAX − NAVG

(1)
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where NAVG is the average value of NDVI of all pixels in the targeted images, NMIN wisas
the minimum value of NDVI and NMAX is the maximum value of NDVI.

2.2.2. Discriminant Value Q for the Segmentation of Crop and Soil

The large fluctuations in NDVI values caused by different vegetation coverage make
it impossible to distinguish crop and soil with a fixed value in variable farming situations.
Therefore, the discriminant value Q introducing vegetation cover information was proposed
to further achieve the pixel-level crop and soil precision segmentation suitable for complex
farming conditions with a fixed discriminant value.

The discriminant value Q that includes red, red edge and NIR was proposed to
distinguish crop and soil, as shown in Equation (2).

Q =

√
EDGE730nm − RED650nm

Kv(NIR840nm − EDGE730nm)
(2)

where RED, EDGE and NIR are the reflectance of the pixel at 650 nm, 730 nm and
840 nm, respectively.

Usually at low vegetation coverage, Kv is lower than 1, while at high vegetation
coverage, Kv is higher than 1. Therefore, it can be found from Equation (2) that, on the
basis of maintaining the difference between red edge and near infrared, the addition of
Kv in denominator diminishes the difference between red and red edge. That means the
introduction of Kv weakens the disturbance caused by different vegetation covers to crop
and soil segmentation, so that the discriminant value Q can segment crop and soil under
different vegetation coverages with a fixed value.

The multispectral images were traversed in a 5× 5 pixel size window. In each window,
the maximum, average and minimum of NDVI of all pixels were selected, and then the
vegetation coverage index Kv was calculated according to Equation (1). Based on the Kv
and three wavebands (red, red edge and NIR) information, the discriminant Q of every
pixel was calculated. It was determined by visual interpretation that crops and soils can be
effectively distinguished when Q is 0.1. In addition, after extensive validation tests, the
threshold segmentation with Q of 0.1 has strong stability under different vegetation covers
and light conditions. If the discriminant value Q for this pixel is greater than or equal to
0.1, the pixel is judged to be winter wheat. Otherwise, the pixel is judged to be soil.

2.2.3. Accuracy Evaluation for Crop and Soil Segmentation

To verify the accuracy of the segmentation results more precisely, the intersection of
union (IoU) [41] was used as an evaluation metric for the accuracy of segmentation. IoU
consists of precision and recall, where precision is the proportion of the number of correct
pixels among the target pixels identified by the algorithm, and recall is the proportion of the
number of correct pixels identified by the algorithm to the total number of real pixels. IOU
includes all possible cases of binary identification (A is identified as A, A is identified as B,
B is identified as B, and B is identified as A) and is well suited for judging the accuracy of
crop and soil segmentation. The closer the IoU is to 1, the higher the identification accuracy
of the target pixel. The calculation of IoU is shown in Equation (3).

Precision = TrueP
TrueP+FalseP

Recall = TrueP
TrueP+FalseN

IoU = Precision×Recall
Precision+Recall−Precision×Recall

(3)

where TrueP is the number of pixels (crop or soil) that are correctly identified, FalseP is the
number of pixels (crop or soil) that are incorrectly identified FalseN is the number of pixels
in another category (soil or crop) that are incorrectly identified.
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2.3. Projected Non-Negative Matrix Factorization and Matrix Cross Fusion

After the accurate segmentation of farm crop and soil, the next step is to further mine
and fuse the information of the two targets. Therefore, a method combining Projected
Non-negative Matrix Factorization optimized by Good Point Set (GPS) and Matrix Cross
Fusion (PNMF-MCF) is proposed in this study, and the flow chart of the method is shown
in Figure 2.
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2.3.1. Matrix Initialization Based on Good Point Set

The theory of Good Point Set [30] was first proposed by Hua Luogeng. According to
the definition of GPS, Gs is a unit cube in s-dimensional Euclidean space,
p = (p 1, p2, . . . , ps) ∈ Gs, 0 ≤ pi ≤ 1, i = 1, 2, . . . , s. The point set Pn is composed of n
points in Gs, Pn(k) = {(p 1

(n), p2
(n), . . . , ps

(n)), 1 ≤ k ≤ n}, 0 ≤ pj
(n) ≤ 1, j = 1, 2, . . . , s.

For any given point γ= (γ 1, γ2, . . . , γs) in Gs, m is the number of points that satisfies the
following inequality (4).

0 ≤ pj
(n) ≤ γj, j = 1, 2, . . . , s (4)

The deviation is defined in Equation (5).

Φ(n) = Sup(
m
n
− |γ1γ2. . . γs|) (5)

If the deviation of Pn(j) = (γ 1 × j, γ2 × j, . . . , γs × j) satisfies ϕ(n) ≤ c(γ, ε)n(ε−1),
where c(γ, ε)n(ε−1) is a positive constant related only to γ and ε, ε is an arbitrarily small
positive number, Pn(j) is considered as a good set of points and γ is called a good point,
then the good point γ can be calculated based on cyclotomic field method as shown in
Equation (6).

γ = {(2 cos
2π

t
), (2 cos

4π

t
), . . . , (2 cos

2sπ

t
)} (6)

where t is the minimum prime number that satisfies t ≥ 2s + 3.
According to the above definition, if n points are taken randomly in the s-dimensional

space, the deviation ϕ(n) is o(n−1/2). While n points are taken by the good point set
method, the deviation ϕ(n) is o(n(ε−1)). The deviation of latter is much smaller, which is
why the good point set amount data converge faster.

2.3.2. Projected Non-Negative Matrix Factorization Optimized by Good Point Set

Non-negative matrix factorization [42] ensures matrix elements are always positive,
which is suitable for spectroscopic analysis. Given a i × j non-negative initial spectral
matrix Fij

(
Fij ≥ 0

)
and a positive integer l(0 < l < min(i, j)), factorize Fij into a i × l

non-negative matrix W and a l × j non-negative matrix H, as shown in Formula (7).

Fi×j →Wi×l × Hl×j (7)
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where W is the basis feature matrix of V and H is the weighting coefficients matrix.
Lin proposed an improved algorithm Projected Non-negative Matrix Factorization

(PNMF) based on projection gradient and Armijo [43] proposed step size rule, which makes
the algorithm converge more easily and faster [29]. (The detailed mathematical model
about PNMF is shown in the Appendix A) However, both the original and improved
NMF algorithms suffer from the problem that the result of each factorization is not unique
and, therefore, the application is difficult. This is because the initial matrix is generated
randomly, so the matrix initialization based on GPS is adopted in PNMF to improve the
factorization result and make the result of each factorization unique.

In this study, W and H were generated by GPS at the first iteration. Then, W and H
were alternately iterated according to PNMF until the minimum value of the objective
function L [29] was reached.

L =
1
2∑

i,j

[
Fij − (WH)ij

]2
(8)

2.3.3. Matrix Cross Fusin

After being processed by PNMF, the ranks of W and H are lower than the rank of the
original matrix F. The original matrix information is expressed in a lower dimension space.
The matrix F can be interpreted as the combination of all the column vectors in W, and the
weighting coefficients are the elements in H [44]. Therefore, W could be regarded as the
basic information of F, and H could represent the detailed description of F. In other words,
W is the intrinsic feature of F [44].

The PNMF enabled the deeper mining of yield features and the modular decomposi-
tion created the prerequisites for feature fusion. The winter wheat and soil-reflected spectra
F1 and F2 were factorized separately to generate the yield feature matrices W1 and W2, and
weighting coefficients matrices H1 and H2. Then, the fused yield feature spectral matrix FP
can be constructed as shown in Equation (9).

F1 →W1 × H1

F2 →W2 × H2

FP = a · (W1 × H2) + b · (W2 × H1)

(9)

where a and b are random numbers between 0 to 1.

2.4. Crop Yield Prediction Method

The multispectral camera adopted in this study covers five wavebands, the central
wavelengths of which are 450, 560, 650, 730 and 840 nm. These wavebands contain blue,
green and red light in the visible range as well as the red edge and NIR wavebands, which
have important roles in describing the status of farmland [45,46].

Yield prediction on one stage was taken as an example. First, the crop and soil pixels
within the 1 m2 study area (total 32 study areas) were segmented. In each 1 m2 study area
of crop-only images and soil-only images, the average reflectance of all pixels was the
reflected spectra of the study area. Then, the reflected spectra of crop (32 study areas, each
containing 5 wavebands, were integrated into a 32 × 5 matrix) and reflected spectra of
soil (32 study areas, each containing 5 wavebands, were integrated into a 32 × 5 matrix)
within all the 1 m2 study areas were factorized by PNMF. Subsequently, MCR was used
to recombine the factorized modules of crop and soil spectra into one fused yield features
spectral matrix FP (32 × 5). After extensive experiments, the matrix fusion coefficient a was
set to 0.8 and b was set to 0.2. The impact of fusion coefficients a and b on the results of yield
prediction is discussed in Section 4.2. Subsequently, to further ensure the robustness of the
model, 50% of FP were selected as FP-train (16 × 5) through the Kennard–Stone (KS) [47]
algorithm. Additionally, the remaining 50% of the FP constituted the validation groups.
Then, the training set FP-train (16 × 5) was trained under the Random Forest (RF) [48]
model. The regression between FP-train (16 × 5) and the true value of yield was established.
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Finally, the yield of the 16 areas in the test set was predicted through the established RF
regression model.

The prediction model was quantitatively evaluated with two aspects. The coefficient
of determination R2 evaluated the goodness of fit of the model, which is calculated as
Equation (10), and root-mean-square error RMSE measured the bias between the predicted
values and the real values based on Equation (11). The closer R2 to 1 and RMSE to 0, the
better the predictive performance of the model.

R2 = 1− (
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2) (10)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (11)

where n is the number of samples, yi is the measured value, ŷi is the predicted value and
yi is the mean value of yi.

3. Results
3.1. Crop and Soil Multispectral Image Segmentation

The pixel-level accurate crop and soil segmentation method proposed in Section 2.2
was conducted in captured multispectral images of different stages. For more convenient
comparisons, 1 m2 study area image was selected from each growth stage and used for
segmentation. Figure 3 shows the crop and soil segmentation in the four growth stages
under different vegetation covers and different light environments, respectively. In addition,
a window of 5 × 5 pixels was selected to show, in detail, the original color and the value of
NDVI and Q of every pixel.
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As shown in Figure 3, the NDVI value of green pixels fluctuates intensely between
0.0913 and 0.8291, which is why the segmentation of crop and soil by NDVI is not possible
under different vegetation coverages and light conditions.

Compared to NDVI, the discriminant Q has a better segmentation performance. It
could be observed from Figure 3 that, under different vegetation coverages and light
conditions, the value of Q being greater than 0.1 can be used to as a general criterion to dif-
ferentiate between crop and soil. In addition, in the discriminant Q images, the differences
between crop and soil pixels are more pronounced than in NDVI images. Especially in high
vegetation coverage, the saturation of NDVI leads to insignificant differences between crop
and soil pixels, but this problem was solved in the discriminant Q image.

Subsequently, the multispectral images of the entire study areas were segmented to
crop and soil by the above segmentation method. The entire images were traversed with
a 5 × 5 pixel window and segmented to crop and soil in each window. The original images
and the images after segmentation are shown in Figure 4. The numbers of green (considered
as winter wheat) and non-green (considered as soil) pixels in every 1 m2 sample study
area were labeled as the true pixel category. The pixels were judged as crop (Q ≥ 1) or soil
(Q < 1). Then, the average of IoU for crop or soil on all 1 m2 sample study areas was
calculated and marked on the corresponding position in the figure.
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Figure 4. The segmentation results of crop and soil (white pixels indicate that they are removed).

From Figure 4, it can be observed that the proposed segmentation method can ef-
fectively distinguish between crop and soil. During the four main growth stages, the
segmentation accuracy (the percentage of target pixels) of more than 80%. Especially the
flowering stage has the highest segmentation accuracy and achieves more than 92%.
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It is noteworthy that, in the high vegetation coverage situation especially during the
pustulation stage, the sealing ridge of crop is almost completed and only a little soil is still
available in the images. Nevertheless, the characteristics of targeted crop and soil under
high vegetation coverage can still be better captured using this proposed method.

3.2. Crop Yield Prediction

To further validate the good performance of the fused yield feature spectral matrix FP
in yield prediction, the original reflected spectra of crop and soil, the simple combination
of the crop and soil spectra and the fused yield features spectral matrix FP were all used
to establish the yield prediction models. Yield prediction was conducted under the RF
regression model, and the number of decision trees and the number of nodes were 50 and 5,
respectively. The results of the yield prediction on the four growth stages are shown in
Figure 5.
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Figure 5. The prediction results of winter wheat yield.

It can be observed from the scattergrams that the fused yield features spectral matrix
FP have the greatest predictions. Especially in the flowering stage, the yield prediction
models based on FP have the highest R2 at 0.8516 and lowest RMSE at 0.0744 kg/m2.
Moreover, compared with the combination of spectra of crop and soil, the yield prediction
models based on FP have a better predictive performance on four growth stages. This
proves that the proposed method PNMF−MCF could mine the intrinsic yield features
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from canopy spectral data and achieve the effective fusion of the yield features from crop
and soil.

Flowering as a key stage for yield formation [49], with the largest water consumption
and the strongest photosynthesis, has the best potentiality for yield prediction. However,
as shown in Figure 5, when the flowering period is over, the predictive results deteriorate
in the pustulation stage, which is because the crop growth slows down as the sealing is
gradually completed, and the soil information is no longer fully utilized.

4. Discussion
4.1. The Comparison of the Proposed Segmentation Method with HSV−Based Method and Deep
Learning−Based Method

Two commonly used methods, including HSV−based and deep learning−based meth-
ods, were selected for comparison with the crop and soil piecewise segmentation method
described in Section 2.2 to verify the excellent performance of the newly proposed method.

HSV−based segmentation converts RGB images to HSV images and selects pixels in
the HSV space whose hue, saturation and value correspond to the target color [50]. In this
study, the pixels of RGB images were converted to HSV space, and then the green pixels
(H: 0.21~0.5; S > 0; V > 0) and brown pixels (H: 0.1~0.2; S > 0; V > 0) in each 1 m2 study area
were identified and counted.

Deep learning−based segmentation applies convolutional neural networks (CNN)
to image processing. In this study, images were trained in the U-Net network model [51].
The first and fourth rows of each stage of the experimental field were used as the training
set and the second row was used as the validation set, these areas were used to train the
U−Net network model to identify plant and soil. The initial learning rate was set to 0.0002,
the batch size was set to 20 and the number of iterations was set to 60. The predicted plant
pixels and predicted soil pixels in remaining study area were counted.

Because deep learning−based methods require data for training, the three methods
were only compared in the third row of the study areas at each stage, i.e., only 8 areas
per growth stages (32 areas in total) were used for comparison. The IoU was used as the
evaluation metric for the accuracy of segmentation. The comparisons of segmentation
results are shown in Table 2.

Table 2. The comparison of three segmentation methods for crop and soil.

Method Growth Stages
Segmentation

Accuracy
of Crop

Segmentation
Accuracy

of Soil

Crop and Soil Piecewise
Segmentation Method

Jointing Stage 82.57% 84.65%
Flag Leaf Stage 88.32% 89.03%
Flowering Stage 94.22% 92.54%

Pustulation Stage 88.28% 83.27%

HSV

Jointing Stage 79.23% 76.47%
Flag Leaf Stage 74.43% 79.28%
Flowering Stage 72.25% 65.99%

Pustulation Stage 70.07% 68.55%

Deep Learning

Jointing Stage 81.45% 83.72%
Flag Leaf Stage 77.62% 80.15%
Flowering Stage 83.33% 84.56%

Pustulation Stage 79.59% 82.26%

As shown in Table 2, compared to the segmentation methods based on HSV and deep
learning, the crop and soil piecewise segmentation method has the highest segmentation
accuracy. The HSV−based method only utilizes RGB information and lacks a precise
range of hue, saturation and value regarding color delineation, which leads to a poor
segmentation performance. The deep learning−based method relies heavily on the amount
of training data, and the feedback−training−based pixel recognition does not take full
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advantage of the physiological features of the crop spectra; thus, it is not as accurate as the
proposed crop and soil piecewise method for segmentation.

Different from the HSV−based and deep learning-based methods, the crop and soil
piecewise segmentation method firstly used NDVI to differentiate between different vege-
tation coverages and light conditions, and then the spectral features of red, red edge and
NIR were used to construct the discriminant Q. The crop and soil piecewise segmentation
method has the advantage of being able to make full use of the crop’s spectral feature
information and without need for training, which has great significance in promoting
its application.

Since the maximum, minimum and average values of NDVI of the pixels in the target
area need to be selected to calculate the vegetation cover index Kv, when the vegetation
cover is not uniform (usually does not happen in food crops production), the piecewise
segmentation method produces relatively large errors, which is worth noting. Moreover,
the threshold value of the discriminant Q for winter wheat and soil segmentation was 0.1
in this study, and it would be worthwhile to further investigate whether 0.1 can still be
used as a segmenting threshold for other food crops.

4.2. The Impact of Fusion Coefficients a and b on the Results of Yield Prediction

As described in Section 2.3.3, the fused yield features spectral matrix FP containing
the key yield information of crop and soil was cross-multiplied by W1, W2, H1 and H2 with
a and b as the fusion coefficients. Therefore, a reasonable setting of the values of a and
b has a significant impact on the results of yield prediction. In this study, we randomly
set 10,000 combinations of a and b from (0,1), and then constructed different FP to predict
the yield. Similar to the modeling approach in Section 3.2, all the spectral data were
classified into training and test sets with the partition ratio of 1:1 by the KS algorithm. Then,
yield prediction was performed under the RF regression model. The results of the yield
predictions are shown in Figure 6.
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Except for the jointing stage, when the horizontal coordinate a was greater than the
vertical coordinate b, the fused yield features spectral matrix FP showed good predictive
results for winter wheat yield, and their R2 were greater than 0.6, in particular in the triangle
areas as marked in Figure 6. When the horizontal coordinate a and vertical coordinate b
fall within the triangle areas, the R2 values are greater than 0.7. Especially in the flowering
stage, multiple points in the triangle area reached the maximum R2 value of 0.8516.

It can be concluded that a and b have a strong regularity for yield prediction. Especially
in the triangle areas as marked in Figure 6, a is far larger than b, which means the winter
wheat yield feature matrix W1 is dominant in the matrix cross fusion. However, an accurate
yield prediction must incorporate soil information. A highly accurate yield prediction is
achieved by using crop features as main force with a little reference by soil features.

The insufficient growth of wheat leads to a poor yield prediction performance at the
jointing stage, which is in line with our conjectures. However, the same triangle areas (high
R2 areas) represent the contributing proportion to yield between crop and soil. Based on
the results of this study, the fusion coefficients a and b deserve to be further researched to
reveal the mechanisms of nutrient transport and allocation between crop and soil during
yield formation.
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4.3. Correlation between FP and Other Biochemical Parameters

In the process of yield formation, some biochemical parameters play a very critical
role. As the most important elements in crops, carbon and nitrogen are the main compo-
nents of starch and proteins, respectively [52]. During the main growth stage, the more
chlorophyll there is, the more photosynthesis there is, and the more organic matter the
crop can synthesize [53]. Additionally, another important pigment, carotenoid assists
chloroplasts in absorbing the light that they cannot produce, thus increasing the efficiency
of photosynthesis [53]. Crop biomass, the dry weight of all organic matter in the crop,
together with the above physiological quantities, forms the basis of the yield [54].

The fused yield features spectral matrix FP, which is the key to predict yield in this
study, is no longer a practically meaningful spectrum, although it is a fusion of crop and soil
spectra. For this reason, the correlation (Pearson Correlation Coefficient) of each column
vector in FP with the biochemical parameters mentioned above were calculated to explore
why FP has the best performance in yield prediction. The results are shown in Figure 7.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

of photosynthesis [53]. Crop biomass, the dry weight of all organic matter in the crop, 
together with the above physiological quantities, forms the basis of the yield [54]. 

The fused yield features spectral matrix FP, which is the key to predict yield in this study, 
is no longer a practically meaningful spectrum, although it is a fusion of crop and soil spectra. 
For this reason, the correlation (Pearson Correlation Coefficient) of each column vector in FP 
with the biochemical parameters mentioned above were calculated to explore why FP has the 
best performance in yield prediction. The results are shown in Figure 7. 

 
Figure 7. The correlation between other biochemical parameters and FP. 

From Figure 7, it could be observed that there are close relationships between FP with 
these biochemical parameters after flag leaf stage. Especially in the flowering stage, the 
nitrogen content of crop and soil, the carbon content of crop and soil, the chlorophyll A 
and chlorophyll B content, carotenoid content and the crop biomass have the highest cor-
relation with the fused yield features spectral matrix FP. The results of the correlation anal-
ysis coincided with the highest accuracy of yield prediction at flowering stage. Therefore, 
as one of the stages with the largest water consumption and the strongest photosynthesis, 
flowering is not only a key stage for yield formation, but also the best time to apply 
PNMF−MCF for yield prediction. 

5. Conclusions 
To achieve the high accuracy prediction of yield, a field scale yield predictive method 

applied for a UAV based platform, which included a crop and soil piecewise segmentation 
method based on different vegetation coverage and a yield spectral feature fusion tech-
nique (PNMF−MCF), was innovatively proposed in this paper. According to the experi-
mental design, we added differences in crop growth and subsequently demonstrated in 
the results of image segmentation, spectral extraction and yield prediction that the accu-
racy was not affected by differences in growth environment (varieties, nutrient and wa-
ter). However, this study explored the pixel-level segmentation of remote sensing data 
and the fusion model of the spectral data, but did not analyze sensors and other remote 
sensing data sources, which is indeed a focus that should be considered for future re-
search. In addition, the validation of the method on farmland with different terrain will 
be carried out in the future. Reviewing the whole article, the following conclusions can be 
drawn: 

Figure 7. The correlation between other biochemical parameters and FP.

From Figure 7, it could be observed that there are close relationships between FP with
these biochemical parameters after flag leaf stage. Especially in the flowering stage, the
nitrogen content of crop and soil, the carbon content of crop and soil, the chlorophyll A and
chlorophyll B content, carotenoid content and the crop biomass have the highest correlation
with the fused yield features spectral matrix FP. The results of the correlation analysis
coincided with the highest accuracy of yield prediction at flowering stage. Therefore, as
one of the stages with the largest water consumption and the strongest photosynthesis,
flowering is not only a key stage for yield formation, but also the best time to apply
PNMF−MCF for yield prediction.

5. Conclusions

To achieve the high accuracy prediction of yield, a field scale yield predictive method
applied for a UAV based platform, which included a crop and soil piecewise segmentation
method based on different vegetation coverage and a yield spectral feature fusion technique
(PNMF−MCF), was innovatively proposed in this paper. According to the experimental
design, we added differences in crop growth and subsequently demonstrated in the results
of image segmentation, spectral extraction and yield prediction that the accuracy was not
affected by differences in growth environment (varieties, nutrient and water). However,
this study explored the pixel-level segmentation of remote sensing data and the fusion
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model of the spectral data, but did not analyze sensors and other remote sensing data
sources, which is indeed a focus that should be considered for future research. In addition,
the validation of the method on farmland with different terrain will be carried out in the
future. Reviewing the whole article, the following conclusions can be drawn:

1. The complex and changeable farmland environment poses a challenge to accurately
identify crop and soil using remote sensing data. On the basis of different vegetation
coverage index Kv, a segmentation discriminant Q was proposed to achieve the
accurate segmentation of crop and soil. The experimental results have showed that it
is completely feasible to determine whether a pixel is a crop by determining whether
the Q of the pixel is greater than or equal to 0.1. This research will facilitate the accurate
pixel-level identification of crop and soil in practice in remote sensing platform.

2. The significance of synthetically considering crop and soil for yield research is to
reduce bias compared to crop−only yield prediction. The PNMF−MCF can effec-
tively fuse the yield features of crop and soil, and then achieve high precision yield
prediction. Compared to the existing UAV based wheat yield studies [55–59], the
method proposed in this manuscript obtained a better yield prediction performance.
The experimental results show that the flowering stage is the best time to perform
PNMF−MCF, because not only the flowering period is the most metabolically active
stage, with intense photosynthesis shaping the basis of yield, but also the sealing
ridge is not completed in this period and thus crop and soil spectral information from
UAV images could be better captured to achieve adequate utilization.
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Appendix A

The principle of the Projected Non-negative Matrix Factorization mentioned in
Section 2.3.2 is shown as below.

Non-negative matrix factorization ensures matrix elements are always positive, which
is suitable for spectroscopic analysis. Given a i × j non-negative initial spectral matrix
Fij
(

Fij ≥ 0
)

and a positive integer l(0 < l < min(i, j)), factorize Fij into a i× l non-negative
matrix W and a l × j non-negative matrix H under the constrains of Formula (A2).

Fi×j ≈Wi×l × Hl×j (A1)

L = min{1
2∑

i,j

[
Fij − (WH)ij

]2

Fro

} (A2)

where W represents the basis feature matrix of V, H represents the weighting coefficients
matrix and L is the least-square optimization constrain. Fro is the Frobenius norm.
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Lin proposed an improved algorithm, Projected Non-negative Matrix Factorization
(PNMF) based on projection gradient and Armijo step size rule. For the function L of PNMF,
its projection gradient is calculated as follows:

P(H,∇H F)l j =

{
Hl j, if 0 ≤ Hl j ≤ (∇H F)l j

(∇H F)l j, if (∇H F)l j < Hl j
(A3)

P(W,∇W F)il =

{
Wil , if 0 ≤Wil ≤ (∇W F)il
(∇W F)il , if (∇W F)il < Wil

(A4)

where W and H are the initial matrices generated by the Good Point Set theory, ∇F is
gradient, ∇H F = WHHT − VHT and ∇W F = WTWH −WTV.

Making alternate iterations for H and W, W remains unchanged and H(k+1) is
calculated first.

H(k+1) = Pj[H(k) − αkP(H(k),∇H(k) F)] (A5)

where Pj is the projection operator that sets non-positive elements to zero.
It is an optimization problem to find the minimum value in order to ensure the function

decreasing in iteration. The step size αk should satisfy the following Armijo rule.

(1− λ)
〈

P(H(k),∇H(k) F) , H(k+1) − H(k)
〉
+

1
2

〈
H(k+1) − H(k), WTW(H(k+1) − H(k))

〉
≤ 0 (A6)

where λ is a number between (0,1) and <∗> is the sum of the component-wise product of
two matrices.

In the kth iteration of H, if the step size αk
t satisfies Formula (A6), then continue to

increase the step size as Formula (A7) until Formula (A6) is not satisfied. If the step size αk
t

does not satisfy Formula (A6), then continue to decrease the step size as Formula (A8) until
Formula (A6) is not satisfied.

αk
t /µ→ αk

t+1 (A7)

αk
t · µ→ αk

t+1 (A8)

where µ is a number between (0,1).
Similarly, calculate W(k+1).

W(k+1) = Pj[W(k) − βkP(W(k),∇W(k) F)] (A9)

where the step size βk should satisfy the following inequality.

(1− λ)
〈

P(W(k),∇W(k) F) , W(k+1) −W(k)
〉
+

1
2

〈
W(k+1) −W(k), HHT(W(k+1) −W(k))

〉
≤ 0 (A10)

where λ is a number between (0,1) and <∗> is the sum of the component−wise product of
two matrices.

In the kth iteration of W, if the step size βk
t satisfies Formula (A10), then continue to

increase the step size as Formula (A11) until Formula (A10) is not satisfied. If the step size
αk

t does not satisfy Formula (A10), then continue to decrease the step size as Formula (A12)
until Formula (A10) is not satisfied.

βk
t /µ→ βk

t+1 (A11)

βk
t · µ→ βk

t+1 (A12)

where µ is a number between (0,1).
The iteration stop condition is as follows:

∑
(∇

H(k)
F)

l j
<0

(∇H F)2
l j + ∑

(∇
W(k) F)il<0

(∇W F)2
il ≤ ε( ∑

(∇
H(k) F)

l j
<0

(∇H F)2
l j + ∑

(∇
W(k) F)

il
<0

(∇W F)2
il) (A13)

where ε is the set precision threshold.
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