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Abstract: In the Bering Sea slope, ocean eddies are essential physical processes that carry nutrients to
the shelf. The development of the satellite altimeter has facilitated the observation of oceanic eddies.
Attention networks are used as the core algorithm for eddy detection to suppress feature responses
in irrelevant non-eddy areas, which can address the issue of sample imbalance in high-latitude ocean
eddies. Furthermore, data from both the sea surface height (SSH) and geostrophic velocity were
employed as model inputs to integrate more eddy-related properties. The results of ocean eddy
detection using this method and the dataset allowed more eddies to be detected than with traditional
vector geometry-based methods and only SSH-based models. This study also incorporated the results
of multiple deep learning models to increase both the overall and single-day eddy detection efficiency.
As a result, the algorithms in this paper show that attention networks and geostrophic velocity data
are both appropriate for high-latitude ocean eddy identification. This makes a contribution to the
further application of deep learning methods to satellite altimetry data.

Keywords: satellite altimeter; Bering sea slope; attention network; deep learning; oceanic eddy;
geostrophic velocity

1. Introduction

Mesoscale eddies are important oceanic phenomena that occur in the upper ocean,
with spatial sizes of tens to hundreds of kilometers and lifetimes spanning from tens to
hundreds of days. They can be classified as cyclonic or anticyclonic eddies based on their
motion patterns and as cold or warm eddies based on their thermal states [1–3]. The Bering
Sea is a typical sea in which eddies frequently occur. The mechanisms that generate these
eddies include geostrophic effects, instability, wind forcing, strong currents through the
east pass, and topographic effects [4–8]. Anticyclonic eddies along the shelf break in the
Bering Sea slope (BSs), which bring cold, nutrient-rich water to the surface from the depths,
have a significant impact on the Bering Sea’s main productivity, particularly the “Green
Belt” [9].

A satellite altimeter gathers information about the ocean by sending a signal to the
surface of the water and then analyzing the signal that comes back. Today, we have ESA-
1/2, Envisat, Sentinel-3A/B, Jason-1/2/3, Sentinel-6, HY-2A/B/C/D, SARAL/AltiKa,
CryoSat-2, and ICESat-1/2, which provide a homogeneous, highly accurate, long-term
series of more than 30 years [10–14]. These high-quality satellite altimetry data have greatly
contributed to the study of mesoscale ocean eddies [15–17].

The traditional approaches to automated eddy detection are mainly separated into
physical parameter methods and geometric feature methods, such as the Okubo–Weiss
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(OW), Winding-Angle (WA), and Vector Geometry (VG) methods [18–20]. However, all of
these methods require contour iterations or sophisticated computing procedures and are
inefficient in terms of computational efficiency. Furthermore, these methods also suffer
from the necessity for artificial parameter estimation, are susceptible to SSH noise, rely on
treating eddies as ellipsoidal, and necessitate contour iterations or sophisticated computer
procedures [21,22].

Deep learning algorithms have been widely applied in the marine industry in recent
years. Nonlinear transformations of deep learning can abstract the representations of
features, providing a unique advantage in the extraction and learning of target features. A
variety of deep neural networks introduced in the computer vision literature have been
used to find and classify eddies by applying image processing techniques to satellite
altimetry data [23]. Lguensat et al. [24] detected ocean eddies from SSH data based on the
encoder–decoder network U-Net. Xu et al. [25] performed the detection of ocean eddies
using the Pyramid Scene Parsing Network (PSPNet) in a semantic segmentation framework,
which introduced a null-roller and a pyramid pooling model to capture more contextual
relationships by making full use of global and local information and demonstrated good
results in the western Pacific Ocean. Considering the effects of ocean eddies on sea surface
temperatures, Liu et al. [26] proposed a multimodal U-Net eddy recognition model for
eddies based on fused satellite SSH and SST data, which was significantly better than a
deep learning model that only considered a single feature. In addition, network and feature
inputs, as well as mesoscale eddy mask data, may have a significant impact on a model’s
performance. Santana et al. [27] compared multiple variations of the U-Net network and
different eddy segmentation mask data in a mesoscale eddy detection task in the South
Atlantic near South America and determined that the segmentation mask data had a far
greater influence on detection efficiency than that of the network enhancements.

Although prior research on the identification of mesoscale eddies using deep learning
algorithms has shown excellent results in a range of seas, no study has been undertaken
specifically for high latitudes, where mesoscale eddies are often tiny and sample imbalances
are more pronounced. In addition, eddies on the Bering Sea slope serve as an important
physical process for water column and nutrient transport. It is essential to detect them
accurately. Therefore, using attention networks to rectify the imbalances in eddy samples
on the Bering Sea slope and achieve effective detection of mesoscale eddies on the BSs is
the major objective of this study.

2. Data

The daily sea-level anomaly (SLA) data with a spatial resolution of 0.25◦ × 0.25◦ were
used to characterize the mesoscale eddies of the BSs. Daily temporal data could meet the
requirement for huge samples for model training and were also enough to describe eddies
that lasted for dozens of days. Similarly, a spatial resolution of 25 kilometers provided
the neural network with sufficient detail about the features of eddies ranging from tens to
hundreds of kilometers. The SLA data were obtained from the global multi-satellite along-
orbit altimetry data product of the Copernicus Marine Environmental Monitoring Service
(CMEMS). The data products combined all satellite altimetry data from 1993 to the present,
including the data from TP, Janson-1/2, ERS-1/2, ENVISAT, GFO, Cryosat-2, Sara/Atika,
and Haiyang-2A. The geostrophic velocity data contained zonal and meridional velocities
calculated from sea surface height anomaly data. To increase the number of eddy boundary
pixels and improve detection accuracy, this paper used nearest-neighbor interpolation to
interpolate the SLA data and geostrophic velocity data onto a 0.125◦ × 0.125◦ grid [28].

We used 10,227 days of SLA and geostrophic velocity data from 1993 to 2020 as the
dataset in this study, with 3653 samples from 2011 to 2020 as the test set and 6574 samples
from 1993 to 2011 as the training data (of which 30 percent was the validation set). In
addition, this research used a vector geometry (VG)-based algorithm to label the eddy
boundaries from the geostrophic velocity data as the labels for training. Anticyclonic eddies
were labeled as 1, cyclonic eddies as 2, and land and non-eddy seas as 0.
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3. Methods
3.1. Deep Learning Models Based on Attention Networks

For the effective detection of mesoscale eddies in the BSs, this study uses an attention-
network-based deep learning model to simultaneously extract features from SLA data
and geostrophic velocities for learning. An attention network is a network that learns a
set of weighting coefficients autonomously from the network and “dynamically weights”
them to emphasize areas of interest while suppressing irrelevant background areas. This
study applies two typical attention networks: the channel attention network and the
spatial attention network. The characteristics that are significant on whichever channel are
the topic of channel focus. By learning the significance of each feature channel, channel
attention may determine the interdependencies across feature channels and assign each
channel a unique weight coefficient. This causes significant feature responses to stand out
and causes fewer significant feature responses to disappear. Spatial attention to where
features are meaningful is achieved by assigning weights to features at all locations to
selectively aggregate features that are related to each other, thereby suppressing features at
non-important locations [29].

Figure 1 shows the eddy detection model built in this study based on the Attention
Resnet U-network (AttresU-net). The AttresU-net deep learning algorithm consists of
three main modules: the attention gating module, the U-net semantic segmentation base
module, and the residual module. The model introduces the residual module into the
U-net to replace the convolutional structure in the original encoder, allowing the entire
network to deepen to extract more mesoscale vortex features while avoiding gradient
vanishing. Each residual module consists of a 3× 3 convolutional layer, an IN layer, a
ReLu activation function, and a short connection consisting of a 1× 1 convolutional layer
and an IN layer. For the encoder path, each residual module is connected to each other
one by a 2× 2 maximum pooling layer. For the decoder path, each stage is convolved
by a 2× 2 upsampling to achieve recovery of the original resolution. The attention gate
(AG) module, which suppresses the responses of features in irrelevant background regions
(e.g., in non-eddy seas and land), increases the sensitivity of the model to eddies with less
computational effort and is central to the model. In the U-net architecture, AGs are able to
filter neuronal activation during forward and backward transfer by weighting gradients
from background regions, such as land and non-mesoscale eddy seas, downwards during
backward transfer. As a result, the model parameters are updated in the shallower layers
primarily based on spatial regions in the task [30,31].

Figure 1. Schematic diagram of the Attention Resnet U-Network (AttresU-net).
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Figure 2 shows an eddy detection model based on the Dual Attention Network (Danet).
Danet’s backbone network was Dilated RestNet, with the downsampling operations re-
moved and dilated convolution used in the last two RestNets to obtain a feature mapping of
1/8 of the size of the inputs. The attention module was then supplied with the feature map
output by the backbone network. Then, the reshaped D was multiplied with the spatial
attention map, multiplied by the scale factor α, reshaped again to its original shape, and,
finally, added to A to obtain the final output feature map E (10× 20× 512). The processing
of the channel attention module was similar, except that the opposite matrix multiplication
was used to obtain a channel attention map of (512× 512). The outputs of the two channel
attention modules were elementally summed to complete the feature fusion and, finally,
convolved to produce a prediction map [32].

Figure 2. Schematic diagram of the Dual Attention Network (Danet).

3.2. Experimental Setup

The mesoscale eddy detection model was trained using the Adam optimizer with the
maximum learning rate set to 0.001 and the learning rate adjustment scheme set to use the
ReduceLROnPlateau method. After 5 epochs, the learning rate was halved without any
further improvement in the validation dataset loss function. The terminating conditions
looked for 10 consecutive epochs without any improvement in the loss function; if this
condition was fulfilled, we considered the optimal value to be attained and halted the
process. The Dice coefficient, which is commonly used in semantic segmentation tasks,
was chosen as the metric, since it was unaffected by the fraction of foreground. In addition,
accuracy was used as a metric to evaluate whether the eddy classification was accurate.
These metrics are defined as follows:

Dice =
2|P ∩ T|
|P|+ |T| , (1)

where p (prediction) is the prediction graph for a particular classification, and T (true) is
the true distribution of this classification. |p| or |T| represents the number of elements in
the matrix.

acc =
TP + TN

TP + TN + FP + FN
, (2)
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where TP (true positive) is the number of eddies that are correctly detected, FP (false
positive) is the number of eddies that are over-detected, and TN (true negative) and FN
(true negative) indicate the numbers of points properly and incorrectly recognized as
background. The models were built with the Keras framework and trained on an Nvidia
GeForce RTX3090 GPU.

4. Results
4.1. Eddy Detection

In this study, SLA and geostrophic velocity data from the altimetry data were used
to train three different models to detect mesoscale eddies in the Bering Sea slope region.
AttresUnet, Danet, and Eddynet comprised the three models. The Eddynet model was
proposed by Lguensat and was used as a reference model in this study [24].

Table 1 compares the performances of different training datasets and different models
for eddy detection in the BSs area according to the evaluation metrics. The evaluation
metrics Dice coef anti and Dice coef cyc represent the similarity of the model’s recognition
profile to the ground truth for anticyclonic eddies and cyclonic eddies, respectively, the
Mean Dice coef is the average similarity including the non-eddy region, and Accuracy
represents the accuracy of the classification. In order to evaluate the model training effect
more realistically, the model was tested in this paper by using data from the decade
2011–2020. When the U and V components of the geostrophic velocity were entered
into the model together with SLA as different channels, all the metrics tested by the
model were very significantly improved compared to those obtained when using only
SLA data. This may have been due to the fact that the geotrophic velocity field itself was
representative of the spatial characteristics of the eddies. When we examined the evaluation
results of the different models, we noticed that the evaluation indexes of AttresUnet were
slightly better than those of Eddynet. The AttresUnet model introduced an attention
network module to its structure, which helped to ease the sample imbalance problem
to some extent. The Danet model had the best metrics among the three models, with
an average similarity of 0.74–0.77 with the ground truth and a classification accuracy
of 91.88–93.75%. Unlike AttresUnet, which inserted the attention mechanism module
into U-net, Danet directly used the attention network to extract eddy features for output
classification. These results indicate that the attention network was more competent in
training the eddy detection model.

Table 1. Metrics derived from the models trained on two datasets.

Dice Coef Anti Dice Coef Cyc Mean Dice Coef Accuracy (%)

SLA SLA,U,V SLA SLA,U,V SLA SLA,U,V SLA SLA,U,V

AttresUnet 0.65 0.72 0.54 0.62 0.71 0.77 90.72 92.69
Danet 0.69 0.72 0.57 0.62 0.74 0.77 91.88 93.75

Eddynet 0.65 0.71 0.52 0.63 0.71 0.76 90.78 92.37

It is necessary to consider that in the study of eddy detection with deep learning, model
evaluation results are based on the ground truth, which is often replaced by automatic
recognition algorithms based on parameters and geometric contours, such as OW, VG, and
Openeddy. The algorithms themselves are subject to certain errors and cannot replace the
real eddy field, so the final eddy detection effect needs further analysis. Figure 3 shows the
ocean eddies in the BSs identified 9 September 2016 using the VG, AttresUnet, Danet, and
Eddynet algorithms with different training datasets. In the snapshot of eddies identified on
9 September 2016, all three deep learning algorithms identified more eddies than the VG
algorithm in both datasets. In the ten-year dataset, it was also true that the deep learning
algorithm found more eddies than the VG method did (67,205–71,548 detected by the
deep learning algorithm and 64,244 by the VG algorithm). Furthermore, around 65.5◦N,
177◦W, there was a considerably high SLA and a closed anticyclonic velocity field. All



Remote Sens. 2022, 14, 4974 6 of 13

deep learning algorithms detected the eddy at this site, but the VG algorithm did not. In
addition to missing crucial eddies, the VG algorithm also suffered from uncertainty in the
depiction of eddy borders, e.g., anticyclonic eddies between 55–57◦N, 175–179◦W.

The differences among deep learning models are difficult to show in a few snapshots.
Overall, the Danet trained with the SLA and geostrophic velocity detected the most eddies
(with a number of 71,548). However, among the eddies detected by Danet, a few were
precisely located but entirely mischaracterized in shape. The U-net-based AttresUnet and
Eddynet algorithms, on the other hand, tended to depict shapes more accurately. Therefore,
this study suggests combining eddy detection results from multiple models to produce
more accurate results.

VG
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Figure 3. Comparison of the oceanic eddies detected by the four different algorithms in the BSs
region on 9 September 2016. The upper panel shows the comparison of the VG, Attresunet, Danet,
and Eddynet eddy detection results from the SLA dataset. The bottom panel shows the comparison
of the VG, Attresunet, Danet, and Eddynet eddy detection results from the SLA and geostrophic
velocity datasets. The shading is SLA, red contours are anticyclonic eddies, and blue contours are
cyclonic eddies.

We used the results of the AttresU-net (SUV) model, which provided a more accurate
depiction of the shape, as a basic eddy field. Next, we selected an eddy from the results
of the following model and judged if it appeared in the base eddy field. We added it to
the base eddy field if no eddy in the base eddy field had a profile that intersected with it.
We iterated in this way until the results of all models were traversed. To guarantee that
more well-shaped eddies were imported, we eliminated new eddies with fewer than four
grid points.

Figure 4 shows the eddies detected by combining the results of multiple models. The
upper panel shows a snapshot of the multi-model combination (CMM) method and the
VG algorithm for eddy detection on 9 September 2016. On that day, the combination of
multiple models detected 28 eddies, which was more than the 24 eddies detected by the VG
algorithm. The most significant advantage of the combined multi-model results over the
VG algorithm results was the detection of small eddies. CMM could more precisely find
and characterize the boundaries of small eddies surrounding major eddies. The bottom
panel compares the number of daily eddies detected by the CMM versus those identified
by the VG and the deep learning model individually. The individual models that are
given as comparisons only indicated the numbers of eddies discovered using the SLA and
geostrophic velocity fields. The single deep learning model did not consistently outperform
the VG algorithm in terms of daily detection efficiency, but the CMM found significantly
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more eddies in each day’s detection (an average of about 11 more eddies per day). In total,
the CMM detected 103,437 eddies over ten years, which was well above the single-model
maximum of 71,548.
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Figure 4. Combination of multi-model eddy detection results. The upper panel shows a snapshot
(9 September 2016) of the comparison of multi-model recognition results with those of the VG
algorithm. Red (blue) dots represent the center of an anticyclone (cyclone). The bottom panel shows
the number of eddies detected by the CMM compared with the other algorithms in this paper. The
curve represents the results after 31-day smoothing.

4.2. Validation

It is hard to find a method that can objectively assess the performance of eddy detection
algorithms [20,33]. Effective evaluation of an eddy detection method is only possible once
the true distribution of eddies has been determined. Therefore, referring to the validation
process in Nencioli et al. [20], the same geometric constraints were used as guidelines for
the construction of true eddy maps in this study. We randomly selected 10 days from 3653
test samples for both the CMM and VG algorithms to compare with the true eddy maps.

In order to display the results of the comparison and validate the efficiency of the two
methods, the successful detection rate (SDR) and excess detection rate (EDR) were defined
as follows [33]:

SDR =
Na

Nt
, (3)

EDR =
Ne

Nt
, (4)

where Na is the number of eddies that are present in both the algorithm and the true maps;
Ne is the number of eddies considered by the algorithm to be eddies but not included in
the true eddy maps; Nt is the number of true eddies for a given day.
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Tables 2 and 3 show our validation results. The average SDR of the CMM (69.37%) was
much higher than that of the VG (38.69%). VG algorithms that worked well in other seas
(>90%) [20] performed badly in high-latitude seas, revealing the difficulty of eddy detection
in high-latitude seas. Consequently, the CMM algorithm is worthy of commendation as a
result of its significant improvement in the SDR. Due to the lack of physical or geometric
limitations, CMM eddies will have a few identifications (2.78%) in excess. In other research,
this was not considered bad performance [20,33].

For example, Figure 5 shows a comparison between the true eddies and algorithm-
detected eddies for day 2182 (21 December 2016). The green dots represent the true eddy
distribution, while the green circles represent the eddies detected by the algorithm. As a
result, dots enclosed by circles represent true eddies detected by the algorithm (Na); hollow
circles without kernels represent eddies detected by the algorithm as excess (Ne); the dots
without circles are true eddies that the algorithm could not detect (missed eddies). The
eddies missed by the CMM were mostly tiny, weak eddies, while VG missed several large
eddies. The CMM had two over-detections. One occurred at an unclosed meander, while
the other occurred at a border with low SLA. The missed eddies of the CMM were mostly
due to the fact that the VG algorithm, using labeled data, was barely at the level of manual
detection, resulting in some misdirection while also causing foreground object sparsity.
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Figure 5. Comparison between true eddies (green dots) and algorithm-detected eddies (green circles)
for day 2182 (21 December 2016). The left panel shows the multi-model detection results. The right
panel shows the VG algorithm’s detection results.

Table 2. CMM results for the 10 days used for the validation: True eddies are the eddies identified
via manual detection; Na is the number of true eddies detected by the automated method; Ne is the
number of eddy centers detected by the algorithm that do not correspond to a true eddy. SDR and
EDR are defined in Equations (1) and (2).

Day 3379 2194 1981 3046 890 3631 129 1561 2182 752 Total

True eddies 42 39 39 39 47 45 51 46 44 39 431
Na 29 27 27 24 31 29 37 34 32 29 299
Ne 1 2 1 0 1 2 1 2 2 0 12

Missed eddies 12 12 12 15 16 16 14 12 12 10 132
SDR(%) 69.05 69.23 69.23 61.54 65.96 64.44 72.55 73.91 72.73 74.36 69.37
EDR(%) 2.38 5.13 2.56 0.00 2.13 4.44 1.96 4.35 4.55 0.00 2.78
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Table 3. VG results for the 10 days used for the validation.

Day 3379 2194 1981 3046 890 3631 129 1561 2182 752 Total

True eddies 42 39 39 39 47 45 51 46 44 39 431
Na 17 14 19 14 19 17 13 21 17 15 166
Ne 1 0 1 0 0 0 0 0 0 0 2

Missed eddies 23 25 20 24 28 28 38 25 25 24 260
SDR(%) 40.48 35.90 48.72 35.90 40.43 37.78 25.49 45.65 40.48 38.46 38.69
EDR(%) 2.38 0.00 2.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47

4.3. Eddy Size, Trajectory, and Lifetime

Figure 6 shows the distribution of the number of eddy radii. The histograms of the
eddy radii detected by the two methods—the CMM and VG algorithms—show a significant
difference. This difference was most pronounced in the 0–25 km radius range, where CMM
detected three times as many anticyclones and cyclones as VG. The detection efficiency of
CMM was higher than that of the VG algorithm over most scale radii. Notable is the fact
that the peak number of CMM detections (23,347 anticyclonic eddies and 20,951 cyclonic
eddies) occurred in the 50–75 km radius range, while that of the VG algorithm occurs in
the 25–50 km radius range (17,007 anticyclonic eddies and 17,183 cyclonic eddies). This
made the frequency-skewed distribution of the CMM method’s eddy radius more centered
than the VG algorithm’s. In addition, the histograms can also prove that the eddies in the
land-slope area of the Bering Sea are generally small, with the largest anticyclonic eddies
identified by the CMM during the decade having a radius of about 141 km and cyclonic
eddies having a radius of about 121 km, while eddies with a radius greater than 200 km
exist in the Kuroshio Extension [25].

The methods of observing eddies can be roughly grouped into two categories. The
Eulerian method is concerned with spatial points and focuses on the eddies at each spatial
location in the eddy field. The Lagrangian, on the other hand, is analyzed for individual
eddies, with an emphasis on how each eddy in the eddy field changes over time. The deep
learning models proposed in this study are all Eulerian in nature, and the above work
detects how many eddies exist at any one time. If statistical information describing the
motion of eddies is to be tallied, however, the outputs of the deep learning model must be
further processed using Lagrangian methods. Taking into account the errors in altimetric
data and the limitations of the detection method, a Lagrangian method was used to remove
eddies with lifetimes of less than four weeks, resulting in a total of 742 eddy trajectories
during 2011–2020, 383 of which were anticyclonic and 359 of which are cyclonic.
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Figure 6. Radius distribution of the eddies detected with the two methods in the BSs during 2011–2020.



Remote Sens. 2022, 14, 4974 10 of 13

Figure 7 shows the eddy tracks with lifetimes longer than 4 weeks on the BSs. The
majority of the eddies on the BSs migrate northwest following the slope current, with a
few moving southwest towards the Bering Sea basin area. The eddies generated in the
basin area near the slope current moved mainly westward and were confined within the
basin. Most eddies in the BSs were generated in the BSs, and because these eddies could
not go far, they tended to vanish near the slope current. The eddy motion detected by the
VG method was similar to that of the CMM, but the sparse trajectories (361 in total) were
insufficient for analyzing the eddy motion regularity of BSs.

Eddy tracks(CMM)

 176°E  180°   176°W  172°W  168°W   52°N 

  54°N 

  56°N 

  58°N 

  60°N 

Eddy tracks(VG)
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  54°N 

  56°N 

  58°N 

  60°N 

Figure 7. Eddy trajectories (for eddies with a lifetime of >4 weeks); red lines are trajectories of
cyclonic eddies and blue lines are trajectories of anticyclonic eddies; the hollow circles indicate the
starting positions of an eddy track, and the forks indicate the ending positions. The left panel is the
eddy trajectory distribution of the CMM method. The right panel is the eddy trajectory distribution
of the VG method.

Figure 8 shows the eddy lifetime distribution for lifetimes longer than 4 weeks. The
lifetime distribution was based on the statistics of the eddy trajectory, which were taken
from the results of the CMM and VG algorithms using the Lagrangian algorithm. The eddy
lifetime distribution of the eddies discovered by the CMM is shown in the upper panel.
Among the eddies detected by the CMM, the average lifetime of anticyclonic eddieswasis
10 weeks, the longest-lived anticyclonic eddy was 78 weeks, and the average lifetime
of cyclonic eddies was 8 weeks, with the longest longevity being 29 weeks. It has been
demonstrated in previous numerical and theoretical studies that anticyclonic eddies tend
to have longer lifetimes than cyclonic eddies. The bottom panel shows the histogram of the
eddy lifetime distribution identified by the VG algorithm. The VG algorithm was much less
effective than the CMM method in locating smaller eddies. It was also unable to precisely
track how eddies vanished; therefore, detected eddies were shorter-lived than those found
using the CMM method (an average of 8 weeks and a maximum of 48 weeks for anticyclonic
eddies and an average of 6 weeks and a maximum of 17 weeks for cyclonic eddies).
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Figure 8. Lifetime distribution of the eddies detected by the two methods in the BSs during 2011–2020
(for eddies with a lifetime > 4 weeks). The upper panel is the lifetime distribution found with the
CMM method. The bottom panel is the lifetime distribution found with the VG method.

5. Conclusions

An attention network comprised of a spatial attention module and a channel attention
module may suppress feature responses in irrelevant background areas (such as non-eddy
seas and land), thereby increasing the model’s sensitivity to eddies with less computational
effort. Geostrophic velocity data derived from the sea surface height data may reveal the
geometric features of an eddy. Consequently, merging geostrophic velocity with SLA data
to train deep learning models based on attention networks is suitable for high-latitude
seas with more severe sample imbalance issues. This study used SLA and geostrophic
velocity data from 1993 to 2010 together with eddy labels extracted by the VG method
in the Bering Sea slope region as the training dataset and SLA and geostrophic velocity
data from 2011 to 2020 as the test dataset. Not only were attention-network-based deep
learning models compared to other deep learning models, but the results of models using
both types of data were compared to those using SLA data alone as the training dataset.
The deep learning algorithms detected more ocean eddies than the VG algorithm, with
the attention-network-based Danet detecting the most eddies of the three deep learning
models. Furthermore, integrating SLA data with geostrophic velocity data as model inputs
improved the eddy detection results significantly over those obtained using solely SLA
data. In this study, the outputs of multiple models were merged to enhance the daily eddy
detection efficiency, and the number of discovered eddies was much greater than that of a
single model or the VG method. Therefore, the multi-model combination method proposed
in this paper for detecting high-latitude ocean eddies is important for the application of
deep learning algorithms to satellite altimetry data.
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