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Abstract: An analysis of the relationship between changes in Arctic stratospheric ozone (ASO)
and precipitation in eastern North America (38◦–54◦N, 65◦–87◦W; PENA) was performed using
observational and reanalysis data coupled with the Whole Atmosphere Community Climate Model
version 4 (WACCM4). We found that March ASO exhibits a strong correlation with PENA in April,
indicating that the one-month leading ASO exerts a potentially strong impact on April PENA.
Changes in tropospheric circulation over the North Pacific and North America can be influenced
by ASO anomalies via stratosphere–troposphere interactions. Increased ASO typically results in
the transport of drier, colder air from northwest to eastern North America and suppresses local
convective activity by enhancing regional downwelling. These conditions lead to a decrease in
regional atmospheric water vapor content (1000–600 hPa). Abnormally high ASO may therefore
suppress precipitation, whereas abnormally low ASO serves to enhance precipitation, and the finding
is supported by WACCM4 simulations incorporating these ASO anomaly signals. We also present an
ASO-based statistical linear model for predicting April PENA. Results confirm that the linear model
reproduces April PENA for both training and testing periods, based on March ASO, demonstrating
the reliability and stability of this linear model. This study verifies that ASO is a viable predictor for
projecting April PENA and thus improving forecasts of regional seasonal precipitation.

Keywords: Arctic stratospheric ozone; precipitation; prediction; WACCM; statistical linear model

1. Introduction

Changes in precipitation can interfere with a wide range of natural processes and
have considerable social and economic significance. Eastern North America—including the
northeastern United States and southeastern Canada—frequently experiences meteorologi-
cal and climatic disasters and, in recent decades, has become significantly wetter than the
long-term average [1]. For example, the National Centers for Environmental Information
reported that April 2010 was the 13th driest April in the northeastern United States since
recordkeeping began in 1895. April 2011 was the second wettest April in the northeastern
United States in 117 years. These events caused huge economic losses and casualties [2,3].
Numerous studies demonstrate that precipitation in eastern North America (PENA) has
changed significantly over the last few decades [4–12]. In the northeastern United States,
for instance, both the intensity of precipitation and frequency of precipitation events have
increased measurably [13–18], and Zhang et al. [5] reported more frequent springtime
heavy rainfall events over eastern Canada.

Previous studies have demonstrated how PENA can be modulated by multiple fac-
tors [19–31], including the El Niño–Southern Oscillation [32], severe storm events [33], the
Pacific–North American pattern [34,35], the North Atlantic Oscillation [34,36] and Atlantic
Multidecadal Oscillation [37], and the Pacific Decadal Oscillation [38]. Nevertheless, these
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factors are all from the troposphere, and the climate of North America at mid- to high-
latitudes (north of 60◦N), is easily affected by the Arctic stratospheric circulation. However,
the Arctic stratospheric factors related to PENA has not received sufficient attention.

Model simulations and observational data both suggest that circulation anomalies
related to anomalies in springtime Arctic stratosphere ozone (ASO) can propagate down-
ward, ultimately reaching the surface and influencing surface temperature [39,40]. For
instance, Hu and Tung [41] and Hu et al. [42] found that warming of surface air tempera-
tures over Eurasia since the late 1970s is strongly correlated with Arctic ozone depletion,
and Smith and Polvani [43] and Calvo et al. [39] demonstrated that North Atlantic pre-
cipitation can also be modulated by Arctic ozone variability. Based on simulations by the
European Centre/Hamburg version 5 (ECHAM5) atmospheric general circulation model,
Karpechko et al. [44] revealed an obvious tropospheric climate response to the 2011 ozone
depletion and sea surface temperature anomalies. The Arctic stratospheric polar vortex
plays a key role in the ASO and tropospheric precipitation. Previous studies have shown
that Arctic stratospheric polar vortex changes could affect the precipitation in the tropics
and subtropics [45,46], and in the northern middle latitudes [47,48]. Anomalously strong
or weak polar vortex states correspond to positive or negative phases of the stratospheric
Northern Annular Mode, respectively, and these can lead to positive or negative tropo-
spheric Arctic Oscillation (AO) events, which can subsequently alter patterns of surface
precipitation [49–54]. For example, Zhang et al. [48] found more precipitation in the north-
western North Pacific in late winter and spring during weak polar vortex events than
during strong polar vortex events. Subsequently, using various datasets, Zhang et al. [55]
pointed out that during weak polar vortex events, precipitation rates over the western
and southeastern parts of North Pacific, the southern part of North Atlantic, and South-
ern Europe are larger, whereas the total precipitation rates over the central North Pacific,
the northern parts of North Atlantic, and Northern Europe are smaller than those during
strong stratospheric polar vortex events. As our understanding of stratosphere–troposphere
coupling improves, various researchers have focused on the role of ozone in seasonal fore-
casting [44,56,57]. Based on observations and chemistry–climate models, Stone et al. [57]
constructed a linear regression model to predict April surface temperature based on March
ASO; their results suggested that April surface temperature can be predicted for four years
in individual ensemble members and for six years using observations extending beyond
the regression model. Similarly, Xie et al. [58] employed February–March ASO and Indian
Ocean sea surface temperature data to establish a linear regression model for predicting
April–May precipitation in central China, with a lead time of 1–2 months.

As mentioned above, the majority of current PENA predictions incorporate the tro-
pospheric signals described above; stratospheric signals, in contrast, are largely ignored.
However, the potential link between PENA and stratospheric anomalies remains an open
question. We seek to address this issue by exploring the possible mechanisms controlling
the impact of ASO on PENA, and the potential for making ASO-based predictions of PENA
on a seasonal basis. The remainder of this paper is organized as follows: Data, methods,
and experiment design are described in Section 2; Section 3 presents the physical mecha-
nisms underlying the ASO–PENA relationship, based on observational and reanalysis data;
Section 4 provides the precipitation response to ASO anomalies, based on WACCM4 and
linear regression modeling; Section 5 presents our conclusions.

2. Data, Simulations, and Methods
2.1. Data

Monthly mean ozone data were sourced from the Stratospheric Water and Ozone
Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and
water vapor data from a subset of the limb profiling satellite instruments operating since
the 1980s [59]. Ozone data used in this study have a horizontal resolution of 2.5◦ × 2.5◦

with 31 vertical levels (316–1 hPa). To demonstrate the results are not simply artifacts of a
particular dataset, we also employed the Global Ozone Chemistry and Related trace gas
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Data Records for the Stratosphere (GOZCARDS) project [60] ozone data, which have a
horizontal resolution of 10◦ × 10◦ with 25 levels (surface to 0.1 hPa). Ozone data from
SWOOSH agree with those from GOZCARDS [61]. Further, an ASO index was defined to
analyze the relationship between ozone and tropospheric precipitation. It is the zonal mean
ozone column abundance in Dobson Unit (DU) averaged over the area for the latitude of
60–90◦N at an altitude of 100–50 hPa (~1.6–21 km) after removing the seasonal cycle and
long-term linear trend for 1985–2019.

Precipitation was obtained from the Global Precipitation Climatology Project (GPCP),
which is a merged product (with 2.5◦ horizontal resolution) of rain gauge measurements,
satellite retrievals, and numerical model outputs [62]. To demonstrate the robustness of
the results, we also employed precipitation from the Global Precipitation Climatology
Centre, which is calculated from global station data (with 1.0◦ horizontal resolution) in this
study [63]. Total cloud cover data were taken from the European Centre for Medium-range
Weather Forecasts reanalysis 5, ERA5 [64]. Monthly mean winds, geopotential height,
and other meteorological fields were taken from the National Centers for Environmen-
tal Prediction–National Center for Atmospheric Research (NCEP–NCAR) Reanalysis-II
(NCEP2) [65]. All these datasets for the period of 1985–2019 were analyzed except for the
GOZCARDS data, which are only updated to 2012.

2.2. Simulations

The Whole Atmosphere Community Climate Model, version 4 (WACCM4) [66], as an
atmospheric component of the coupled-climate-system model—Community Earth System
Model (CESM) version 1.0.6, was used in this study. It uses a finite-volume dynamical
core and has 66 vertical levels extending from the surface to 5.1 × 10−6 hPa (~140 km).
The simulations presented in this paper were run at a horizontal resolution of 1.9◦ × 2.5◦

(latitude × longitude) and the inactive chemistry was disabled in the simulations [67]. The
vertical resolution is 1.1–1.4 km in the tropical tropopause layer and lower stratosphere.

Three experiments were designed to investigate the response of PENA to ASO anoma-
lies. All the model simulations were run using greenhouse gas (GHG) values from emissions
scenario A2 of the Intergovernmental Panel on Climate Change [68] for 1995–2005. The
Quasi-Biennial Oscillation (QBO) forcing was prescribed with a 28-month fixed cycle. Only
the ozone forcing from CMIP5 ensemble mean ozone output over the period 1995–2005 was
different among the three simulations. The control run, E1, used a 12-month seasonal cycle
of ozone forcing, averaged over the period 1995–2005. E2 was the same as E1, except that
the March ozone in the region of 45–90◦N at levels between 300 and 30 hPa was decreased
by 15% compared with E1. E3 was the same as E2, except that the March ozone was
increased by 15% compared with E1. The above-mentioned experiments were all integrated
for 43 years, with the first 3 years discarded as the model spin-up.

2.3. Leave-One-Out Validation

Leave-one-out cross-validation is a special case of cross-validation and can be used to
assess the reliability of the regression model and judge whether the regression model is
overfitting the data [69]. It uses one observation from the original sample as the validation
data, and the remaining observations as the training data. For example, for a dataset having
n rows, the 1st row is selected for validation, and the remaining (n − 1) rows are used to
train the model. Then, the 2nd row is selected for validation and the remainder to train the
model. Similarly, the processes are repeated for n steps. This estimation method is almost
unbiased and is widely used when the available data are quite rare. This process is closely
related to the statistical approach of jack-knife estimation [70].

Climate prediction systems now increasingly rely on the global climate models (GCMs),
but it is difficult to make reliable predictions for regional weather and climate due to
their low spatial resolution. Previously, Guo et al. [71] pointed out that linear models in
statistics perform well on regional seasonal forecasts and provide a clearer mechanistic
explanation [72]. Thus, we establish a linear least squares regression model with ASO as a
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sole predictor for April PENA in Section 4. To investigate the model’s stability, data were
divided into two parts: 1985–2007 for the training period and 2008–2019 for the test period.
Using this regression model, modeled April PENA was fitted to the training period, and
the forecast was produced for the test period to demonstrate its hindcast ability.

3. Results
3.1. Correlations between Observed ASO and PENA

Figure 1 illustrates the spatial distribution of the correlation coefficient between March
ASO and April PENA. We note that a high correlation coefficient occurs throughout much
of the northeastern United States and southeastern Canada, which together represent the
most economically developed, densely populated, and culturally diverse region in North
America. Such characteristics are prevalent in multiple datasets, indicating that these
results are robust and not simply artifacts of a particular dataset. To further estimate the
relationship between ASO and PENA, we calculated the monthly correlation coefficients
of March ASO and monthly precipitation over the entire study area (38–54◦N, 65–87◦W;
Figure 2a). According to this treatment, the correlation coefficient between March ASO
and April PENA (−0.61) is the only value that is significant at the 95% confidence level.
As shown in Figure 2b, ASO and PENA both exhibit clear interannual variability. Strong
March ozone depletion events (e.g., 1993, 1996, 2000, 2011) correspond to more PENA.
In contrast, strong positive ASO anomaly events correspond to less PENA accompanied
by almost simultaneous SSW events (e.g., 1999, 2010). The above result suggests that the
PENA response lags ASO anomalies by one month and persists for approximately one
month. Since the relationship between ASO and PENA is not sensitive to the ozone and
precipitation data selected in this study, hereafter we report only those findings obtained
from the SWOOSH and GPCP datasets.

Remote Sens. 2022, 14, 5040 5 of 17 
 

 

 

Figure 1. Correlation coefficient maps between the March ASO index and April precipitation 

anomalies for (a,b) 1985–2019 and (c,d) 1985–2012. ASO indices are calculated based on the (a,b) 

SWOOSH and (c,d) GOZCARDS datasets; precipitation data are derived from (a,c) GPCC and (b,d) 

GPCP. In (a–d), the long-term linear trends of the ASO index and precipitation were removed prior 

to the correlation analysis. Stippling denotes areas where correlation coefficients are significant at 

the 95% confidence level. The green square indicates the study area. 

 

Figure 2. (a) Correlation coefficients between March ASO index and precipitation anomalies over 

eastern North America (38–54°N, 65–87°W) for individual months (January–December of the same 

year), calculated using different ozone and precipitation datasets for the period 1985–2019 

(SWOOSH). We note that the GOZCARDS ozone data span the period 1985–2012. Red lines de-

note correlation coefficients that are significant at the 95% confidence level. (b) Time series of 

March ASO index and regionally averaged April rainfall anomalies after removal of seasonal cy-

cles and linear trends. The correlation coefficient between the two time series is given in the up-

per-right corner. ASO data are derived from SWOOSH and rainfall from GPCP. 

Figure 1. Correlation coefficient maps between the March ASO index and April precipitation anoma-
lies for (a,b) 1985–2019 and (c,d) 1985–2012. ASO indices are calculated based on the (a,b) SWOOSH
and (c,d) GOZCARDS datasets; precipitation data are derived from (a,c) GPCC and (b,d) GPCP. In
(a–d), the long-term linear trends of the ASO index and precipitation were removed prior to the
correlation analysis. Stippling denotes areas where correlation coefficients are significant at the 95%
confidence level. The green square indicates the study area.
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Figure 2. (a) Correlation coefficients between March ASO index and precipitation anomalies over
eastern North America (38–54◦N, 65–87◦W) for individual months (January–December of the same
year), calculated using different ozone and precipitation datasets for the period 1985–2019 (SWOOSH).
We note that the GOZCARDS ozone data span the period 1985–2012. Red lines denote correlation
coefficients that are significant at the 95% confidence level. (b) Time series of March ASO index and
regionally averaged April rainfall anomalies after removal of seasonal cycles and linear trends. The
correlation coefficient between the two time series is given in the upper-right corner. ASO data are
derived from SWOOSH and rainfall from GPCP.

Our results indicate that the one-month leading ASO anomaly has a potential impact
on PENA during the subsequent April. Figure 3a depicts the difference in April precipita-
tion anomalies over eastern North America corresponding to the occurrence of positive
and negative March ASO anomaly events (Table 1). ASO-related precipitation differences
averaged over the studied area can reach about –30.9 mm/month, about –38.5% of the
total monthly mean (Figure 3b), suggesting that ASO plays an important role in regulating
precipitation variability over eastern North America. Therefore, accurate observation of
March ASO variability can be used to predict April rainfall, with important implications
for reducing economic losses caused by extreme precipitation events.
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Figure 3. (a) Composite differences in April rainfall anomalies (mm/month; from GPCP) between
positive and negative ASO anomaly events during 1985–2019. Detailed anomalous events can be
found in Table 1. (b) Ratio of the composite differences to April precipitation climatology.

Table 1. Positive and negative ASO anomaly events during the period 1985–2019. A positive
(negative) ASO anomaly event is identified when the March ASO index, calculated from SWOOSH,
is greater (smaller) than 1 (−1) standard deviation.

Positive Anomaly Events Negative Anomaly Events

March ASO 1994, 1999, 2004, 2010 1993, 1995, 1996, 2000, 2005, 2007, 2011

3.2. The Potential Mechanisms Linking ASO and PENA

Previous studies have highlighted the delayed climatic influence of Arctic ozone on
the mid- and high-latitude Northern Hemisphere [39,40,44,47,56,57,61,73,74], a pattern
that can be explained via the interaction between the ASO and tropospheric circulation.
It has been shown that the decrease in Arctic total column ozone (TCO) induces a de-
crease in shortwave heating [47,61,73–76], and thereby favors cooling and strengthening
of the Arctic SPV (stratospheric polar vortex). Anomalies in March ASO could result in
a circulation anomaly (North Pacific Oscillation, NPO) over the North Pacific, and the
process and mechanism of ASO affecting the NPO has been analyzed in detail in previous
studies. Wang et al. [77] pointed out that the intensified stratospheric circulation induces
the tropospheric positive AO (+AO)-like anomaly via stratosphere–troposphere dynam-
ical coupling, and the +AO-like anomaly is largest in late March when March ASO is
abnormally low. Subsequently, the easterly anomalies over the midlatitude eastern Asia
related to the +AO-like anomaly further extend eastward and favor the negative North
Pacific Oscillation (–NPO)-like circulation anomaly via anomalous zonal wind shear and
the interactions between synoptic scale eddies and the mean flow in early–middle April.
Previously, Xie et al. [61] also depicted composite daily variations in zonal wind anomalies
during positive and negative ASO events, Arctic stratospheric circulation anomalies related
to ASO can propagate downward into the polar troposphere within days. Subsequently, the
abnormal circulation can be observed extending into the mid-latitude North Pacific basin
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over the next 30 days, suggesting that Northern Hemisphere mid-latitude tropospheric
circulation could be modulated by ASO, with a lag of one month.

To further explore the physical processes of March ASO driving annual variability
in April PENA, we produced horizontal spatial distributions of correlation coefficients
for March ASO and the April zonal wind and geopotential height fields (Figure 4). This
treatment reveals a tripolar pattern across the North Pacific (Figure 4a,c,e), consistent with
the results of Wang et al. [77]. Specifically, Figure 4 demonstrates that ASO-related changes
in Arctic stratospheric circulation during March can influence the circulation over the
central North Pacific and even North America. Details of the mechanisms responsible for
the effects of the ASO on the North Pacific can be seen in Xie et al. [61]. Consequently, high
positive correlations between ASO and geopotential height variations occur over central
North America (Figure 4b,d,f), implying that enhanced ASO corresponds to anomalous
anticyclonic airflow over North America. This circulation will serve to enhance the transport
of dry, cold air from the continental interior toward eastern North America, resulting in a
significant decrease in atmospheric water vapor content over the latter.
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Figure 4. (a,c,e) Composite differences in April zonal wind (m/s; from NCEP2) between positive and
negative ASO anomaly events during 1985–2019. (b,d,f) Same as (a,c,e), but for geopotential height.
Black dots denote those regions with significant correlation coefficients at the 95% confidence level.
Detailed anomalous events can be found in Table 1.

To investigate this relationship in more detail, we present the composite differences in
April wind fields between positive and negative ASO anomalies. When ASO increases, we
observe that climate in eastern North America is dominated by anomalous northwesterly
winds (Figure 5). Since atmospheric water vapor in this region is derived primarily from the
northwest, where the air is drier and colder (Figure 6a), this particular circulation pattern
is not conducive to elevated water vapor concentrations over eastern North America.
Figure 6c shows the water vapor flux divergence, in which the negative response of water
vapor to enhanced ASO is clearly visible. As reported recently by Kunkel et al. [78],
precipitation amounts over the continental United States tend to scale linearly with the
water vapor content of the air column, in which case our results indicate that increased
(decreased) ASO will serve to reduce (enhance) precipitation over eastern North America.
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Figure 5. Composite differences in April wind (vectors, m/s; from NCEP-2) between positive and
negative ASO anomaly events at (a) 200 hPa, (b) 500 hPa, and (c) 700 hPa. Light and dark yellow areas
represent values that are statistically significant at the 90% and 95% confidence levels, respectively.
Detailed anomalous events can be found in Table 1.
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Figure 6. (a) Composite differences in April vertically integrated water vapor flux (vectors,
g/(s × hPa × cm)) over 1000–600 hPa between positive and negative ASO anomaly events. Light
and dark yellow areas represent values that are statistically significant at the 90% and 95% confidence
levels, respectively. (b–d) Same as (a), but for vertical velocity at 700 hPa (Pa/s, Red (blue) colors rep-
resent descending (ascending) motion), water vapor flux divergence (units: 103 g/(s × hPa × cm2)),
and total cloud cover (%), respectively. Detailed anomalous events can be found in Table 1. Black
dots denote regions with correlation significant at the 95% confidence level.
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The lifting and adiabatic cooling of air is a prerequisite for precipitation; when an
ascending air parcel rises above the lifting condensation level, vapor condenses to form
clouds, thereby creating favorable conditions for precipitation. The spatial distribution of
vertical velocity anomalies associated with enhanced ASO is depicted in Figure 6b, and
reveals enhanced tropospheric downwelling over eastern North America. Such changes in
circulation are likely to suppress local convective activity (Figure 6b) and reduce overall
precipitation. Spatial patterns of April total cloud cover also reveal a negative correlation
with March ASO in this region (Figure 6d).

Existing observational data suggest that ASO affects PENA with a lead time of one
month. Over the North Pacific and North America, for instance, elevated ASO impacts
tropospheric circulation via the stratosphere–troposphere interaction described above.
Over eastern North America, positive ASO anomalies are associated with northwesterly
airflow, thereby resulting in decreased atmospheric water vapor content, weakened local
convection (Figure 6b), and reduced cloud cover (Figure 6d). Such conditions ultimately
lead to reduced precipitation over eastern North America. The opposite occurs under
anomalously low ASO conditions.

3.3. The WACCM Results

To corroborate our proposed mechanism for ASO–PENA interactions, we simulated
the response of circulation, precipitation, and radiation over eastern North America to ASO
anomalies. Details of these simulations can be found in Section 2. First, we confirm that
the model can reproduce North American precipitation faithfully. As shown in Figure 7,
WACCM4 effectively reproduces the observed spatial distribution of climatological April
rainfall; the three major precipitation centers located over the west coast, southern North
America, and part of the northwestern North Atlantic are simulated realistically, under-
scoring the suitability of this model for our analysis. The simulated response of April
PENA to ASO variability (Figure 8) reveals that modeled precipitation anomalies also show
decreased precipitation over most parts of the studied area, similar to the observations. Al-
though there are some small differences between simulated precipitation and observations,
this may be because the model convection parameterization scheme over and around the
Rocky Mountains is not perfect.
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Figure 8. Differences in April precipitation between experiments E3 and E2 (mm/month). Cross-
hatching denotes regions for which values are significant at the 90% confidence level.

The simulated responses of water vapor flux and its divergence to ASO anomalies
are displayed in Figure 9. Over eastern North America, the water vapor flux exhibits an
anticyclonic behavior (Figure 9a) that is similar to the observed conditions (Figure 6a).
Although the enhanced moisture divergence is also well simulated (Figure 9c), we note
that the center of divergence is displaced slightly south of its observed position (Figure 6c).
This offset potentially reflects limitations in the convective parameterization scheme em-
ployed in the model, as suggested by several previous studies [79–81], particularly in the
vicinity of the Rocky Mountains. The model’s coarse resolution may further exacerbate
simulation inaccuracies.
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Figure 9. (a–c) Same as Figure 6a–c, but for the differences between experiments E3 and E2. Merid-
ional water vapor flux components in (a) are multiplied by 5. (d) Long wave cloud forcing (W/m2)
between experiments E3 and E2. Black dots denote regions where differences are significant at the
90% confidence level. The experiments are based on WACCM4.

Figure 9b displays the differences in forced vertical velocity anomalies for April
between E3 and E2. Changes in vertical velocity align with those depicted in Figure 6b.
Negative cloud forcing is forced by an increase in ASO, suggesting that clear sky conditions
and reduced cloud cover will become more common under abnormally high ASO levels.
This pattern is consistent with the spatial distribution of correlation coefficients between
March ASO and April cloud cover (Figure 6d), and both observed and simulated results
indicate that changes in April PENA are closely related to ASO variability.
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4. A Linear Regression Model for Predicting April PENA

Building upon the established relationship between March ASO and April PENA, we
constructed a linear regression model that utilizes the former to predict the latter. Specifi-
cally, we established an ASO-based linear regression model for April PENA, spanning the
training period 1985–2007, using the formula:

PENA(t) = −1.23 × ASO(t) + 178.21 (1)

where t is time in years. Units for April PENA and March ASO are mm and DU, respectively.
As shown in Figure 10a, variations in April PENA, fitted with the ASO-based linear

regression model, reflect certain characteristics of the observed PENA. For instance, the
correlation coefficient between the two is 0.59, which passes the 99% confidence level in a
Student’s t-test over the course of the training period. During the test period (2008–2019),
the correlation coefficient is 0.69 (99% confidence level). We note that the predicted April
PENA is closer to observed values during the test period, potentially reflecting the stronger
relationship between ASO and PENA for that period. Further analysis will be necessary
to explore this disparity further. To investigate the stability of the linear regression model
and its suitability for prediction, we employed various training and test periods following
the approach documented by Kim et al. [82] (Figure 10b,c). Our results indicate that
fitted and predicted April PENA values are both closely correlated with observed values
under different data segments. All correlation coefficients exceed 0.50 and are statistically
significant at the 95% confidence level, suggesting that the empirical linear model performs
well in predicting seasonal PENA.
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Figure 10. (a) Observed April PENA (green line, mm/month) and fitted April PENA variations (blue
line, mm/month) established by the linear regression model for March ASO during 1985–2019. The
training period is 1985–2007 and the independent test period is 2008–2019. (b) Same as (a), but with
a training period of 1997–2019 and independent test period of 1985–1996. (c) Same as (a), but with
an independent test period of 1996–2007 and the other years are used for the training period. The
numbers in parentheses represent the correlation coefficients.
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Acknowledging the limited temporal scale of the dataset, and to avoid overstating the
efficacy of our linear regression model, we took a leave-one-out cross validation approach
to evaluate model performance. Using this approach, precipitation within each grid
cell is predicted based on the leave-one-out method. Specifically, leave-one-out cross
validation used in this study is that the predicted precipitation for each year is predicted by
a linear prediction model constructed based on data from other years, and the predicted
precipitation for all years is obtained based on this method. Then, the predicted April
precipitation is compared with observations. Figure 11a shows the spatial distribution of
correlation coefficients between predicted and observed PENA; these data confirm that
the ASO-based model can reproduce PENA effectively, producing significant positive
correlations between simulated and observed values over eastern North America. The
correlation coefficient between the two time series is 0.53, which passes the 99% confidence
level (Figure 11b), thus indicating that our linear model is robust and suitable for predicting
future precipitation.
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Figure 11. (a) Mapped correlations between observed and predicted April PENA variability for
the period 1985–2019. Predicted April PENA was established using the linear regression model
incorporating March ASO, based on the leave-one-year-out method. (b) Time series of observed April
PENA (green line, mm/month) and predicted April PENA variations (blue line, mm/month) based
on the leave-one-year-out method.

5. Conclusions

April PENA exhibits significant interannual variability and is strongly correlated with
April ASO, but lags by one month. We find that it takes approximately one month for the
ASO signal to propagate to the northern mid-latitude troposphere, a process that in turn af-
fects regional weather and climate. These lagged, ASO-driven circulation anomalies exhibit
a clear tripolar pattern over the North Pacific and result in anticyclonic circulation over
central North America. During positive ASO anomaly events, these circulation anomalies
cause cold, dry air to be drawn into eastern North America, resulting in relatively cool, dry
conditions overall. Further, ASO-related changes in vertical velocity serve to suppress local
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convective activity, thereby inhibiting cloud formation and reducing local precipitation.
The opposite pattern occurs during abnormally low March ASO. This relationship is cor-
roborated by our model tests using the WACCM4. Together, our findings indicate that the
delayed impact of ASO on PENA is primarily a function of the regulation of tropospheric
circulation over eastern North America.

Recognizing the delayed impact of ASO on PENA, we demonstrate that ASO can
be used in the prediction of seasonal precipitation in North America. Our empirical
linear model, which incorporates the one-month leading ASO signal as its sole predictor,
successfully predicts April PENA, thereby indicating that ASO is a key component of April
PENA variability. Both the high correlation coefficient between March ASO and April
PENA and our leave-one-out cross validation test confirm that ASO is a viable predictor
for PENA, underscoring the potential for using Arctic ozone data to improve seasonal
predictions of April precipitation.
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