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Abstract: Mangrove forests distributed along the coast of southern Iran are an important resource
and a vital habitat for species communities and the local people. In this study, accurate mapping and
spatiotemporal change detection were conducted on Iran’s mangroves for three decades, using the
Landsat imagery available for the years 1990, 2000, 2010, and 2020. Four general vegetation indices
and eight mangrove-specific indices were employed for mangrove mapping in three study sites.
Additionally, six important landscape metrics were implemented to quantify the spatiotemporal
alteration of the mangrove forests during the study period. Our results showed the robustness
of the submerged mangrove recognition index (SMRI), validated as the most effective index
(F1-score ≥ 0.89), which was used for mangrove identification within all nine sites. The mangrove
area of southern Iran was estimated at approximately 13,000 ha in 2020, with an overall increase of
2313 ha over the whole period. A similar trend could be observed for both the landscape connectivity
and complexity. Our results revealed that a stronger connectivity and higher complexity could be
detected in most sites, while there was increased fragmentation and a weaker connection in some
locations. This study provides an accurate map of Iran’s mangrove forests over time and space.

Keywords: mangrove-specific index; SMRI; landscape metric; NDVI; change detection

1. Introduction

Mangrove forests are one of the important habitats in the coastal regions of tropical
and subtropical parts of the world [1,2]. They are one of the most productive ecosystems
that provide a unique habitat for many terrestrial and marine species and valuable goods
and services for local communities. Additionally, mangroves not only play a key role in the
conservation of coastal areas and intertidal regions from environmental hazards but also
participate in ecosystem services such as carbon sequestration [3–5]. Murdiyarso et al. [6]
showed that the annual rate of carbon storage in mangroves is two to four times greater
than that of tropical forests. Despite their ecological and socioeconomic importance, the
global loss rate of mangrove forests has reached 0.2–0.7% per annum. As reported by
FRA 2020, the area of mangroves globally decreased more than 10,000 km2 between
1990 and 2020 [1,7–9]. Climate change and human activities are known as major threats
for mangrove forests, although investigations have shown that land-use change, through
conversion to aquaculture, rice, and palm plantations, is the most important driver of
deforestation [10–12]. Effective management strategies and socioeconomic policies are
required to reverse the trend of global mangrove loss and ensure their conservation for
future generations [13,14].

Mangrove ecosystems consist of shrubs and trees that mostly grow in the intertidal
zones along most tropical shorelines between latitudes 30◦N and 30◦S. Nevertheless, the
global spatial distribution of mangroves was probably more extensive during the warm
climate of the Eocene epoch, as pollens of genus Avicennia were found above latitude 72◦N
(present-day Siberia). The establishment and growth of these elements of warm tropical
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terrestrial flora were limited to lower latitudes during the Oligocene–Miocene transition,
when temperatures significantly decreased in high altitudes. Mangroves were limited to
tropical and subtropical latitudes during the Holocene until the present, mainly because of
climate and sea-level fluctuations. In contrast to our knowledge about the spatial extent
of mangroves across geological epochs, the total area changes of the forests remained
unknown until the 1980s, when remote sensing science and technology facilitated their
accurate mapping at local and global scales. Mangrove habitats are established in intertidal
zones that may frequently be submerged during local high tides. Moreover, mangrove
trees thrive on muddy islands generally surrounded by waterways, and their roots are
submerged in water. Therefore, traditional methods of surveying are not efficient to map the
spatial distribution of mangroves, while remotely sensed data can provide reliable mapping
approaches as an alternative to expensive and time-consuming field-based methods. The
first investigation on total area of global mangrove forests based on remote sensing, by
Giri et al. [15], showed that the global mangrove extent was 137,760 km2 in 2000. However,
the findings of FRA 2020 showed global mangrove areas were approximately 152,900 and
147,170 km2 in 2000 and 2020, respectively [1,9,14,16].

Mangrove forests form pure and mixed stands along the shorelines of the Persian
Gulf and Gulf of Oman, which cover almost 19,700 ha. Among the six countries of the
region (i.e., Iran, United Arab Emirates, Oman, Saudi Arabia, Qatar, Bahrain), Iran ranks
first in total mangrove area (approximately 47%) [14,17,18]. Mangrove spatial distribution
is one of the first quantitative characteristics influenced by natural and anthropogenic
threats. Therefore, extent monitoring turns to be a reliable approach to acknowledge
the historical changes and current status of mangroves. Moreover, efficient conservation
planning and sustainable management require accurate maps of mangroves that show their
spatiotemporal changes.

The current literature on mangrove forests along the coast of southern Iran lacks a
long-term analysis of the dynamics and an accurate area estimation using robust remote
sensing techniques, although the spatial distribution and temporal changes of mangroves
have been reported in a limited number of studies [19,20]. For instance, Makowski and
Finkl [14] reported that the spatial extent of mangrove forests in Persian Gulf and Gulf
of Oman was mapped from 1977 to 2017 using the Normalized Difference Vegetation
Index (NDVI) on Landsat imagery. They found that Iran’s mangrove forests are spatially
located in 11 sites and that their total area increased from 1977 (4735 ha) to 2017 (9403 ha).
In another investigation, FRA 2020 mentioned that the total area of Iran’s mangrove
forests was 19,230 ha in 2020. The FRA 2020 country report indicated that the mangroves
decreased from 25,760 to 19,230 ha between 1990 and 2020 [9]. There are discrepancies
in the area estimation of mangrove forests, mainly due to different remote sensing data,
vegetation indices, and classification algorithms. Gandhi and Jones [21] found that the
most common classification error in their study was the assignment of mangrove pixels to
the water class, particularly within <900 m2 patches. Consequently, it seems necessary to
update Iran’s mangrove’s present status and long-term dynamics, based on more efficient
processing approaches.

Mangrove forest canopies exhibit unique spectral signatures on remote sensing im-
agery. Some authors have demonstrated the difference among the spectral reflectance
patterns of mangroves and other land cover types including terrestrial vegetation, espe-
cially within the ranges corresponding to near infrared (NIR) and short-wave infrared
(SWIR) wavelengths [2,7,22]. Giri [23] mentioned that a combination of red (0.63–0.69 µm),
NIR (0.77–0.90 µm), and two SWIR (1.55–1.75 µm, 2.09–2.35 µm) wavelengths derived from
Landsat data are appropriate to detect mangroves. Additionally, Baloloy et al. [22] demon-
strated that the difference in the spectral responses between mangroves and terrestrial
vegetation in red band and NIR are significantly smaller than the difference observed in
SWIR. Despite their distinct spectral characteristics, individual bands of remotely sensed
data are not appropriate for mangrove forest survey. Therefore, various forms of vegetation
indices (VIs), defined as the spectral transformation of two or more bands, are the widely
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used approach to map mangrove forests. Previous studies on mangrove forests have mostly
used NDVI, which is calculated from red band and NIR [12,19,24]. However, a number
of researchers have illustrated that NDVI and other similar VIs, such as the Soil-Adjusted
Vegetation Index (SAVI) and leaf area index (LAI), are not specifically designed to discrimi-
nate mangroves from other land cover types, e.g., terrestrial vegetation. It was also found
that the VIs such as NDVI and SAVI are not efficient in the distinction of mangroves, since
submerged mangrove forests show very low values of the indices, which can result in their
misclassification [25,26]. It seems difficult to obtain clear results on the performance of
commonly used VIs in mangrove mapping and monitoring.

To address the challenge of mangrove discrimination on remote sensing imagery,
some mangrove-specific indices (MSIs) have been developed by various scientists. One of
the first MSIs, proposed by Winarso et al. [27], was the Mangrove Index (MI) using NIR
and SWIR bands (i.e., bands 5 and 6) derived from Landsat 8 data. Baloloy et al. [22] re-
cently suggested Mangrove Vegetation Index (MVI) with the similar objective of mangrove
mapping. MSIs are not limited to MI and MVI, and structurally different indices (e.g., Nor-
malized Difference Mangrove Index (NDMI), Combined Mangrove Recognition Index
(CMRI) have been developed in the literature [7,25,28]. To the best of our knowledge, MSIs
have rarely been compared with each other or widely used vegetation indices to explore
their robustness. Furthermore, their efficiency has mostly been reported within the habitats
that they were designed for. In a comprehensive investigation, Xia et al. [26] evaluated the
performance of two MSIs (i.e., Mangrove Recognition Index (MRI), Submerged Mangrove
Recognition Index (SMRI)) and four VIs (i.e., NDVI, SAVI, Ratio Vegetation Index (RVI),
Enhanced Vegetation Index (EVI)). Results showed the performance of the MSIs versus the
four VIs, although SMRI could detect mangroves with higher accuracy compared to MRI.
In general, a few comparative studies have investigated the efficiency of VIs and recently
developed MSIs; however, the current literature lacks a comprehensive and critical review
of general VIs and MSIs.

Considering the findings of previous studies in the international and local literature,
we hypothesized that the total area of Iran’s mangrove forests has increased over the last
three decades. To test the hypothesis, the spatial extent of mangroves within each of the sites
is mapped between 1990 and 2020 on Landsat imagery, to quantify the dynamic changes
of the forests through a comparison of the otal areas and an analysis of the landscape
metrics. We also hypothesized that the performance of the diverse existing MSIs designed
for Landsat data in a new mangrove forest is different from their accuracies in the study
sites that they were developed for. We tested the hypothesis to find out the robustness of
MSIs and VIs and reveal their applicability and limitations at international scales, within
habitats different from where they were constructed and tested. The performance of recently
developed MSIs is also investigated to select the most accurate one for Iran’s mangrove
mapping. The results may provide information on national estimates and the dynamics of
mangrove forests in southern Iran, based on a reliable procedure. Additionally, this study
is a step toward the practical application of the indices specifically designed for mangrove
forest survey on remote sensing imagery and a demonstration of their true strength versus
other VIs in similar circumstances.

2. Materials and Methods
2.1. Study Area

Mangrove forests along the southern coast of Iran are located between the latitudes
25◦10′ to 27◦55′ north and longitudes 51◦25′ to 61◦25′ east. The forests are a unique
natural beauty in Iran and potential sites for ecotourism and recreation. Significantly dense
mangroves are observed in Qeshm Island and Khamir Harbor, while they form dense and
open stands within other sites. Iran’s mangroves comprise two species, i.e., grey mangrove
(Avicennia marina (Forssk.) Vierh.) and loop-root mangrove (Rhizophora mucronata Lam.).
Grey mangrove is the dominant species forming pure stands, while loop-root mangrove can
be observed only in mixed stands of both species in Sirik and Jask (S6 and S7 in Hormozgan
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Province, Figure 1). The mangroves are mainly threatened by natural (pest damage, storm,
acid rain) and anthropogenic (oil spills, industrial wastes, infrastructure development)
factors. However, establishment of protected areas in almost all mangrove sites is an
effective management tool extensively used by the government to prevent their loss and
degradation. In addition to restoration, afforestation and reforestation are two management
strategies successfully undertaken since 1990s supported by local communities.
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Figure 1. Spatial distribution of all major mangrove sites in Iran investigated in this study, i.e., S1
and S2 in Bushehr Province (A), S3–S7 in Hormozgan Province (B), and S8 and S9 in Sistan and
Baluchestan Province (C). The sites were shown on Landsat 8 mosaic images (R = Band 3, G = Band
2, B = Band 1) collected in March 2020, with the overlay of administrative boundaries of Bushehr
Province, Hormozgan Province, and Sistan and Baluchestan Province.

All mangrove sites in Persian Gulf and Gulf of Oman coasts were considered as the
study sites, i.e., Mond protected area (S1) and Nayband National Park (S2) in Bushehr
Province; Hara protected area (S3), Haraye Khamir protected area (S4), Hara Tiab and
Minab protected area (S5), Hara Roud-e Gaz protected area (S6), and Hara-e Gabrik and Jask
protected area (S7) in Hormozgan Province; and Chabahar hara forests (S8) and Bahookalat
protected area (S9) in Sistan and Baluchestan Province (Figure 1). Some subsites are defined
within each major mangrove site; however, they are considered as one site in this study.
For instance, there are two different subsites within S5, i.e., the forests located at the mouth
of the Shoor River and the forests distributed in Tiab Harbor estuary. Additionally, S7 has
three subsites: Jask Harbour and Sourgalm and Gabrik villages. Hara Biosphere Reserve is
one of 13 UNESCO biosphere reserves of Iran, registered in 1976, which consists of Qeshm
Island (S3) and Khamir Harbor (S4).
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The last area of assessment of mangrove forests in 2011 using NDVI on Landsat
imagery showed that S1 (17.9 ha) and S3 (5542.7 ha) comprised the smallest and largest
mangrove sites, respectively. Moreover, the total area of mangroves was 11,015.1 ha.
The mangrove sites in Hormozgan Province supported 93.5% (10,305.2 ha) of the total
mangroves in Iran. Meanwhile, the extent of mangroves in provinces of Bushehr and
Sistan and Baluchestan was 1.4% (149.8 ha) and 5.1% (560.1 ha) of the total mangroves,
respectively. According to results of the study, no mangrove stands were observed in S8
in 2011.

2.2. Satellite Data and Input Bands

The Landsat time series data covering all areas of interest (i.e., S1 to S9) were considered
in the present study, as the Landsat archive is the longest continuous satellite-based record
of Earth’s land cover in existence, which was available for the study sites. The data
were downloaded from the USGS (United States Geological Survey) EarthExplorer from
1990 to 2020, with 10-year lags (see Table A1 for the dates of the images). The cloud-
free images of Landsat 5 TM (L5), Landsat 7 ETM+ (L7), and Landsat 8 OLI (L8) were
controlled for topographic distortion by employing the digital terrain model (DTM) of each
region, and, if required, the images were geometrically corrected using ground control
points. Atmospheric correction was also performed using FLAASH (Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes) algorithm in ENVI.

For each mangrove site, Landsat data were obtained for high- and low-tide levels,
based on visual interpretation, and the tidal data obtained from WXTide32 software [29]
for the study years (i.e., 1990, 2000, 2010, 2020). We used the reference stations in Bushehr
Province (Jazirat Kharg), Hormozgan Province (Jazirat Farur, Hengam Island, Bandar
Abbas, Jask Bay), and Sistan and Baluchestan Province (Gwatar Bay). A single Landsat tile
covered the subsites of a mangrove sites, e.g., S5, S7, and S9; however, S3 was covered by
two Landsat tiles (Figure 1).

The Landsat (i.e., L5, L7, L8) images of the study sites required a series of prepro-
cessing prior to being used to derive the vegetation indices. In the first step, radiometric
corrections were conducted with application of dark object subtraction (DOS) method
on the Landsat images, to reduce atmospheric effects. In the second step, the Landsat
images were geometrically corrected using rational polynomial coefficients (RPCs), with at
least 10 evenly dispersed ground control points within each image tile extracted from very
high resolution (VHR) images of Google Earth, UltraCam airborne images, and 1:25,000
topographic maps. The average root-mean-square errors (RMSEs) were less than 0.5 pixels
for all Landsat images in both the X and Y directions.

Based on the literature on spectral signature of mangrove forests and the indices used
to detect them on Landsat imagery, the required spectral wavelengths were obtained to be
used in computation of the VIs and MSIs investigated in the present study (Table 1). These
spectral wavelengths were Blue (Band 1 in L5 and L7; Band 2 in L8), Green (Band 2 in L5
and L7; Band 3 in L8), Red (Band 3 in L5 and L7; Band 4 in L8), NIR (Band 4 in L5 and L7;
Band 5 in L8), SWIR1 (Band 5 in L5 and L7; Band 6 in L8), and SWIR2 (Band 7 in L5, L7, and
L8) (see Table A2 for more details). Bands of SWIR1 and SWIR2 are affected by leaf water
content; however, studies have shown that SWIR1 region is more efficient in mangrove
recognition from open and dense terrestrial vegetation compared to SWIR2 [7,22].

2.3. Computation of Vegetation Indices

The present study had two phases (Figure 2). The first phase involved a compara-
tive assessment of widely used VIs and MSIs that have been developed to discriminate
mangroves on L8 data for 2020. The assessment of the indices was performed within three
mangrove sites, i.e., S2 (Bushehr Province), S6 (Hormozgan Province), and S9 (Sistan and
Baluchestan Province) to identify the most efficient index in the study areas. In the second
phase, the Landsat bands (Table A2) were used as inputs for computing the selected index
for all mangrove sites (Figure 1) in all study years (i.e., 1990, 2000, 2010, 2020).
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Figure 2. The methodological framework of Iran’s mangrove forest assessment.

Previous studies have used a wide range of VIs for mangrove mapping on Landsat
images, so four of them were considered in this study (Table 1). One of the most frequently
used VIs is NDVI, introduced by Rouse et al. [30]. The index was successfully implemented
to delineate green vegetation, including mangrove forests, from other land use/land
cover classes on different remote sensing data [31]. For instance, Lovelock et al. [32]
indicated that NDVI is significantly correlated with canopy loss in mangrove forests.
NDVI can be effectively used to monitor degradation and deforestation of mangroves.
In addition to NDVI, SAVI, proposed by Huete [33], is a popular index employed to
classify mangrove and non-mangrove areas [7,26,34]. SAVI considers a soil-brightness
correction factor (i.e., L, Table 1) to reduce the influence of soil brightness in open vegetation
patches. As suggested by previous studies [32,35], the L factor is 0.75 in the present
research. Normalized Difference Water Index (NDWI), developed by Gao [36], is strongly
sensitive to vegetation water content. The index has successfully been used to delineate
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mangrove stands on different remote sensing imagery [25,37]. Pastor-Guzman et al. [38]
investigated the capability of NDWI in examining biophysical variables and tracking
seasonality of mangroves. According to their achievements, it was revealed that NDWI
time series is reliable for monitoring mangrove water stress, since NDWI has the ability to
change in proportion to canopy moisture content. While NDVI has significant correlations
with green biomass and canopy chlorophyll content, EVI is more sensitive to canopy
structural characteristics such as canopy architecture and leaf area index [39,40]. In studying
mangrove forests, EVI has been found to be a reliable index in classifying mangroves and
non-mangrove areas [7,26].

There are diverse and multiple VIs (e.g., NDVI, SAVI, NDWI, EVI) that have been
developed to discriminate vegetation and measure their temporal and spatial variations.
However, these indices cannot specifically characterize mangroves from other vegetation
types such as terrestrial forests. The investigation by Baloloy et al. [22] shows that the
SWIR1 and SWIR2 bands are the region within which mangrove and terrestrial forests are
recognizable, because of the difference in their spectral reflectance properties. Although
SWIR1 and SWIR2 are helpful for mangrove and non-mangrove vegetation differentiation,
the bands are not considered in formulation of common VIs. Meanwhile, some VIs may
provide similar values in vegetation types such as mangrove forests and dense terrestrial
vegetation. Therefore, indices have been developed utilizing Green, NIR, SWIR1, and
SWIR2 wavelengths to specifically delineate mangroves considering their spectral behavior
(Table 1).

The Mangrove Index (MI) was one of the first mangrove-specific indices proposed
by Winarso et al. [27]. The index computed from L8 Band 5 (NIR) and Band 6 (SWIR1)
was successfully used to map the mangrove forests in the east of Indonesia. The authors
reported the efficiency of MI utilizing L8 near- and short-wave infrared bands in their case
study; however, the accuracy of mangrove mapping using MI on L8 in different mangrove
habitats has not been examined.

Shi et al. [28] suggested an index, i.e., Normalized Difference Mangrove Index (NDMI),
to separate mangroves from terrestrial vegetation using L8 Green and SWIR2 wavelengths.
NDMI combined with two indices (Spectral Match Degree (SMD); SWIR Absorption Depth
(SIAD)) significantly improved mangrove forest identification on L8 in a national nature
reserve in the south of China. Additionally, Ali and Nayyar [7] found that NDMI had the
highest user accuracy (UA) of mangrove forests among different indices (i.e., NDVI, SAVI,
EVI, five MSIs) on L8 in the south of Pakistan, although its producer’s accuracy (PA) was
not acceptable.

Subtraction of NDVI and NDWI obtained from L8 was considered a new mangrove
discriminating index, called Combined Mangrove Recognition Index (CMRI) [25]. The
index employs spectral signatures and morphological characteristics to distinguish man-
groves from non-mangrove vegetation types. The mangroves of three habitats in India and
Bangladesh were well-characterized by CMRI on L8 images. Comparison of CMRI and
NDMI showed that the first index could extract L8 pixels covered by mangroves, while the
pixels extracted by the second index were a mixture of mangroves and barren land [7].

One of the outstanding characteristics of mangrove ecosystems is periodic submerging
of moderate and low-height intertidal stands by fluctuating tide levels. Consequently, the
spectral signature of mangroves can be influenced by submerging or emerging status of
canopy. Mapping mangrove forests with single satellite images, without consideration
of tide levels, may result in under- or overestimation of their extent. A recent study by
Xia et al. [41] proposed an index, the Submerged Mangrove Recognition Index (SMRI),
using two satellite images of high- and low-tide levels to accurately identify mangrove
forests. The SMRI considers NIR wavelength and NDVI to discriminate submerged man-
groves that are not characterized by object-oriented classification of NDVI images. The
procedure significantly enhances the classification accuracy of mangrove forests. A number
of researchers, namely Li et al. [42] and Xia et al. [26], utilized the SMRI as a reliable
analytical instrument to map mangrove forests on L8 data.
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Mapping mangrove forests within a nature reserve in the south of China, Wang et al. [43]
created a new index (Mangrove Discrimination Index (MDI)) to discriminate mangroves
from non-mangrove vegetation on different satellite images. The authors suggested using
SWIR1 and SWIR2 wavelengths to compute MDI1 and MDI2, respectively, although their
investigation revealed that MDI2 performed better than MDI1 on L8 data. However,
Mukhtar et al. [44] found that MDI1 was more efficient than MDI2 for mapping mangrove
forests in Indonesia on L8 images.

The Modular Mangrove Recognition Index (MMRI) was proposed by Diniz et al. [45]
to enhance the contrast of mangrove forests against non-mangroves in the east of Brazil.
The index was a modified version of the Normalized Difference Drought Index (NDDI)
(Equation (1)). The NDWI was replaced by the Modified Normalized Difference Water
Index (MNDWI) (Equation (2)) [46] to construct MMRI.

NDDI = (NDVI − NDWI)/(NDVI + NDWI), (1)

MNDWI = (Green − SWIR1)/(Green + SWIR1), (2)

The assessment of MMRI on L8 imagery showed that the index achieved more robust
results than NDVI, NDWI, and CMRI in discrimination of mangroves from other vegetation
types [45]. Additionally, the index was successfully implemented by Sahadevan et al. [47]
to map mangroves in the south of India.

The Mangrove Vegetation Index (MVI) was also constructed with the objective of
mangrove mapping on L8 and Sentinel-2 data [22]. The index uses Green, NIR, and
SWIR1 wavelengths to rapidly and accurately map mangroves. MVI had successfully
discriminated mangroves from non-mangroves within six study sites in the Philippines;
however, its performance must still be explored within other habitats and be compared to
diverse MSIs available for mangrove mapping.

Recently, a new MSI was developed by Ali and Nayyar [7] to specifically separate
mangrove forests from other vegetation types on L8 imagery. The Landsat 8 Mangrove
Index (L8MI) uses Advanced Slope-based Spectral Transformation (ASST) (Equation (3)) to
maximize the difference between mangroves and other features. The SWIR1 and SWIR2
wavelengths (L8 bands 6 and 7, respectively) (Table A2) can be utilized in Equation (3) to
produce ASST_1 and ASST_2, respectively.

ASST = (Deep Blue − SWIR)/(Deep Blue + SWIR), (3)

The combination of ASST_1 and ASST_2 images and SAVI was called L8MI_1 and
L8MI_2, respectively. A comparative investigation revealed that both versions of L8MI were
more efficient than VIs (e.g., NDVI, SAVI) and MSIs (i.e., CMRI, NDMI) in discrimination
of mangroves in the south of Pakistan, although the robustness of the index has not been
evaluated within other mangrove forests.

Table 1 summarizes the common vegetation and mangrove-specific indices investi-
gated in the present study. The VIs were frequently used to map mangroves in previous
studies. Meanwhile, the selected MSIs were the indices that have been developed or
successfully implemented to recognize mangroves on L8 imagery.

Table 1. The commonly used vegetation indices (VIs) and mangrove-specific indices (MSIs) developed
for mangrove mapping. All of the indices have been used on Landsat images.

Vegetation Indices Formula Reference

V
Is

NDVI (Normalized Difference Vegetation Index) (NIR − Red)/(NIR + Red) [30]
SAVI (Soil Adjusted Vegetation Index) (NIR−Red) (1+L)

NIR+Red+L
[33]

NDWI (Normalized Difference Water Index) (Green − NIR)/(Green + NIR) [36]
EVI (Enhanced Vegetation Index) 2.5×

(
NIR−Red

NIR+6×Red−7.5×Blue+1

)
[39]
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Table 1. Cont.

Vegetation Indices Formula Reference

M
SI

s

MI (Mangrove Index) (NIR − SWIR1/NIR × SWIR1) × 10,000 [27]
NDMI (Normalized Difference Mangrove Index) SWIR2 − Green/SWIR2 + Green [28]
CMRI (Combined Mangrove Recognition Index) NDVI − NDWI [25]
SMRI (Submerged Mangrove Recognition Index) (NDVIL −NDVIH)× NIRL−NIRH

NIRH
[41]

MDI (Mangrove Discrimination Index) (NIR − SWIR)/SWIR [43]
MMRI (Modular Mangrove Recognition Index) (|MNDWI| − |NDVI|)/(|MNDWI| + |NDVI|) [45]
MVI (Mangrove Vegetation Index) NIR − Green/SWIR1 − Green [22]
L8MI (Landsat 8 Mangrove Index) [ASST > T] and [SAVI > T] [7]

2.4. Classification Algorithm

The first phase of this study presented a comprehensive comparison of VIS and MSIs
(Table 1) to determine which index is the most viable to be implemented in mangrove
mapping on L8 imagery. Aside from similar remotely sensed data used within three
study sites (i.e., S2, S6, S9), a similar classification algorithm was also used to effectively
evaluate the robustness of the indices under the same conditions. The accuracy of different
classification algorithms varies among different investigations and it seems difficult to
determine the most efficient algorithm in mangrove vegetation mapping. Among diverse
classification algorithms that have been used in mangrove mapping on Landsat imagery,
the support vector machine (SVM) has shown accurate results. The SVM is a machine
learning algorithm that works on statistical nonparametric theory, and the application
of linear and nonlinear kernels increases its flexibility in generating decision boundaries.
The SVM has been widely used by different authors to identify and map mangroves on
remotely sensed data [5,28,41,42].

Baloloy et al. (2020) suggested threshold filtering to separate mangroves from other
land covers on MVI images; however, threshold selection may significantly affect the
accuracy of mangrove mapping. Therefore, an efficient machine learning algorithm, i.e.,
SVM, was considered for effective separation of mangroves from other classes (soil, water)
in this study that are similarly used to the outputs of all indices. The images of MSIs and
VIs were separately used as input to SVM. There are three parameters, i.e., kernel function,
penalty, and gamma, which have to be optimized in the classification process by the SVM.
Previous research on application of the algorithm in mangrove mapping and preliminary
experimental results in the present study have indicated the robustness of the radial basis
function (RBF). Therefore, the RBF was considered in this study, in addition to the kernel
penalty and gamma values of 100 and 0.1, respectively [48–50]. The procedure can reveal
the capability of each index in delineation of mangrove forests on Landsat data.

2.5. Accuracy Assessment

As the last part of phase 1, the performance and capability of the VIs and MSIs (Table 1)
were quantitatively compared for depicting mangrove and non-mangrove areas. For such
quantitative comparison, approximately 24,000 validation pixels were randomly selected
for three land cover types (i.e., 6000 pixels for mangroves, 9000 pixels for soil, 9000 pixels for
water) in three study sites: S2, S6, and S9. Regarding the difficulty in obtaining the ground
control points of land cover types over such a large extent, images with very high spatial
resolution obtained from airborne remote sensing (i.e., aerial photographs of 1992 and 2006
with scale of 1:20,000 and 1:40,000, respectively; aerial images taken by UltraCam-D and Xp
digital airborne cameras from 2014 to 2018, with approximate pixel size of 7 cm) and Google
Earth historical image data (from 1990 to 2020) were considered as the references data in
the present study. The number of random pixels was selected according to approximate
estimation of area ratio of each land cover type; 70% of these pixels were considered for
training the classifier, and 30% were used for accuracy verification. By constructing the
confusion matrix and calculating the accuracy, precision, recall, and F1-score of mangroves,
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in addition to overall accuracy (OA) and kappa (K), an accuracy assessment was performed
to choose the most robust index within three study sites.

In phase 2, the selected index was implemented to map mangrove forests within
all study sites (Figure 1), for the three 10-year periods (Figure 2). Total validation pixels
considered for training and test in all study sites were approximately 65,000 random pixels,
including 17,000 pixels of mangroves, 23,000 pixels of soil, and 25,000 pixels of water. The
accuracy of final maps was ascertained by calculating the accuracy statistics (i.e., accuracy,
precision, recall, F1-score), based on a confusion matrix constructed from 30% of total
validation pixels in all study sites. The results of the statistics for mangrove class were
considered to reflect the accuracy of mangrove mapping on Landsat images.

2.6. Landscape Metrics

The spatiotemporal changes of mangrove forests in the south of Iran were monitored
by landscape metrics, in addition to total area estimation. The integration of spatial analysis
of temporal changes allows a better understanding of the mangrove forest dynamics. The
assembly of the metrics considered in this study was composed of six metrics concentrated
on evaluation of the shape, quantity, and spatial distribution of the patches of mangrove
forests over time.

The number of patches (NP), patch density (PD), mean patch area (AREA_MN),
and mean perimeter-area ratio (PARA_MN) were used as a measure of fragmentation
of mangrove patches in each study site. With regard to the importance of patch shape,
the mean shape index (SHAPE_MN) was implemented, and the connectivity between
mangrove patches was evaluated by the patch cohesion index (COH). The landscape metrics
of NP, PD, and AREA_MN are related to size of mangrove patches and can be considered
as a reliable measure of fragmentation. Two metrics, PARA_MN and SHAPE_MN, are
indicators of shape complexity of the mangrove patches. As the value of PARA_MN
increases, it shows higher complexity of the patch shapes. When the shapes of patches are
close to square in raster datasets, the value of SHAPE_MN is equal to 1; when the shapes
become more irregular, the values of the index increase with no limits. The connectivity
between mangrove patches of the same landscape can be assessed by COH. The values of
COH range from 0 to 100, and the higher the value of the index is, the more aggregated
the patches are. The landscape metrics can provide additional information about the
spatiotemporal changes of mangroves, such as aggregation of patches and mangrove
fragmentation in the study period (i.e., 1990–2020) [51–53].

3. Results
3.1. Comparison of VIs and MSIs

The results of the accuracy assessment of the VIs and MSIs from the low-tide and
multi-tidal Landsat images at three study sites (S2, S6, and S9) selected for the first phase
are presented in Table 2. As the main aim of this study was mangrove mapping, the
accuracy of mangrove delineation (i.e., statistics of accuracy, precision, recall, and F1-score)
was reported in addition to OA and K. Mangrove detection in the selected study sites
using 14 VIs and MSIs showed contrasting results. In S2, for instance, the accuracy and
F1-score of mangrove mapping on the SAVI image (0.86 and 0.53, respectively) were less
than the MVI results (0.95 and 0.86, respectively); however, the accuracy and F1-score of
mangrove delineation on the SAVI image (0.93 and 0.91, respectively) were higher than the
MVI results (0.90 and 0.87, respectively) in S6 (Table 2). Mangrove mapping on the NDVI
images, as the commonly used index for mangrove mapping in the literature, showed
lower accuracy and F1-scores compared to some VIs and MSIs in the selected study sites
(e.g., 0.77 and 0.53 in S2). In general, the accuracy and F1-score of mangrove mapping were
the highest on the SMRI images in S2, S6, and S9.
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Table 2. The accuracy assessment of mangrove forest mapping on the images of VIs and MSIs determined from Landsat 8 data classified by SVM algorithm in three
study sites, S2, S6, and S9, shown in Figure 1 (accuracy, precision, recall and F1-score of mangroves; OA: overall accuracy; K: kappa coefficient).

Si
te Criteria

VIs MSIs

NDVI SAVI NDWI EVI MI NDMI CMRI SMRI MDI-1 MDI-2 MMRI MVI L8MI-1 L8MI-2

S2

Accuracy 0.77 0.86 0.87 0.87 0.58 0.95 0.89 0.95 0.45 0.41 0.67 0.95 0.95 0.94
Precision 0.62 0.40 0.38 0.46 0.95 0.70 0.48 0.98 0.86 0.74 0.73 0.78 0.70 0.62

Recall 0.45 0.82 0.94 0.83 0.32 0.99 0.96 0.82 0.25 0.22 0.35 0.96 0.99 0.99
F1-score 0.53 0.53 0.55 0.6 0.48 0.82 0.64 0.89 0.39 0.34 0.48 0.86 0.82 0.77
OA (%) 77.4 86.1 87.1 87.3 58.8 95.9 89.2 95.4 41.9 45.9 67.7 95.1 94.8 95.9

K 0.64 0.77 0.78 0.79 0.40 0.80 0.82 0.94 0.12 0.18 0.48 0.90 0.74 0.80

S6

Accuracy 0.87 0.93 0.89 0.94 0.89 0.94 0.90 0.97 0.88 0.65 0.67 0.90 0.97 0.95
Precision 0.97 0.96 0.94 0.96 0.90 0.98 0.96 0.93 0.92 0.91 0.97 0.95 0.93 0.85

Recall 0.74 0.87 0.79 0.91 0.83 0.88 0.81 0.99 0.87 0.50 0.52 0.80 0.99 0.98
F1-score 0.84 0.91 0.86 0.93 0.86 0.93 0.88 0.96 0.89 0.65 0.68 0.87 0.96 0.91
OA (%) 87.2 89.7 89.2 85.5 95.3 97.8 95.5 96.9 81.2 42.4 50.3 96.7 95.2 97.6

K 0.81 0.90 0.83 0.83 0.89 0.90 0.91 0.97 0.69 0.23 0.31 0.90 0.91 0.91

S9

Accuracy 0.93 0.95 0.90 0.95 0.76 0.95 0.95 0.96 0.66 0.57 0.78 0.95 0.95 0.95
Precision 0.95 0.94 0.91 0.94 0.69 0.88 0.98 0.98 0.87 0.71 0.84 0.97 0.86 0.87

Recall 0.80 0.86 0.72 0.87 0.48 0.96 0.85 0.87 0.39 0.30 0.51 0.83 0.96 0.96
F1-score 0.87 0.90 0.81 0.91 0.57 0.92 0.91 0.92 0.54 0.42 0.63 0.90 0.91 0.91
OA (%) 91.7 85.5 80.4 84.1 76.5 98.4 90.3 94.2 66.2 57.6 73.9 89.5 97.2 96.7

K 0.90 0.83 0.74 0.73 0.65 0.91 0.85 0.95 0.49 0.36 0.60 0.84 0.92 0.90



Remote Sens. 2022, 14, 4912 12 of 26

In general, the results indicated that the detection of mangrove forests through the SVM
classification of the SMRI images was the most accurate approach for the selected study
sites (i.e., S2, S6, S9). In addition to the quantitative assessment of mangrove delineation
using VIs and MSIs (Table 2), the results of all 14 indices in S6 (Hara Roud-e Gaz protected
area in Figure 1) were presented in Figure 3, as an example for visual interpretation. The
identification of mangrove patches was not similar on the images of different indices.
Mangroves were overestimated by some indices (e.g., MDI-1, MDI-2), while a few indices
such as L8MI-1 and L8MI-2 underestimated the mangroves.
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however, NDVI detected only dense mangroves. 

Figure 3. Results of the vegetation indices (i.e., NDVI, SAVI, NDWI, and EVI, shown in panels (a–d))
and mangrove-specific indices (i.e., MI, NDMI, CMRI, SMRI, MDI, MMRI, MVI, and L8MI, shown in
panels (e–n)) from the low-tide and multi-tidal Landsat 8 image in S6 (Hara Roud-e Gaz protected
area in Figure 1). (o) is the low-tide Landsat 8 image in S6. (Note: MDI-1 and L8MI were computed by
SWIR1 (MDI-1 and L8MI-1, respectively) and SWIR2 (MDI-2 and L8MI-2, respectively) wavelengths.
White areas represent mangrove forests).
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Additionally, the mangrove boundaries delineated by the SMRI index were overlaid on
L8 imagery (Figure 4a–c) and high resolution true-color Google Earth images (Figure 4d–f)
in three study sites: S2, S6, and S9. The visual interpretation of the SMRI and NDVI results
showed that SMRI perfectly mapped both dense and sparse mangrove patches; however,
NDVI detected only dense mangroves.
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Figure 4. Classification results of mangrove forests in S2 (Nayband National Park) (a), S6 (Hara Roud-
e Gaz protected area) (b), and S9 (Bahookalat protected area) (c) from SMRI images. Panels (a–c) are true
color composites of the low-tide Landsat 8 imagery (image date: 8 March 2020). Panels (d–f) compare
the results of mangrove mapping on the SMRI and NDVI images on very high-resolution Google
Earth images.

The quantitative and qualitative evaluation of the VIs and MSIs showed that the SMRI
images were the most reliable data for mangrove mapping within the selected study sites.
The SMRI index was, therefore, used to detect mangroves within all the study sites in
the study period. Table 3 shows the accuracy assessment of the mangrove maps within
all the study sites (Figure 1) in the study years obtained from the SMRI images of the
sites classified by SVM algorithm. It should be noted that there were no mangrove forests
in S8 before 2010, so the mangroves were established after 2010. Therefore, no accuracy
assessment was provided in 1990 and 2000 within S8.
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Table 3. The accuracy assessment of mangrove forest mapping from 1990 to 2020 with 10-year lags on the SMRI images of all study sites (Figure 1), classified by
SVM algorithm (accuracy, precision, recall, and F1-score of mangroves; OA: overall accuracy; K: kappa coefficient).

Sites
1990 2000

Accuracy Precision Recall F1-Score OA (%) K Accuracy Precision Recall F1-Score OA (%) K

S1 0.91 0.86 0.74 0.80 91.8 0.87 0.88 0.90 0.64 0.75 88.7 0.82
S2 0.90 0.93 0.70 0.80 90.1 0.84 0.74 0.70 0.53 0.60 91.1 0.86

S3 and S4 0.94 0.97 0.88 0.92 94.4 0.91 0.94 0.96 0.89 0.92 94.8 0.92
S5 0.94 0.95 0.87 0.91 94.3 0.91 0.94 0.96 0.86 0.91 93.9 0.91
S6 0.94 0.95 0.88 0.91 94.2 0.91 0.94 0.95 0.89 0.92 94.8 0.92
S7 0.92 0.95 0.77 0.85 93.1 0.89 0.93 0.97 0.76 0.86 93.5 0.89
S8 - - - - - - - - - - - -
S9 0.95 0.94 0.89 0.92 95.7 0.93 0.96 0.95 0.90 0.92 96.1 0.94

Sites
2010 2020

Accuracy Precision Recall F1-Score OA (%) K Accuracy Precision Recall F1-Score OA (%) K

S1 0.85 0.83 0.58 0.68 85.6 0.77 0.89 0.86 0.66 0.75 89.4 0.83
S2 0.91 0.90 0.76 0.82 91.8 0.87 0.95 0.98 0.82 0.89 95.4 0.94

S3 and S4 0.92 0.99 0.83 0.90 92.7 0.89 0.95 0.96 0.92 0.94 95.8 0.93
S5 0.94 0.96 0.87 0.91 94.3 0.91 0.95 0.96 0.90 0.92 95.2 0.92
S6 0.94 0.98 0.87 0.92 94.5 0.91 0.97 0.93 0.99 0.96 96.9 0.97
S7 0.96 0.98 0.84 0.90 96.2 0.93 0.93 0.98 0.76 0.85 93.5 0.89
S8 0.88 0.90 0.59 0.71 88.4 0.81 0.97 0.98 0.87 0.92 97.5 0.95
S9 0.94 0.98 0.84 0.91 94.9 0.92 0.96 0.98 0.87 0.92 94.2 0.95
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3.2. Mangrove Area Change Assessment

The SMRI-derived mangrove area within each study site was compared from 1990 to
2020 (Figure 5). The results indicated dissimilarity in area changes of mangroves between
the study sites. An area increase over the mangrove habitats was observed in S1, S2, and S6
to S9 during the period 1990–2020. The highest increase rate was observed in S2 and S8,
auxh that the total area of mangroves changed from 64.9 and 0.0 ha in 1990 to 243.9 and
99.6 ha in 2020, respectively (Figure 5b,h). No mangrove forests were observed in S8 on the
SMRI images in 1990 and 2000, although small patches were established in 2010 (20.5 ha)
and rapidly developed in 2020 (99.6 ha) (Figure 5h). Alternatively, the study sites of S3
and S4, with the largest mangrove distribution in 1990 (6364.1 and 1815.3 ha, respectively),
showed no significant increase in 2020 (6502.6 and 2041.6 ha, respectively). However, a
sharp decline was observed in S3 and S4 from 2000 (6782.4 and 2129.2 ha, respectively) to
2010 (6338.3 and 1844.2 ha, respectively) (Figure 5c,d). Additionally, the mangrove areas
were approximately doubled in S7 and S9 within the study period (from 541.7 and 322.2 ha
in 1990 to 1111.2 and 645.9 ha in 2020, respectively) (Figure 5g,i). In general, the distribution
of mangrove forests in all study sites increased from 10,706.2 to 12,177.3 ha during the
decade 1990–2000 and decreased to 11,749.9 in 2010 but expanded to 13,019.1 ha in 2020.
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Figure 5 shows the cumulative changes of mangrove coverage during the period
1990–2020 within each study site; however, the rates of area increase and decrease in each
10-year period are also important for the global assessment of mangrove forests. Figure 6
indicates the increase and decrease percentages of mangrove areas in the three decades
of 1990–2000, 2000–2010, and 2010–2020, within each study site. A closer look at Figure 6
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shows that the mangroves in S2 (54.6%, Figure 6b) and S8 (77.8%, Figure 6g) had the highest
increase rate in the temporal interval from 2010 to 2020, whereas the highest decrease was
registered in S1 (49.4%, Figure 6a) in the interval from 1990 to 2000. The average rate of area
changes in three decades (20.0%, 14.1%, and 33.2% increases in the 1990–2000, 2000–2010,
and 2010–2020 epochs, respectively; Figure 6i) suggests an increase in total mangrove
coverage in southern Iran. However, it is important to note that the results of mangrove
area change assessment were slightly different in some study areas, when the amounts of
increase and decrease were considered instead of their relative proportions. In S3 and S4,
for instance, the highest increase (483 ha in the decade 1990–2000) and decrease (450 ha in
the decade 2000–2010) were observed, although their standardized values (5.4% increase
and 5.5% decrease, respectively) were not significant, due to the largest distribution of
mangroves in the two study sites.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 6. Mangrove area increase and decrease over time (three decades of 1990–2000, 2000–2010, 
and 2010–2020 epochs) in all major mangrove sites (S1–S9 in Figure 1) on SMRI images. Panels (a–
h) show changes of mangroves in each study site, and panel (i) exhibits the total changes in all sites. 

The total spatiotemporal changes of mangrove forests within the study sites in the 
temporal interval between 1990 and 2020 are presented in Figure 7. The visual interpreta-
tion of spatial changes of mangroves revealed that their expansions were landward in 
some study sites (S6, S7), although their development was seaward in S5 and S9. The man-
grove losses mostly occurred landward, which are well shown in two subsites of S5. 

 
Figure 7. Spatiotemporal changes of mangrove forests in all major mangrove sites (S1–S9 in Figure 
1) on SMRI images between 1990 and 2020 in southern Iran. 

Figure 6. Mangrove area increase and decrease over time (three decades of 1990–2000, 2000–2010,
and 2010–2020 epochs) in all major mangrove sites (S1–S9 in Figure 1) on SMRI images. Panels (a–h)
show changes of mangroves in each study site, and panel (i) exhibits the total changes in all sites.

The total spatiotemporal changes of mangrove forests within the study sites in the
temporal interval between 1990 and 2020 are presented in Figure 7. The visual interpretation
of spatial changes of mangroves revealed that their expansions were landward in some
study sites (S6, S7), although their development was seaward in S5 and S9. The mangrove
losses mostly occurred landward, which are well shown in two subsites of S5.
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3.3. Evaluation of Landscape Metrics

Further analyses using the landscape metrics were carried out to monitor the spatial
distribution changes of mangrove patches within the study sites from 1990 to 2020 (Figure 8).
The NP and PD were significantly increased in S2, S6, S7, S8, and S9; however, the values of
the metrics decreased in S1, S3–S4, and S5 during the study period. The highest increasing
rate was observed from 1990 to 2000 in S2 and S6 and from 2010 to 2020 in S7, while
the metrics gradually increased during the study period in S8 and S9. Additionally, the
decrease in the metrics was sharp from 1990 to 2000 in S1 and S5, although the metrics
suddenly decreased from 2000 to 2010 in S3–S4 (Figure 8a–h). It seems that establishment
and development of mangrove patches caused an increasing trend of the NP and PD in a
number of study sites (i.e., S2, S6, S7, S8, S9).

The AREA_MN showed an increasing tendency from 1990 to 2020 in all study sites,
although the tendency was not sharp in S5 and S6 (Figure 8i–l). During the last epoch
(i.e., 2010–2020), the metric slightly decreased within S1, S3–S4, and S7, while an increasing
trend was observed from 1990 to 2010. Moreover, the metric gradually increased within the
other study sites. The AREA_MN metric revealed that the size of the mangrove patches
increased in all study sites, although their size became smaller within three sites in the
last decade.

The values of PARA_MN showed a complexity reduction from 1990 to 2020 in S1,
S5, S6, and S7, while a contrasting trend was found in other study sites. The highest
rise of complexity was observed in S9, whereas S1 experienced the greatest reduction
(Figure 8m–p).

The SHAPE_MN for all study sites was greater than 1 (except S8 in 1990 and 2000),
indicating that the average patch shape in all study sites was noncircular. Values between
1.1 and 1.7 revealed a rectangular shape of the patches (Figure 8q–t). Additionally, the in-
creasing trend of SHAPE_MN in all study sites showed the greater complexity of mangrove
patches in 2020 compared to 1990.
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Figure 8. Changes of the landscape metrics of mangrove patches within study sites of S1–S9 (Figure 1)
presented in panels (a–x), respectively, in the study period (1990, 2000, 2010, 2020). The metrics
are NP (number of patches), PD (patch density), AREA_MN (mean patch area), PARA_MN (mean
perimeter-area ratio), SHAPE_MN (mean shape index), and COH (patch cohesion index).

The variation in the COH showed an increasing tendency within S1, S2, S7, S8, and S9,
indicating a stronger connectivity of mangrove patches in the sites in 2020 compared to
1990. The tendency was also increasing in S5 and S6 during 1990–2010; however, a sharp
decrease was observed in both sites from 2010 to 2020. There was no significant change in
the metric values in S3–S4 during the study period (Figure 8u–x).

4. Discussion
4.1. Robustness of VIs and MSIs in Mangrove Forest Mapping

Mangrove forests are located along intertidal zones in relatively small patches; there-
fore, a lack of considering the high and low tidal conditions would result in the misclassi-
fication between mangroves and water. Application of VIs not specifically designed for
mangrove identification may cause a mixture of pixels covered by mangrove forests and
water. To solve the problem, a number of MSIs have been proposed in the literature; how-
ever, their efficiency in the study sites of the present research was not clear. To accurately
map and monitor the mangrove forests along the southern coast of Iran in this study, we,



Remote Sens. 2022, 14, 4912 19 of 26

therefore, compared the accuracy of mostly cited VIs and almost all MSIs that have been
developed for mangrove mapping on Landsat data (Table 1). Efficiency of the VIs and MSIs
on Landsat imagery was evaluated within three study sites (i.e., S2, S6, S9) (Figure 1) in
the first phase. In general, our findings in the selected study sites (Table 2) indicated less
effectiveness of the VIs (Table 1), such as NDVI, as the commonly used index for mangrove
mapping [12,19,24].

The results of accuracy statistics such as the accuracy and F1-score of mangroves
indicated the robustness of most of the MSIs (Table 2), although the maps obtained from
the SMRI images showed the highest accuracy. The visual interpretation of the mangrove
maps (Figure 4) and the values of the accuracy statistics (Table 2) suggested that SMRI
was the most appropriate index within the study sites. The result supports the findings
of previous studies, that SMRI provides great opportunities in the efficient discrimination
of mangrove forest patches on Landsat imagery [26,41,42]. To the best of our knowledge,
a comprehensive comparison of the performance of VIs and MSIs was not considered in
the literature, and a limited number of indices were evaluated in studies that proposed
a new mangrove index (Table 4). Our findings imply that capability of VIs and MSIs
to map mangroves on Landsat data may be inconsistent in different mangrove forests.
Diniz et al. [45], for instance, reported that MMRI was more efficient than CMRI in mapping
Brazil’s mangrove forests, while CMRI showed better results than MMRI in our study sites
(Table 2). Future studies may explore the influence of the biophysical characteristics
of mangrove forests (e.g., canopy cover, intertidal conditions) on the performance of
vegetation and mangrove indices.

Table 4. A summary of the vegetation indices proposed and compared by various authors to map
mangrove forests on Landsat 8 images.

Reference Compared Vegetation Indices The Proposed Index The Selected Index

Gupta et al. [25] SR, NDVI, NDWI, SAVI, CMRI CMRI CMRI
Wang et al. [43] SR, DVI, NDVI, EVI, MDI MDI MDI
Diniz et al. [45] NDVI, NDWI, CMRI, MMRI MMRI MMRI

Ali and Nayyar [7] RVI, EVI, NDVI, SAVI, CMRI, NDMI, L8MI L8MI L8MI
Xia et al. [26] RVI, EVI, NDVI, SAVI, MRI, SMRI SMRI SMRI

SR: Simple Ratio, RVI: Ratio Vegetation Index, DVI: Difference Vegetation Index, MRI: Mangrove Recogni-
tion Index.

Baloloy et al. [22] explained that the difference in the reflectance of mangrove and
terrestrial vegetation canopies is greater in the SWIR1 wavelength compared to SWIR2.
However, Ali and Nayyar [7] found no significant difference between the reflectance of
mangrove and terrestrial vegetation in the SWIR1 and SWIR2 wavelengths and suggested
to use both wavelengths in their proposed MSI (i.e., L8MI). The results of the present study
were in accordance with the achievements of Baloloy et al. [22]. Table 2 showed that the
accuracy of mangroves delineated on MDI-1 and L8MI-1 images (calculated by SWIR1) was
greater than the accuracy of mangroves mapped on MDI-2 and L8MI-2 images (based on
SWIR2). In comparison with SWIR2, reflectance of the SWIR1 wavelength is significantly
lower for mangroves [22,43] and, thus, can be considered as the input wavelength (Band 6
in L8) for the index-based mapping of mangrove forests on Landsat data.

4.2. Long-Term Changes of Iran’s Mangrove Forests

The present study can be considered as the first comprehensive assessment of Iran’s
mangrove forests, which systematically mapped and monitored the extent of mangrove
patches distributed along the coast of southern Iran using a robust MSI. The long-term
increasing rate of mangrove forest area found in the present study is in accordance with
the achievements of previous investigations along the southern coasts of Iran [14] and
case studies in major sites [54,55]. The latest estimate of Iran’s mangrove forests is for
the year 2017, with a total area of 9403 ha, using NDVI images derived from Landsat
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data [14]. Moreover, the study reported the total area of mangrove forests in 1977 (4735 ha),
1989 (6052 ha), and 2000 (8015 ha). However, the estimated total areas were significantly
different from the amounts obtained in the present study (i.e., 10,706.2 ha in 1990, 12,177.3
ha in 2000, 11,749.9 ha in 2010, 13,019.1 ha in 2020). Considering the higher accuracy of
SMRI than NDVI in mangrove mapping on Landsat imagery (Figure 4d–f), it is likely that
the mangrove-delineation approach is the main reason for the observed differences in the
estimation of the total area of mangroves in southern Iran. In a comprehensive assessment
in 2011 by Danehkar et al. [56], the national mangrove area was 11,017.5 ha based on
analysis of IRS imagery, which is similar to our findings for 2010.

The spatial distribution of mangroves showed distinct trends between the study pe-
riods. In the first period, from 1990 to 2000, the trend was upward with almost a 13.7%
increase in the total area of mangroves. In line with our findings, Mafi-Gholami et al. [19]
also demonstrated that favorable environmental conditions before 1998 resulted in the ex-
pansion of mangrove forests in three sites: S3–S4, S5, and S7. This may explain the upward
trend observed in the total area of mangrove forests within all sites. The second period,
i.e., between 2000 and the 2010 epoch, indicated a downward trend, with approximately a
3.5% loss of mangroves. A similar status was observed by Mafi-Gholami et al. [19] within
three study sites, as a result of extensive and continuous drought that started from 1998
in the region. Additionally, Etemadi et al. [20] reported a significant reduction in man-
grove area in S2 after 1997, because of severe drought and human-induced impacts such
as industrial effluent discharge to estuaries and rapid urban development. Our findings
indicated that the loss of mangrove forests during the period 2000–2010 was only observed
in S3 and S4 (Figure 5), while other sites experienced an increasing rate. Natural stresses
(e.g., climate change) and anthropogenic pressures are probably the main drivers of the
reduction in mangrove forests in S3 and S4. It should be noted that S3 and S4 are the most
important mangrove sites, with an area of 8544.2 ha, which comprise more than 65.6%
of the total area (in 2020). Therefore, the decrease in mangroves in S3 and S4 (6.5% and
13.4%, respectively) from 2000 to 2010 resulted in the downward trend of the total area of
mangroves, despite the increasing rates observed in the other sites. In the third period,
from 2010 to 2020, the trend was upward, with an increasing rate of 10.8% in the total
area of mangroves. The observed increasing rate is mainly due to plantation activities by
Natural Resources Administrations (NRAs), in cooperation with local people; growing
awareness of public and the local authorities; and more severe conservation status of the
forests, in the forms of biosphere reserves, protected areas, and national parks, during the
last decade. The efforts made by the NRAs probably caused a significant increasing rate
in the mangrove spatial extent between 2010 and 2020 epoch (Figure 6i); otherwise, the
impacts of climate change could limit the development of mangrove forests, as predicted by
Mafi-Gholami et al. [18]. In S8, for instance, no mangrove forest was observed on Landsat
imagery in 2000, while the site was covered by mangroves in 2010 (20.5 ha) and expanded
to 99.6 ha in 2020 (Figures 5h and 6g). However, S5 was the only site that experienced
landward mangrove deforestation during the period (Figures 5e and 7), likely due to the
impacts of urbanization and development of shrimp aquaculture. In general, our findings
indicated that the spatial extent of mangrove forests in all study sites increased, with an
annual rate of 0.72% during the study period, i.e., 1990–2020. The seaward and landward
spatial distributions of the mangroves in most study sites (see Figure 7 for more details)
can be considered as the result of natural regeneration, because of the conservation and
afforestation by the NRAs.

4.3. Mangrove Forest Monitoring through Landscape Metrics

Although remote-sensing based information on changes of mangrove spatial extents
allow a deep understanding of the dynamics of mangrove forests in southern Iran, it
seems essential to assess the dynamics of mangrove patches throughout robust landscape
metrics to obtain reliable interpretations regarding the observed temporal fluctuations in
the country’s mangrove total areas.
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The NP and PD metrics showed a decreasing tendency in some study sites (i.e., S1,
S3–4, S5), while an increasing tendency was observed in other study sites (i.e., S2, S6, S7,
S8, S9) from 1990 to 2020. It seems that the mangrove patches became more compact in
S1, S3–4, and S5, in contrast to other study sites, where the mangrove patches experienced
fragmentation. However, AREA_MN and SHAPE_MN indicated an increasing trend
during 1990–2020 within all sites, which demonstrates more irregularity of the mangrove
patches. Considering PARA_MN, an increasing complexity was observed in most study
sites, except S1, S5, S6, and S7. The COH metric revealed a higher connectivity among
the mangrove patches from 1990 to 2020, although it was less strong in S3–4, S6, and S7
(Figure 8). In general, the mangrove patches in S1 and S5 became less in number, with
more compactness and less complexity, with strong connectivity that can be considered
as a degradation of the mangroves from 1990 to 2020. The mangroves in S2, S8, and S9
experienced an increasing number of patches, with irregularity and high complexity, with
strong connectivity that shows restoration of the sites during the epoch. In S3 and S4, the
number of mangrove patches was reduced, the irregularity and complexity increased, and
the connectivity became weak, indicating slight degradation in some parts of the sites.
Finally, the decreasing number of mangrove patches in S6 and S7, with less complexity
and weak connectivity, may account for the significant degradation of the sites in the
study period.

Mangrove forests are mainly influenced by natural and anthropogenic threats. From
the perspective of natural threats, temperature change and sea level rise, as the impacts of
climate change, are likely to be the most important factors affecting mangroves. Previous
works have reported contrasting results on the northern coasts of the Persian Gulf and Gulf
of Oman, about the natural factors that significantly threaten world mangrove forests. For
instance, Goharnejad et al. [57] found no significant trend in sea level rise from 1990 to
2008 within four tide gauges stations installed by the Iranian Tide Gauge Network along
the coasts. However, Al-Subhi and Abdulla [58] explored an increasing linear trend of
2.58 mm in sea level rise per year from 1992 to 2020. Additionally, Al Senafi [59] found an
overall loss of heat (cooling) in sea surface temperature (SST) during the 1982–2020 epoch,
while Al-Subhi and Abdulla [58] reported SST increase with a linear trend of 0.027 ◦C per
year from 1992 to 2020. The findings of this study have to be seen in light of variations
in natural factors that could be accurately addressed at site-level in future investigation.
Additionally, unofficial reports have shown that the landward expansion of mangrove
spatial distribution in different sites (e.g., S6, S7, S8, S9) is probably due to plantation
activities by NRAs and management of mangroves under biosphere reserves, protected
areas, and national parks. However, it should be noticed that the development of mangrove
forests observed in some sites (e.g., S1, S2) and the degradation explored in other sites
(e.g., S3, S4) are mainly derived by anthropogenic factors, considering the achievements of
the previous research and the findings of the present study.

5. Conclusions

The distribution and spatiotemporal alteration of Iran’s mangrove forests along the
shorelines of the Persian Gulf and Gulf of Oman during the period of 1990 to 2020 were ex-
plored using Landsat time series data and landscape metrics. First, we compared commonly
used and recently developed vegetation indices on L8 data, based on our hypotheses. The
detection of mangrove patches within three sites was carried out through four VIs and eight
MSIs. The SMRI was validated as the most effective index (F1-score ≥ 0.89) for mangrove
identification in the selected sites. Later, we implemented the SMRI on the Landsat time
series data, within nine sites, to obtain mangrove areas and spatial distributions for 1990,
2000, 2010, and 2020. The SMRI images were classified by the SVM supervised algorithm, to
accurately map the spatial extent of all mangrove patches in the sites. Although mangrove
mapping at the national scale, by analyzing manually selected multi-tidal images, was
efficient in the present study, there is a challenge in collecting and selecting the appropriate
tiles of Landsat multi-tidal data, especially in automatic approaches that might be devel-
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oped on cloud computing platforms such as Google Earth Engine, so this challenge can be
addressed in future research.

By employing the SMRI as a robust mangrove index on Landsat long-term data, the
mangrove area of southern Iran was estimated at approximately 13,000 ha in 2020, showing
an increase of 1471.1 ha from 1990 to 2000, a decrease of 427.4 ha from 2000 to 2010, and an
increase of 1269.2 ha from 2010 to 2020. However, the low temporal resolution of the present
study (i.e., three 10-year periods) prevented the investigation of the short-term (e.g., annual)
trends of the habitat areas within the studied sites. The general increase in the mangrove
area during the last three decades (i.e., approximately 2313 ha) can possibly be related to the
establishment and management of national parks, protected areas, and biosphere reserves
along the southern coast of the country, since the 1970s and after the Ramsar Convention on
Wetlands (February 1971) held in Iran. Finally, we used the six most important landscape
metrics for the description and quantification of the changes observed in Iran’s mangrove
forests during the study period. Our findings revealed stronger connectivity and higher
complexity in most sites; however, the mangroves were fragmented and weakly connected
within other sites. Anthropogenic activities such as severe conservation and afforestation
have likely caused seaward and landward expansions of the forests within some sites,
which may be addressed by future research.

The main achievement of this study was the accurate mapping of Iran’s mangrove
forests and their long-term dynamics, by means of a recently developed method, i.e., the
SMRI from Landsat data. The mangrove forests of all study sites were mapped with a
similar procedure for each study year, offering valuable insight into understanding the
mangrove dynamics along the coast of southern Iran over time and space. Moreover, the
robust mapping approach resulted in the identification of mangrove forests established in
S8 after 2010, which had no mangroves before. However, the mangrove forest dynamics
within the study sites, as reported in the present study, should be investigated regarding
natural processes and anthropogenic activities in future.
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Appendix A

Table A1. Date of Landsat time series data used for each mangrove site in the present study.

Mangrove Sites Study Year Low-Tide Imagery Date High-Tide Imagery Date

Bushehr Province

S1 1990 19 April 1990 25 August 1990
2000 13 March 2000 1 June 2000
2010 17 March 2010 20 May 2010
2020 30 October 2020 4 March 2020

S2 1990 27 March 1990 12 April 1990
2000 6 March 2000 7 April 2000
2010 11 April 2010 26 March 2010
2020 3 July 2020 13 March 2020
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Table A1. Cont.

Mangrove Sites Study Year Low-Tide Imagery Date High-Tide Imagery Date

Hormozgan Province

S3 1990 8 November 1990 13 March 1990
2000 11 May 2000 8 March 2000
2010 11 July 2010 12 March 2010
2020 28 February 2020 28 December 2020

S4 1990 8 November 1990 13 March 1990
2000 11 May 2000 8 March 2000
2010 11 July 2010 12 March 2010
2020 28 February 2020 28 December 2020

S5 1990 22 March 1990 3 December 1990
2000 7 March 2000 20 May 2000
2010 10 December 2010 29 March 2010
2020 12 June 2020 8 March 2020

S6 1990 6 March 1990 7 April 1990
2000 17 March 2000 27 October 2000
2010 10 December 2010 29 March 2010
2020 8 March 2020 18 October 2020

S7 1990 16 April 1990 15 March 1990
2000 10 March 2000 9 February 2001
2010 14 March 2011 30 March 2010
2020 1 March 2020 17 March 2020

Sistan and
Baluchestan Province

S8 1990 8 March 1990 27 May 1990
2000 3 March 2000 19 March 2000
2010 12 December 2011 31 March 2010
2020 10 March 2020 18 September 2020

S9 1990 28 November 1990 17 March 1990
2000 12 March 2000 25 December 2000
2010 15 December 2011 16 March 2010
2020 3 March 2020 6 May 2020

Table A2. The bands of Landsat 5, 7, and 8 data used to compute the vegetation and mangrove indices.

Satellite and Sensor Bands Wavelength (Micrometer) Spatial Resolution (m)

Landsat 5 TM

Band 1 0.45–0.52 30
Band 2 0.52–0.60 30
Band 3 0.63–0.69 30
Band 4 0.76–0.90 30
Band 5 1.55–1.75 30
Band 7 2.08–2.35 30

Landsat 7 ETM+

Band 1 0.45–0.52 30
Band 2 0.52–0.60 30
Band 3 0.63–0.69 30
Band 4 0.77–0.90 30
Band 5 1.55–1.75 30
Band 7 2.09–2.35 30

Landsat 8 OLI

Band 2 0.45–0.51 30
Band 3 0.53–0.59 30
Band 4 0.64–0.67 30
Band 5 0.85–0.88 30
Band 6 1.57–1.65 30
Band 7 2.11–2.29 30
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