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Abstract: Urban trees are vital elements of outdoor scenes via mobile laser scanning (MLS), accurate
individual trees detection from disordered, discrete, and high-density MLS is an important basis for
the subsequent analysis of city management and planning. However, trees cannot be easily extracted
because of the occlusion with other objects in urban scenes. In this work, we propose a coarse-to-
fine individual trees detection method from MLS point cloud data (PCD) based on treetop points
extraction and radius expansion. Firstly, an improved semantic segmentation deep network based on
PointNet is applied to segment tree points from the scanned urban scene, which combining spatial
features and dimensional features. Next, through calculating the local maximum, the candidate
treetop points are located. In addition, the optimized treetop points are extracted after the tree point
projection plane was filtered to locate the candidate treetop points, and a distance rule is used to
eliminate the pseudo treetop points then the optimized treetop points are obtained. Finally, after
the initial clustering of treetop points and vertical layering of tree points, a top-down layer-by-layer
segmentation based on radius expansion to realize the complete individual extraction of trees. The
effectiveness of the proposed method is tested and evaluated on five street scenes in point clouds
from Oakland outdoor MLS dataset. Furthermore, the proposed method is compared with two
existing individual trees segmentation methods. Overall, the precision, recall, and F-score of instance
segmentation are 98.33%, 98.33%, and 98.33%, respectively. The results indicate that our method can
extract individual trees effectively and robustly in different complex environments.

Keywords: mobile laser scanning; individual trees extraction; semantic segmentation; MLS point clouds

1. Introduction

With the rapid development of MLS, the PCD obtained by MLS is widely used to
express the 3D surface information of roadside objects [1,2]. The result of extracting trees
individually and capturing the attributes of trees from MLS point clouds can be widely used
in various applications, such as urban road planning, street tree 3D modeling [3], street
tree monitoring [4], tree species identifying [5], and biomass estimation [6]. However, MLS
point clouds of an outdoor scene are usually characterized by complex, diverse outdoor
scene objects, and the different densities distribution of tree point cloud. Furthermore, trees
usually are spatially overlapping with other non-tree objects (e.g., lamps, billboards) and
tree crowns. These attributes pose significant challenges to detect individual trees from
scanned outdoor scene.

In recent years, some automated methods based on MLS have been proposed [7]. There
are many scientific contributions aiming to segment scanned urban scenes into different
objects [8–10] and capture the attributes of trees [11–15] (e.g., tree height, trunk diameter
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and diameter at breast height), and more outstanding work on 3-D object detection based
on LiDAR data emerges [16]. In this work, we focus on the current methods for individual
trees detection from MLS. These methods can be roughly divided into three categories,
i.e., the normalized cut methods (NCut) [17–20], the region growing methods [21–24], the
clustering-based methods [25–28].

To improve the classification accuracy, Xu et al. [18] spatially smoothed the semantic
label results obtained by Random Forest classifier via a regularization process, and then
extracted the individual trees based on NCut. However, NCut only considers the distance,
resulting in inaccurate boundary segmentation of tree crowns. In addition, the prior
knowledge of the number of trees cannot be obtained, over-segmentation and under-
segmentation are prone to occur. Zhong et al. [19] used the improved NCut to segment
overlapping regions to obtain the individual trees. However, when there are poles near the
trunk, the height threshold has a great influence on the trunk detection. The individual trees
detection based on NCut needs to manually estimate the number of trees in a multi-tree
cluster to determine the iteration termination condition. NCut requires large storage space
and is inefficient when the PCD is dense, so NCut is mostly used for fine segmentation of
under-segmentation overlapping objects.

Bonneau et al. [23] divided the PCD into voxels and clustered the connected voxel
units based on region growing. And then judged whether this was correctly segmented
by analyzing the spatial range and eigenvalue ratio of the clustering units, to further
refine the under-segmented clusters and merge the over-segmented clusters. However,
this method requires complete tree structure information, and it will fail when the tree
data is incomplete. Luo et al. [24] proposed a deep network for semantic segmentation to
extract tree points from raw point clouds. A pointwise direction embedding deep network
(PDE-Net) is proposed to predict the direction vector of each tree cluster pointing to the
tree center to improve the tree boundary segmentation accuracy. On this basis, a tree
center detection method based on pointwise direction aggregation is proposed, and finally,
extract individual trees based on the detected tree center as the seeds of the region growing.
However, the direction prediction is inaccurate when the classification accuracy of tree
points is low, and satisfactory extraction results cannot be obtained. A region growing-
based method may not be able to obtain correct segmentation results due to improper
selection of seeds or inaccurate feature extraction. Especially when trees are adjacent to
some pole-like objects, it is difficult to separate trees and roadside pole-like objects, so there
are major flaws in extracting individual trees from complex outdoor scenes.

Yang et al. [25] extracted the treetop points by 3-D spatial distribution analysis and
used the treetop points as the seeds of the k-means clustering to segment the individual
trees. However, k-means clustering requires the number of clustering as an input parameter.
Tao et al. [26] intercepted PCD of a certain height and used DBSCAN clustering to obtain
tree trunks. However, the trunks extraction result is unsatisfactory when the data density
is uneven. Chen et al. [28] extracted individual trees based on the Euclidean clustering.
The Euclidean clustering does not require prior knowledge of the number of trees in the
clustering process, the Euclidean distance of adjacent points needs to be compared with a
user-defined threshold, which is difficult to set. When the threshold is small, tree points
may be lost or over-segmented into multi-tree clusters. On the contrary, objects close to the
tree cannot be separated. It is easy to cluster multiple connected trees together in complex
outdoor scenes and produce over-segmentation when the tree data is missing. In addition,
the clustering based methods also have certain limitations. For example, k-means based
tree extraction requires the number of trees and the initial clustering position in advance.
When the data is missing or the parameters are set incorrectly, the segmentation of the
DBSCAN will be affected. Therefore, prior knowledge and parameter settings are very
important factors when using the tree extraction method based on clustering.

Ncut has high time complexity when it dealing with complex scenes. Compared
with NCut, region growth makes full use of the local features of point clouds for segmen-
tation, but the segmentation effect depends on the growth criteria and seeds selection,
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and it is difficult to segment correctly when trees and pole-like objects are close to each
other. Clustering-based methods can achieve better extraction results in simple scenes, but
under-segmentation occurs when trees are densely distributed, and over-segmentation
occurs when point cloud data is incomplete. In conclusion, for outdoor scenes with large
tree spacing and small overlap between tree crowns and nearby objects, most existing
methods can segment and extract individual trees well. However, in complex scenes where
multiple trees are connected or trees are adjacent to other objects, the extraction results of
an individual tree is unsatisfactory. In addition, the current method is also affected by the
density of point cloud data, which affects the extraction results of individual trees when
the point cloud data is missing or incomplete.

In this paper, to overcome the problem of low tree extraction accuracy caused by the
uneven density, missing or incomplete of point clouds, we proposed a novel method which
combined tree detection with multi-feature enhanced PointNet, treetop points detection
and radius expansion, to achieve a coarse-to-fine individual trees extraction from MLS
point clouds. The main contributions of the proposed method are as follows.

(1) A comprehensive framework combining semantic segmentation, treetop points lo-
cating, and radius expansion is constructed for individual trees extraction. It can
accurately extract an individual tree and solve the over segmentation caused by
incomplete point cloud data and uneven density.

(2) A tree detection method based on the semantic segmentation by multi-feature en-
hancement PointNet is proposed to solve the classification of multiple-categories
objects in complex outdoor scenes.

(3) A novel individual trees extraction method is introduced for scanned urban scene.
Through calculating the local maximum, the candidate treetop points are extracted.
Taking the treetop points as center, the radius expansion guided method is presented
for further extraction of an individual tree.

2. Materials and Methods

The proposed method mainly contains three steps: (1) tree detection based on the
semantic segmentation by multi-feature enhancement PointNet, (2) optimal treetop points
location based on projection, and (3) individual trees detection based on radius expansion.
The overview of our proposed framework is shown in Figure 1.
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Figure 1. Overview of our proposed method.
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2.1. Tree Points Detection Based on Multi-Feature Enhanced PointNet Semantic Segmentation

Generally, there are various objects in the outdoor scene, such as trees, buildings,
ground, poles, vehicles, and etc. Therefore, it is necessary to remove non-tree objects in the
scene and extract the tree points before extracting an individual tree. With the development
of deep learning, Qi et al. [29] proposed a PointNet network that can directly process
point cloud, which showed high accuracy and efficiency in semantic segmentation. We
could detect trees from raw outdoor scene point cloud based on PointNet deep neural
network. However, it only uses the Multilayer Perceptron (MLP) to increase the feature
dimension when the PointNet model extracts local features and does not consider the
neighborhood information of the point cloud, resulting in a poor description of the extracted
local features. Therefore, the local features of the PCD are extracted and the coordinate
values are combined to form feature vectors as the input of the PointNet network to perform
semantic segmentation of complex outdoor point cloud scenes.

2.1.1. 3D Point Cloud Features Extraction

The performance of 3D PCD local features description depends on its local neigh-
borhood information. At present, the selection of point cloud neighborhood data can be
roughly divided into two methods, i.e., the k-nearest neighbor (KNN) search algorithm and
the spherical local search algorithm. KNN method is a density-adaptive search algorithm
that takes the k points closest to the query point as neighborhood points and can obtain a
consistent number of neighborhood points in the case of uneven point cloud density, which
is beneficial to improve data storage and calculation efficiency.

Given scanned scene data P = {pi|i = 1, 2, . . . , N }, the k neighboring points of a point pi
be qj =

{
(xj, yj, zj)|j = 1, 2, . . . , k

}
. The normal vector estimation is implemented by a least-

square plane fitting on the nearest neighbors, which is mainly based on Principal Components
Analysis (PCA). Therefore, the local covariance matrix M of pi is constructed as:

M =
1
N

N

∑
i=1

(
pi − P

)(
pi − P

)T (1)

where N is the number of points in the point cloud, P is the centroid point of the PCD,
which is calculated by P = 1/N ∑N

i=1 pi. The eigenvalues are positive and ordered as
λ1 ≥ λ2 ≥ λ3 ≥ 0. The normal vector (nx

i , ny
i , nz

i ) of point pi can be determined by the
eigenvector corresponding to λ3. Ning et al. [30] applied the local features calculated by the
covariance matrix to the machine learning classification algorithm for tree extraction and
achieved good classification results. Based on this, we selected 6 features that have a strong
description ability for outdoor scene PCD, namely linearity Lλ, flatness Fλ, divergence Dλ,
anisotropy Aλ, characteristic entropy Eλ, and curvature variation Cλ [31], these features
can be calculated by Equation (2):

Lλ =
(√

λ1 −
√

λ2
)
/
√

λ1
Fλ =

(√
λ2 −

√
λ3
)
/
√

λ1
Di =

√
λ3/
√

λ1
Ai = (λ1 − λ3)/λ1

Eλ = −
3
∑

i=1
λi ln λi

Ci = λ3/(λ1 + λ2 + λ3)

(2)

As we all know, the divergence, characteristic entropy, and curvature variation of trees
are significantly higher than those of ground and buildings, while the linearity, flatness, and
anisotropy of trees are lower than those of poles, buildings, and other objects. Therefore, the
characteristics of different objects can be grasped more comprehensively and effectively through
multi-feature fusion, and the discrimination between different objects can be improved.
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2.1.2. PointNet Enhanced by Multi-Features

The disorder of the PCD makes the point cloud of different input orders get different
high-dimensional features after passing through the MLP layer, which affects the feature
extraction of the deep neural network. The rigid body invariance of the point cloud makes
the spatial structure and shape information of the point cloud unaffected under different
perspectives. Therefore, Qi et al. [29] introduced a T-Net module and a symmetric function
to reduce the influence of disordered point clouds on the segmentation results. The specific
steps of semantic segmentation are as follows. The PointNet network architecture diagram
is shown in Figure 1.

The spatial coordinate features of N points are combined with local features
in the data preparation stage and the input data is represented by a 9-D vector
{X, Y, Z, Lλ, Fλ, Dλ, Aλ, Eλ, Cλ}. To adapt to the new number of channels, change the
T-Net (3) of the PointNet network to T-Net (9), and then multiply the original PCD by the
9 × 9 transformation matrix learned by T-Net (9) to get the aligned data. After data align-
ment, the information of each point is learned and extracted by the MLP layer shared by
2 layers, and an N × 64 matrix is obtained. Finally, the 64 × 64 feature space transfor-
mation matrix is predicted by T-Net (64), and the transformation matrix is applied to the
N × 64 matrix to achieve feature alignment, and the aligned features are used as the local
features of the point cloud.

Input an N × 64 matrix in the shared MLP, and map the data to 64-D, 128-D, and
1024-D in turn to obtain an N × 1024 matrix. Then, the maximum value of N data in each
dimension is extracted through the max pooling operation to obtain the global features of
the point cloud. The aligned N × 64 local features and 1 × 1024 global features are spliced
through the fully connected layer to obtain an N × 1088 matrix. Then, the three-layer
MLP is used to classify and output the data, and a matrix of N × m is obtained, where
N is the number of point clouds, m is the number of categories, and finally the semantic
segmentation task of the scene is realized.

2.1.3. Filtering and Optimization

There are noisy points in the tree PCD obtained by semantic segmentation, so a filtering
algorithm needs to be used to remove them. We use the pass-through filtering algorithm
and the statistical filtering algorithm in Point Cloud Library (PCL) [32] to denoise the tree
points. The statistical filter is mainly aimed at scattered noise points with a small amount
of data. By calculating the average distance from each point to the adjacent points, and
then comparing it with the given mean and variance, the noise points outside the range are
eliminated. The pass-through filter can quickly remove a large number of outliers beyond
the set range by determining the extent of the PCD on the X, Y, and Z axes. The comparison
diagram of filtering is shown in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

flatness, and anisotropy of trees are lower than those of poles, buildings, and other objects. 
Therefore, the characteristics of different objects can be grasped more comprehensively 
and effectively through multi-feature fusion, and the discrimination between different ob-
jects can be improved. 

2.1.2. PointNet Enhanced by Multi-Features 
The disorder of the PCD makes the point cloud of different input orders get different 

high-dimensional features after passing through the MLP layer, which affects the feature 
extraction of the deep neural network. The rigid body invariance of the point cloud makes 
the spatial structure and shape information of the point cloud unaffected under different 
perspectives. Therefore, Qi et al. [29] introduced a T-Net module and a symmetric func-
tion to reduce the influence of disordered point clouds on the segmentation results. The 
specific steps of semantic segmentation are as follows. The PointNet network architecture 
diagram is shown in Figure 1. 

The spatial coordinate features of N points are combined with local features in the 
data preparation stage and the input data is represented by a 9-D vector 
{ , , , , , , , , }X Y Z L F D A E C      . To adapt to the new number of channels, change the T-Net 
(3) of the PointNet network to T-Net (9), and then multiply the original PCD by the 9×9 
transformation matrix learned by T-Net (9) to get the aligned data. After data alignment, 
the information of each point is learned and extracted by the MLP layer shared by 2 layers, 
and an N×64 matrix is obtained. Finally, the 64×64 feature space transformation matrix is 
predicted by T-Net (64), and the transformation matrix is applied to the N×64 matrix to 
achieve feature alignment, and the aligned features are used as the local features of the 
point cloud. 

Input an N×64 matrix in the shared MLP, and map the data to 64-D, 128-D, and 1024-
D in turn to obtain an N×1024 matrix. Then, the maximum value of N data in each dimen-
sion is extracted through the max pooling operation to obtain the global features of the 
point cloud. The aligned N×64 local features and 1×1024 global features are spliced 
through the fully connected layer to obtain an N×1088 matrix. Then, the three-layer MLP 
is used to classify and output the data, and a matrix of N×m is obtained, where N is the 
number of point clouds, m is the number of categories, and finally the semantic segmen-
tation task of the scene is realized. 

2.1.3. Filtering and Optimization 
There are noisy points in the tree PCD obtained by semantic segmentation, so a fil-

tering algorithm needs to be used to remove them. We use the pass-through filtering al-
gorithm and the statistical filtering algorithm in Point Cloud Library (PCL) [32] to denoise 
the tree points. The statistical filter is mainly aimed at scattered noise points with a small 
amount of data. By calculating the average distance from each point to the adjacent points, 
and then comparing it with the given mean and variance, the noise points outside the 
range are eliminated. The pass-through filter can quickly remove a large number of outli-
ers beyond the set range by determining the extent of the PCD on the X, Y, and Z axes. 
The comparison diagram of filtering is shown in Figure 2. 

 

(a) (b)
 

Figure 2. Trees points before and after filtering. (a)Trees points before filtering. (b)Trees points after 
filtering. 

Figure 2. Trees points before and after filtering. (a) Trees points before filtering. (b) Trees points
after filtering.



Remote Sens. 2022, 14, 4926 6 of 18

2.2. Treetop Points Extraction

Treetop points is the local highest points of crowns, which could determine the number
of trees in the tree points from scene. Since there are often certain gaps between trees in
urban scenes, even if the tree canopy overlaps. As the elevation increases, the horizontal
spacing between the treetop points of different trees will become larger and larger. For
single-row trees, it can be found that the treetop points of street trees are mostly located on
the vertical plane of the tree distribution direction. According to the distribution of trees
in outdoor scenes, we proposed a novel method to extract treetop points through local
coordinate system (LCS) establishment, projection, and local maxima calculation.

2.2.1. Projection Direction

The trees in the outdoor scene have the characteristics that the treetop points are
always the highest points. To extract accurate treetops, it is necessary to project all the
trees points especially for the single-row street trees. As we all known, the outline of the
projected trees is approximate to an ellipse, and the treetops are mainly located on the long
axis of the ellipse. Therefore, the LCS of trees can be constructed by PCA, i.e., v1, v2, and v3
(corresponding to λ1 ≥ λ2 ≥ λ3 ≥ 0) represents the x-axis, y-axis, and z-axis, respectively.
Then the plane where the x-axis and z-axis are located is selected as the projection direction.

Assume that the tree PCD in outdoor scene is T = {ti|i = 1, 2, . . . , Nt }. The centroid
T of all the data in T is calculated by T = 1

Nt

(
∑Nt

i=1 ti

)
=
(

tx, ty, tz
)

, where Nt is the

number of tree points and ti =
(

tx
i , ty

i , tz
i

)
, ti ∈ T. Then, the tree points are projected onto

the XOZ plane, and the point set after projection is T′ = {ti
′|i = 1, 2, . . . , Nt′ }, which is

shown in Figure 3.
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Figure 3. Tree points projection.

We can calculate the coordinate of T′ = {ti
′(ti
′x, ti

′y, ti
′z)|i = 1, 2, . . . , Nt′} by the

Equation (3): 
ti
′x = tx

i − a× l√
‖→n2‖

ti
′y = ty

i − b× l√
‖→n2‖

ti
′z = tz

i − c× l√
‖→n2‖

(3)

where
→
n2 = (a, b, c) is the normal vector of the XOZ plane. l = ‖

→
t′iti‖ =

(
tx
i − tx

)
× a +(

ty
i − ty

)
× b +

(
tz
i − tz

)
× c/

√
‖→n2‖.

The LCS is established for the single row of outdoor trees data (shown in Figure 4a,4b).
We projected the tree points onto the XOY plane (shown in Figure 4c) and the XOZ plane
(shown in Figure 4d) of the LCS, respectively. We can see that it is easier to extract the
treetops of the tree by projecting onto the XOZ plane.
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2.2.2. Optimal Treetop Points Extraction

The tree points data after projecting onto the XOZ plane could provide an easy way to
obtain the most unobstructed treetop points and is a good representation of the shape of
the tree canopy. Based on this, we propose an optimal treetop points extraction method by
three steps: (1) local maxima calculation. (2) candidate treetop points locating. (3) optimal
treetop points extraction.

(1) Local maxima calculation

For the projection points on the XOZ plane, it is necessary to extract local maxima
from the projection points to reduce the extraction range of treetop points and improve
computational efficiency. Firstly, for points t′i

(
t′xi , t′yi , t′zi

)
and t′j

(
t′xj , t′yj , t′zj

)
on the projected

contour, the redundant data are removed. That is to say, if t′xi = t′xj and t′zi = t′zj , one of the
points are kept. If t′xi = t′xj and t′zi < t′zj , remove the point t′i. Then sort all the projected
points in ascending order of x coordinate to get the point set TS′ =

{
ts′i | i = 1, 2, . . . , Nts′

}
.

Next, ts′i is defined as the local maxima when ts′zi > ts′zi−1 and ts′zi > ts′zi+1, and the above
procedure are repeated to extract all local maxima.

Figure 5 displays the comparison of local maxima extraction results before and after
filtering redundant data. Figure 5a,b shows the raw PCD and the local maxima before
filtering. Figure 5c indicates the data after the redundant points are removed, and the
further extracted local maxima are shown in Figure 5d. It is worth noting that the local
maxima obtained from the filtered scene are located on the outer contour position of the
tree crown and more conducive to the extraction of subsequent treetop points.
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(2) Candidate treetop points locating

Based on the local maxima, a critical step in treetop points extraction is to locate
candidate treetop points. For one tree, the changing trend of the crown contour points is to
expand outward from the treetop points. Therefore, we locate the candidate treetop points
according to the variation of the z-coordinate of the PCD. First, all local maximums are
sorted in ascending order of x, denoted as LM = {mi|i = 1, 2, . . . , Nm}. Nm is the number
of the points of local maximum. Then, the difference DMi of point mi

(
mx

i , my
i , mz

i

)
on the

z-axis are calculated by Equation (4).

DMi =


mz

i+1 −mz
i , i = 1(

mz
i+1 −mz

i−1
)
/2, i ∈ [2, 3, . . . , Nm − 1]

mz
i −mz

i−1, i = Nm

(4)

Theoretically, the treetop point generally has maximum value of x coordinate among
all its neighborhood points. Therefore, we locate candidate treetop points by detecting
those points where their DM varies from positive to negative. As the x-axis coordinate
value continues to increase, there will be some randomly distributed noise points on the
z-axis coordinate. To reduce the influence of noise, the difference needs to be smoothed.
Thus, a two-step-based method is developed to detect candidate treetop points, i.e., the
noisy points are deleted by smooth filtering (step 1), and then judge the symbol of DM. In
step 1, for point mi we search its k nearest neighboring points and calculate the average
difference DM and get the smoothed difference DM′. In step 2, the sign function is used to
judge the positive and negative of smoothed difference of the point mi:

sign(mi) =


1 DM′ > 0
0 DM′ = 0
−1 DM′ < 0

(5)

If sign(mi) > sign(mi+1), it means that the smooth difference will change from positive
to negative, so the point mi+1 is regarded as a candidate treetop point. This procedure is
repeated, and then the set of candidate treetop points is obtained as S = {si|i = 1, 2, . . . , Ns }
(see Figure 6a).
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(3) Optimal treetop points extraction

The candidate treetop points obtained not only contain correct treetop points but
also include some local extreme points with lower heights or redundant points with close
distances between data. Thus, it is important to filter or remove those data that do not
belong to the real treetop points. In our paper, two criterions are introduced. One is tree
height and the other is distances between treetop points.

To begin with, the points that do not conform to the tree height are eliminated by
judging whether the z-axis coordinate of each candidate treetop point is less than the height
threshold zth. We set the treetop point to be above 1/2 of the height of the entire tree scene,
and calculate the height threshold zth according to the Equation (6):

zth = (zmax − zmin)/2 + zmin (6)

where zmax and zmin are the maximum z-coordinate and the minimum z-coordinate of tree
PCD, respectively.

Then judged the distance between each pair of candidate treetop points. Those treetop
points that are very close to each other are merged and optimized. Calculate the Euclidean
distance between all candidate treetop points, and then sort the distances in ascending
order. If the distance between the nearest pair of treetop points is less than the distance
threshold dth (value is 0.5 m), the current two treetop points are replaced with their center
points. After that, the distance between the updated treetop points is recalculated and
evaluated. The optimized treetop points (see Figure 6b) are obtained until the distance
between each two candidate treetop points are greater than dth.

The front view and top view of the candidate treetop points extracted from Figure 4d
are shown in Figure 6a. The optimal treetop points obtained after filtering and merging the
candidate treetop points are shown in Figure 6b.

2.3. Radius Expansion Based Individual Tree Extraction

The challenge task of individual tree extraction is instance-level separation for spatially
overlapping tree points [24]. After getting all the treetop points in the scene, we extract an
individual tree in the outdoor scene based on the radius expansion.

The core steps of our proposed algorithm include initial clustering by analyzing the
treetop points, initial bounding box and expansion circle determination, high-level layering
for tree PCD and individual trees extraction by radius expansion.

Given the optimal treetop points G =
{

gi
∣∣i = 1, 2, . . . , Ng

}
, Ng is the number of the

treetop points. The initial clustering is carried out with treetop points as the center. The
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specific steps are as follows: First, establish a KD-tree (k-dimensional tree, KdTree) with the
point gi ∈ G as the seed point. Then take the seed point as the center of the sphere and set
the radius of the ball to IR(IR = 2m). Next, cluster the data points in the range of IR with
the seed points (Figure 7) to get the initial cluster Clui. In addition, this process is executed
iteratively, until the spherical neighborhood data of all treetop points are divided, and the
clusters are obtained, as shown in Figure 7.
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Figure 7. Initial clustering based on treetop points.

The purpose of clustering is to get the initial position where the bounding box and
the extended circle are located. According to the initial clustering results, the maximum
(xmaxi , ymaxi ) and minimum

(
xmini , ymini

)
of all points in the cluster Clui to form the initial

boundary set Boui, i ∈
[
1, Ng

]
. We calculate the radius Ri and the center Oi

(
Ox

i , Oy
i

)
of the

extended circle where the cluster Clui is located according to Equations (7) and (8), respectively.

Ri =
((

xmaxi − xmini

)
+
(
ymaxi − ymini

))
/4 (7){

Ox
i =

(
xmaxi − xmini

)
/2

Oy
i =

(
ymaxi − ymini

)
/2

(8)

After that, the boundary set of all clusters is Bou =
{

Boui | i = 1, 2, . . . , Ng
}

, the radius
of the expansion circle is R = {Ri | i = 1, 2, . . . , Ns} where the cluster is located, and the
center of the circle is O = {Oi | i = 1, 2, . . . , Ns}.

It is necessary to slice the tree PCD in the scene after obtaining the initial boundary, as
shown in Figure 8. Set the number of split layers to Nl, then extract the maximum z-axis
coordinate zmax and the minimum z-axis coordinate zmin from the tree points and calculate
the height Hl of each layer of data according to Equation (9).

Hl = (zmax − zmin)/Nl (9)
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3.1. Dataset 

Figure 8. The schematic diagram of tree layering.

The point set of each layer from top to bottom is L = {Li | i = 1, 2, . . . , Nl}, the number
of points in the Li layer is NLi . There are two cases to segment tree points:

(1) If point tLi
u

(
tLi
ux, tLi

uy

)
in layer Li is within the range of Bouj of the cluster Cluj in

layer Li−1, and the horizontal distance dH
(

tLi
u , Oj

)
from point tLi

u to the center Oj
(
Ojx, Ojy

)
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is less than the radius Rj, then point tLi
u belongs to the tree where cluster Cluj is located,

and point tLi
u is assigned to cluster Cluj, dH is calculated by Equation (10):

dH
(

tLi
u , Oj

)
=

2

√(
tLi
ux −Ojx

)2
+
(

tLi
ny −Ojy

)2
(10)

where tLi
u is the u-th (u ∈

[
1, NLi

]
) point of the layer Li, Oj (Oj ∈ O) is the center of the

cluster Cluj (j ∈
[
1, Ng

]
).

(2) If the point tLi
u

(
tLi
ux, tLi

uy

)
does not belong to any cluster, the circular distance

Dis
(

tLi
u , Oj

)
corresponding to the point tLi

u and each extended circle is calculated by

Equation (11), then sort Dis
(

tLi
u , Oj

)
in ascending order, and assign point tLi

u to the cluster
corresponding to the smallest distance,

Dis
(

tLi
u , Oj

)
=
∣∣∣dH

(
tLi
u , Oj

)
− Rj

∣∣∣ (11)

where Rj (Rj ∈ R) is the radius the extended circle of cluster CluJ , j ∈
[
1, Ng

]
.

After processing the data of layer Li according to the above two cases, update the
radius and center of the circle according to Equations (7) and (8), and then continue to
segment the data of layer Li+1 until all data processing is completed, that is, the extraction
of individual trees is completed. A diagram of these two cases is shown in Figure 9. In
addition, the individual trees of scene 1 obtained by the layer-by-layer radius expansion
method is displayed in Figure 10.
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3. Results and Discussion

To verify the effectiveness and robustness of our proposed method, experiments are
performed on the Oakland 3D Point Cloud dataset. Our method is implemented using
C++ and run on a desktop PC with an Intel I5-8500 and NVIDIA GeForce GTX 1660Ti
graphics card.

3.1. Dataset

The Oakland 3D Point Cloud dataset provided by Munoz et al. [33] is used to verify
the effectiveness of the proposed method. The Oakland 3D Point Cloud dataset contains
1.6 million 3D points, consisting of two subsets, part2 and part3, where each scene contains
approximately 100,000 3D points. The 3D data from Oakland 3D Point Cloud was acquired
using a side-looking SICK LMS lidar MLS system and the dataset was collected near the
University of Chicago campus in Oakland, Pennsylvania, and Pittsburgh, Pennsylvania.
The dataset is expressed in ASCII format file, and the expression format is {x, y, z, label,
confidence}, that is, the three-dimensional space coordinates, label, and confidence of the
PCD six information. In addition, a label count file (*. Stats) is provided, which counts
the number of points of different categories in each scene. The Oakland 3D Point Cloud
dataset roughly classifies 3D point clouds into the following categories: facades, ground,
trees, wires, and poles, as shown in Figure 11. This paper simplifies the data categories into
trees and non-trees, that is, transforms the semantic segmentation problem into a binary
classification problem.
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Figure 11. Part of Oakland 3D Point Cloud dataset. The dataset roughly classifies 3D point clouds
into the following categories with different labels: facades, ground, trees, wires, and poles.

3.2. Scene Semantic Segmentation Analysis

We used the Intersection over Union (IoU) of each category, the Mean Intersection
over Union (mIoU) of all categories, and the Overall Accuracy (OA) to evaluate the effect
of semantic segmentation. IoU is the intersection of the network prediction result and the
real value compared to their union, mIoU is the result of summing and averaging the IoU
of each category, and OA is the ratio of the number of correctly classified samples to the
total number of samples. The calculation methods of IoU, mIoU and OA are computed by
Equation (12), Equation (13), and Equation (14), respectively.

IoU =
TP

FN + FP + TP
(12)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(13)

OA =
TP + TN

FN + FP + TP
(14)

where TP is the actual number of points on the tree, FP = Nalgo− TP, Nalgo represents
the number of tree points detected in the scene, FN = Nre f − TP, Nre f and represents the
number of tree points marked as true values in the original scene.

Six scenarios are selected as the test set for semantic segmentation of the original
PointNet and the multi-feature PointNet network. The original network is a PointNet that
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only contains XYZ information, and the method in this paper is a PointNet that contains
XYZ information and six local features.

The quantitative evaluation results are displayed in Table 1. As can be seen from
Table 1, applying multi-features data to the semantic segmentation network can improve
the segmentation results to different degrees in OA, mIoU, and IoU of each category. The
OA is above 95%, and the average correct rate reaches 97.8%, which is 5% higher than that
before feature fusion, and the mIoU is improved by 9.5%. From the IoU results of each
type of object, after adding local features, the IoU of trees and non-trees has been greatly
improved. Among them, the IoU of trees is significantly improved, which is 13.5% higher
than that of the original PointNet network, and the IoU of non-tree point clouds is also
improved by 5.5%. It can be seen that the local information of the point cloud can enhance
the ability of network semantic segmentation effectively.

Table 1. Overall Accuracy and Mean IoU of six scenes in Oakland 3D Point Cloud dataset.

The Raw
Scene

OA (%) mIoU (%) IoU (%) Tree IoU (%) Non-Tree

PointNet Ours PointNet Ours PointNet Ours PointNet Ours

Scene1 94.56 97.23 87.93 93.69 83.34 91.30 92.53 96.08

Scene2 88.17 96.15 76.19 91.05 68.25 87.35 84.13 94.76

Scene3 96.49 97.30 92.50 94.21 90.17 92.48 94.83 95.95

Scene4 96.90 98.70 93.31 97.08 91.18 96.07 95.45 98.09

Scene5 96.53 98.81 91.22 96.81 86.94 95.18 95.49 98.44

Scene6 87.39 98.60 68.99 94.60 52.66 90.83 85.33 98.38

average 93.34 97.80 85.02 94.57 78.76 92.20 91.29 96.95

Figure 12 demonstrates the comparison of the semantic segmentation results of the
four scenes. The black boxes in Figure 12 indicate the difference between PointNet and our
method. Four scene data can be more finely segmented (e.g., wires and utility poles) based
on our method. However, with PointNet most of these small objects are wrongly classified
as trees. Especially in the scene 4, part of the ground is wrongly divided into trees.

Figure 12. Semantic segmentation result on four scene data. (a) is the result of semantic segmentation,
(b) is the result of semantic segmentation based on multi-features.
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3.3. Analysis of Individual Trees Extraction Results

Figures 13 and 14 shows the single tree extraction process diagram of scene 2 and
scene 4. Scene 2 contains multiple trees with different shapes and sizes, and there are
also cases where tree crowns are connected together. Scene 4 that the PCD in this scene
is incomplete and has uneven density. Local maxima and candidate treetop points can
be successfully extracted and merged and optimized in two different cases (shown in
Figures 13 and 14b–e). The single tree extraction result shown in Figures 13f and 14f
is obtained by radius expansion. It can be seen from the result that this method can
accurately extract connected individual trees and can also correctly extract trees with
obvious crown differences.
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Experimental results demonstrate that the single tree extraction method based on
treetop points detection and radius expansion can correctly extract individual trees in
outdoor scenes, and the extraction results are not affected by incomplete data and partial
tree crown collapse.

3.4. Comparative Analysis

Moreover, our proposed method is compared with the voxel-based clustering method [27]
and the horizontal slice-based method (3D Forest) [34]. Figure 15 illustrates the experi-
mental results of different methods on five scene datasets. The clustering-based method
removes the ground by region growing and then uses the Euclidean clustering algorithm to
segment the non-ground points. This method is simple and easy to implement, but due to
the existence of various objects in urban outdoor scenes, it is prone to under-segmentation
problems when non-tree elements are adjacent to trees or connected to multiple trees. The
3D Forest [34] divides the scene into slices and then divides a single tree according to the
number of points in the slice clusters and the distance and angle between the clusters.
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Figure 15. Comparison of visual results. (a) is the result of the clustering-based method, (b) is the
result of the 3D Forest, (c) is the result of is our method. The black boxes in (a,b) are misclassification
results, and our method could get the result in (c).

Compared with these two methods, our proposed method could make finer segmen-
tation and the extraction result is more accurate. Our proposed method can classify trees
and non-tree objects in the semantic segmentation stage, and the radius expansion-based
method can make full use of the characteristics of trees, and effectively overcome the impact
of data missing through top-down hierarchical expansion. Compared with clustering-based
method (see in Figure 15a) and 3d Forest (see in Figure 15b), our tree extraction results are
closer to real trees, as shown in Figure 15c.

To verify the effectiveness of the proposed algorithm, we analyzed the experimental
results quantitatively through six indicators. TP(True Positive) represents the number of
correctly extracted individual trees, FN(False Negative) represents the number of unde-
tected single trees, that is, a single tree and nearby trees are divided into the same tree,
FP(False Positive) indicates the number of non-trees detected as trees, that is, a point cluster
that is not a tree is regarded as a tree. TP, FN and FP represent correct segmentation,
under-segmentation, and over-segmentation cases respectively. P(Precision) is the preci-
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sion rate, indicating the proportion of the number of correctly extracted trees to all detected
trees, R (Recall) is the recall rate, indicating the proportion of the number of correctly
extracted trees to the actual trees, F(F-score) is a comprehensive index used to evaluate
the overall accuracy of tree extraction. The values of P, R and F are calculated according
to Equation (15): 

P = TP
TP+FP

R = TP
TP+FN

F = 2× P×R
P+R

, (15)

The quantitative results of the three methods are listed in Table 2. It can be seen that
among the three methods, the accuracy of clustering-based method [26] is the worst. This
is because the clustering-based method is prone to under-segmentation when trees are
connected with other elements. For example, the three trees connected to electric wires
cannot be extracted separately (shown in the second row of Figure 15a). The 3D Forest
method [34] is better than the clustering-based method, but there are still over-segmentation
and under-segmentation of trees. Comparison experimental results could demonstrate that
our proposed method is better than other two methods. For example, for Figure 14a with
tree crown overlap, the precision, recall and F-score of the proposed method reach 98.33%,
98.33% and 98.33%, respectively, which are higher than 62.75%, 62.08%, 62.39% of the 3D
Forest method that is second only to our method.

Table 2. Quantitative comparison results on five scenes.

The Raw Scene Method TP FP FN P R F

Scene1
Clustering method [27] 2 4 4 0.3333 0.3333 0.3333

3D Forest [34] 1 4 5 0.200 0.1667 0.1818
Ours 6 0 0 1 1 1

Scene2
Clustering method [27] 2 3 3 0.4000 0.2000 0.2667

3D Forest [34] 2 4 4 0.3333 0.3333 0.3333
Ours 6 0 0 1 1 1

Scene3
Clustering method [27] 4 5 5 0.4444 0.4444 0.4444

3D Forest [34] 4 2 2 0.6667 0.6667 0.6667
Ours 6 0 0 1 1 1

Scene4
Clustering method [27] 10 2 1 0.8333 0.9091 0.8696

3D Forest [34] 11 0 0 1 1 1
Ours 11 1 1 0.9167 0.9167 0.9167

Scene5
Clustering method [27] 15 1 1 0.9375 0.9375 0.9375

3D Forest [34] 15 1 1 0.9375 0.9375 0.9375
Ours 16 0 0 1 1 1

average
Clustering method [27] - - - 0.5897 0.5649 0.5703

3D Forest [34] - - - 0.6275 0.6208 0.6239
Ours - - - 0.9833 0.9833 0.9833

4. Conclusions

In this paper, a new method is proposed for individual trees detection from MLS
point clouds, which can be used in street tree 3D modeling, street tree monitoring, tree
species identifying, and biomass estimation. Our method consists of (1) non-tree points
removal and tree detection via multi-feature enhanced PointNet, (2) locating treetop points
via filtering the tree point projection plane and optimized treetop points by a distance
rule, and (3) after the initial clustering of treetop points and vertical layering of tree
points, a top-down layer-by-layer segmentation based on radius expansion to realize
the complete individual extraction of trees. The experimental results derived from the
Oakland 3D Point Cloud dataset demonstrate that benefiting from the accuracy of scene
semantic segmentation and the proposed method can effectively extract the individual
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trees. Compared with the other two methods, the proposed method can effectively avoid
the influence of artificial roadside pole-like objects and the crown overlaps. Overall, the
precision, recall and F-score of instance segmentation on the used datasets are 98.33%,
98.33% and 98.33%, respectively.

In future work, we will improve the robustness of the method to adapt to forests.
Additional deep learning can also be explored with goal of improving tree classification
accuracy. Meanwhile, the fusion of the orthophoto image and the LiDAR point clouds
would provide a better way to greatly improve the efficiency and the accuracy of urban
trees detection, especially for the larger scale urban scenes.
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