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Abstract: Deep learning-based semantic segmentation technology is widely applied in remote sensing
and has achieved excellent performance in remote sensing image target extraction. Greenhouses
play an important role in the development of agriculture in China. However, the rapid expansion of
greenhouses has had a series of impacts on the environment. Therefore, the extraction of large-scale
greenhouses is crucial for the sustainable development of agriculture and environmental governance.
It is difficult for existing methods to acquire precise boundaries. Therefore, we propose a spatial
convolutional long short-term memory structure, which can fully consider the spatial continuity
of ground objects. We use multitask learning to improve the network’s ability to extract image
boundaries and promote convergence through auxiliary loss. We propose a superpixel optimiza-
tion module to optimize the main-branch results of network semantic segmentation using more
precise boundaries obtained by advanced superpixel segmentation techniques. Compared with other
mainstream methods, our proposed structure can better consider spatial information and obtain
more accurate results. We chose Shandong Province, China, as the study area and used Gaofen-1
satellite remote sensing images to create a new greenhouse dataset. Our method achieved an F1
score of 77%, a significant improvement over mainstream semantic segmentation networks, and
it could extract greenhouse results with more precise boundaries. We also completed large-scale
greenhouse mapping for Shandong Province, and the results show that our proposed modules have
great potential in greenhouse extraction.

Keywords: greenhouse extraction; deep learning; spatial ConvLSTM; multitask; superpixel segmentation

1. Introduction

As a common facility in modern agriculture, greenhouses can significantly improve
crop yields by minimizing the impact of weather conditions, human factors, and other
features of the external environment on crop yields, and they play an important role in
the development of agriculture. According to data from the third national agricultural
census, China’s greenhouses covered an area of 981,000 hectares by the end of 2016 [1].
While the large number of greenhouses brings greater agricultural production, it also has
a series of impacts on the environment due to rapid expansion, including soil pollution
and environmental pollution. Therefore, large-scale greenhouse mapping is not only useful
for estimating the coverage rate of modern agriculture in a country, but also critical for the
sustainable development of modern agriculture and environmental governance.

The traditional greenhouse mapping method mainly adopts the manual field survey
method, but this method requires too much manpower and material resources. It takes
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much time to draw a version of the national greenhouse map. With the development
of remote sensing satellite detection technology, large-scale remote sensing images are
becoming easier to obtain. At present, remote sensing images have been widely used in
various fields, including agricultural disaster monitoring [2], global land-use mapping [3],
earthquake monitoring [4], and urban planning [5]. In recent years, the method of agricul-
tural greenhouse extraction using remote sensing satellite observation data has become
the mainstream method for large-scale greenhouse extraction. Warner [6] constructed a
greenhouse vegetable field extraction index based on remote sensing data in Qingzhou
city, Shandong Province, which can quickly extract greenhouse vegetable fields. How-
ever, this index-based method requires great expertise, and the follow-up research has
mainly been based on the supervised classification method. According to the different
types of research units in the classification method, the supervised classification methods
used in remote sensing image applications can mainly be divided into two categories:
pixel-based [7] and object-based [8,9] classification methods. Chen and Li [10] extracted the
backscatter intensity information of different polarization information based on SAR data
as the input of the classifier and proved the important potential of SAR data in greenhouse
extraction. However, this pixel-based method is easily affected by noise in the image
due to using less of the local information of the image. Coslu et al. [11] took Antalya
Province, Turkey, as the research area and used the object-based classification method to
automatically extract the greenhouses in the urban space, achieving an accuracy rate of
more than 80%. Aguilar et al. [12] combined the rich texture information of WorldView-2
and the spectral information of the Landsat 8 Operational Land Imager to extract green-
houses in Southern Spain using the classification method of a decision tree. Compared with
pixel-based methods, object-based methods can more fully consider the texture information
and structural information of greenhouses in remote sensing images, which can yield more
reliable results. However, the object-based classification method needs to manually design
reasonable object features, so it is still insufficient in the intelligent application of large-scale
greenhouse mapping.

Image semantic segmentation, as a technique for classifying objects in images at the
pixel level, has a wide range of applications in the field of computer vision. Since the fully
convolutional neural network (FCN) [13] achieved the best results on the Pascal VOC2012
dataset in 2014, deep learning has been widely used in semantic segmentation. In the past
few years, many excellent semantic segmentation networks have been proposed, including
UNet [14], LinkNet [15], PSPNet [16], DeepLabV3 [17], PAN [18], etc. At the same time,
some studies have applied deep learning semantic segmentation networks in greenhouse
extraction. Sun et al. [19] constructed five improved FCN models by using the multiscale
fusion method and performed greenhouse monitoring on UAV images. Baghirli et al. [20]
used optical satellite images for semantic segmentation for pixel-level tasks to perform
greenhouse extraction, fully incorporating dilation convolution and skip connections based
on UNet. The experimental results demonstrated that the proposed model outperformed
the baseline UNet structure. The previously mentioned approach using deep learning
networks for greenhouse extraction is homogeneous in the form of the network structure,
employing a decoder to progressively upsample the abstract features extracted by the
encoder and calculating the gap between them and the labels. These methods have great
advantages over traditional methods. However, the spatial information of the object is
missing from the network, which means that the extracted object geometry still has a large
gap with the real labels, and the accuracy is still unsatisfactory. Zhang et al. [21] designed a
new multipath backbone network based on HRNetV2 [22] to enhance the interaction of
multiscale information through an attention mechanism. Spatial gradient variation was
introduced to fully combine the segmentation task with the boundary learning task, and
then the joint loss was used to optimize the boundary results. This method is better than
previous methods for the accurate identification of greenhouses.

To better utilize the spatial information in the image, the combination of long short-
term memory (LSTM) and neural network has been widely used in image processing.
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Shi et al. [23] first proposed combining the concept of convolution with LSTM and con-
structed a convolutional LSTM (ConvLSTM) structure by using convolutional structures in
recurrent connections, which can better capture the spatial location information in images.
Based on UNet, Azad et al. [24] constructed a bidirectional densely connected ConvLSTM
network structure for medical image segmentation and obtained more accurate segmenta-
tion results. In the above studies, the ConvLSTM structure was proven to be able to better
extract the spatial information of images in semantic segmentation and thus obtain more
accurate results.

Meanwhile, most of the existing studies are for single tasks, such as semantic segmen-
tation and object detection. In practice, it is often necessary to train a separate network for
each task. As a paradigm in machine learning, multitask learning can perform cross-task
learning and use information from different tasks to improve the generalization ability of
the model. Li et al. [25] proposed a new network by constraining the connectivity of roads
with auxiliary tasks. It effectively alleviated the influence of shadows in satellite images
on the extraction results. The advanced results demonstrated the applicability of auxiliary
tasks for feature extraction from remote sensing images.

For high-resolution images, pixel-based image processing methods will take a long
time. Ren and Malik [26] proposed oversegmenting the image into superpixels, grouping
similar pixels in the original image into small blocks to provide a concise representation
of the graph. As an oversegmentation technique, superpixel segmentation can provide
better boundary information than pixel-based semantic segmentation, and there is also
less redundant information in the data. By using superpixels as the basic image unit, the
computational complexity can be effectively reduced, and the feature extraction of images
can be performed more efficiently [27]. The most widely used superpixel segmentation
method is SLIC algorithm [28]. However, it cannot be directly embedded into an end-
to-end neural network because it is nondifferentiable. Jampani et al. [29] improved the
original SLIC to guarantee that each computational process in the iterative process is
differentiable and proposed differentiable SLIC. They also proposed superpixel sampling
networks (SSNs) to perform end-to-end training using deep networks for feature extraction
in a supervised learning manner.

Despite the work in the above-mentioned studies, large-scale greenhouse mapping
is still difficult to achieve, and the main difficulties include the following: (1) The task of
mapping large-scale greenhouses is influenced by complex greenhouse structures and large-
scale differences. Additionally, remote sensing images contain a large number of similar
backgrounds, including buildings, mulch, and cultivated land. Therefore, the robustness of
the greenhouse extraction algorithm is crucial to the extraction performance. (2) Large-scale
greenhouse mapping requires remote sensing images with appropriate resolution to reduce
the data volume. However, the impact of mixed pixels on greenhouse boundary extraction
needs to be considered in low-resolution images. Therefore, reducing the influence of
complex greenhouse structures and mixed pixels on the extraction results in the large-scale
greenhouse extraction task is the key of this paper. We propose a convolutional neural
network considering spatial information that combines a multitask learning strategy and a
superpixel optimization method, aiming to better extract the spatial relationship of targets
in image features and obtain more accurate boundaries.

In summary, the contributions of this paper are as follows:

• We propose the spatial convolutional long short-term memory (Spatial ConvLSTM,
SPCLSTM) structure. The learning ability of the network for the spatial continuity of
the image feature surface is enhanced by the structure of convolutional long short-term
memory (ConvLSTM).

• We introduce a multitask learning strategy in the network to compute auxiliary losses
using the intermediate features extracted by the network, reducing the fuzziness of
boundaries in greenhouse result extraction during training.

• We propose a superpixel optimization module (SOM) that can better obtain the bound-
ary information of the greenhouse by iterating the features of the decoder using the
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superpixel segmentation network. Based on this module, the greenhouse extraction
results with accurate boundary information can be obtained.

• We also perform large-scale greenhouse mapping from 2.38 m satellite imagery in
Shandong Province, China.

Put together, the proposed structure aims to make better use of the spatial infor-
mation of ground objects to obtain more accurate boundary results. Compared with
other mainstream methods, our network can be better applied to large-scale greenhouse
extraction tasks.

2. Materials and Methods
2.1. Study Area

The study area is Shandong Province (34◦22.9′ ∼ 38◦24.01′, 114◦47.5′ ∼ 122◦42.3′),
China, which is located in the eastern coastal area of China, as shown in Figure 1. Shandong
Province, as a major agricultural province, is an important production area for grain crops
and cash crops. The area is covered with a large number of agricultural greenhouses, which
have made great contributions to the agricultural development of Shandong Province.
Therefore, we chose Shandong Province as the study area to test the performance of our
structure in extracting agricultural greenhouses on a large scale.

Figure 1. The location of the study area. The map on the left indicates the specific location of the
study area in China, and the map on the right shows the Gaof en-1 satellite image of the study area.

2.2. Data Sets

The image data used in this paper are the 2015 Gaofen-1 satellite (GF-1) images from
Shandong Province, China, covering an area of 158,000 square kilometers. The GF-1 satellite
was successfully launched in April 2013. The satellite orbit and attitude control parameters
are shown in the Table 1. The panchromatic resolution of the GF-1 satellite is 2 m, and the
multispectral resolution is 8 m. At the same time, the revisit period of GF-1 is only 4 days
and has high temporal resolution. The specific payload technical indicators are shown
in the Table 2. Combining the advantages of high spatial resolution and high temporal
resolution at the same time, the high-resolution data of the GF-1 satellite have played
an important role in such applications as geographic mapping and agricultural resource
detection [30].
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Table 1. GF-1 satellite orbit and attitude control parameters.

Parameter GF-1

Rail type Sun synchronous regression orbit
Orbital altitude (km) 645
Orbit inclination (◦) 98.05

Local time (descending) 10:30 AM

Side swing ability (rolling) ±25◦, motor time of 25◦ ≤ 200 s, ability of
emergency side swing roll ±35◦

Table 2. GF-1 satellite payload specifications.

Parameter Panchromatic (PAN)/Multispectral Camera (MS) Multispectral
Camera (MS)

Spectral range (µm)

PAN 0.45~0.90

MS

0.45~0.52 0.45~0.52
0.45~0.52 0.45~0.52
0.45~0.52 0.45~0.52
0.45~0.52 0.45~0.52

Spatial resolution (m) PAN 2 m 16 mMS 8 m

Swath width (km) 60 800

Revisit cycle
(side-sway)/day 4

Covering the period
(no side swing)/day 41 4

We acquired multispectral images with high spatial resolution using the technique of
image fusion. All images are in the RGB color space and have a resolution of 2.38 m. The
labels cover approximately 6% of the study area, with 0 representing the background and
1 representing a greenhouse. All labels are manually annotated by team members, ensuring
the high quality of the dataset. We divided the samples into a training set, validation set,
and test set at a ratio of 8:1:1. To feed the data into the designed neural network, we cropped
the large-scale samples to image patches of size 768 × 768 pixels. Based on the above work,
we randomly constructed a large-scale agricultural greenhouse dataset (LSAG dataset)
containing 11,913 training samples, 1367 validation samples, and 1367 test samples.

2.3. Methods
2.3.1. Network Architecture

The structure of our proposed network is shown in Figure 2. Our network adopts
an encoder–decoder structure, and ResNet34 [31] is used in our network. First, we use
ResNet34 as the encoder to extract features. To better extract the spatial structure infor-
mation in the images, we use the SPCLSTM module to model the spatial relationships of
the feature maps from the row and column perspectives. We also use the output of the
SPCLSTM module as the feature maps of the auxiliary tasks to calculate the supervised loss,
accelerating the convergence of the network. Finally, we perform superpixel segmentation
on the decoder results and use the exact oversegmentation results of the image to further
optimize the segmentation results of the decoder.
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Figure 2. Architecture of our proposed network. The blue box in the figure represents the multitask
branch network, and the green box represents the superpixel branch network. In the figure, Conv
represents convolution operation with kernel size equal to 3 × 3, BN represents batch normalization,
and ReLU means rectified linear unit. ConvTran represents the transpose convolution used to expand
the feature size. Dropout is a special operation to prevent overfitting in convolutional neural networks.
Elementwise Sum means the addition of two matrix corresponding position elements, and Concat
means stacking the matrix in a certain dimension.

2.3.2. Spatial ConvLSTM

Pan et al. [32] used layer-by-layer convolution instead of traditional convolution in the
feature map, thus enabling information transfer between pixels across rows and columns.
Zhou et al. [33] performed convolution operations on the rows and columns based on an
SCNN and superimposed the output of the previous row or column onto the next row
or column as the input. The results proved that this structure can solve the problem of
road extraction interruption by enhancing the road geometry. Inspired by their work but
in contrast to their study, we extract the spatial relationships of the feature maps from the
row and column perspectives in parallel, rather than serially from first the row perspective
and then the column perspective. More importantly, our module adopts the structure
of ConvLSTM to consider the temporal relationship between different rows or different
columns to reflect the spatial position relationship of the objects in the image.

Our SPCLSTM module is shown in Figure 3. Figure 3a,b show the two forms of the
SPCLSTM module from the row and column perspectives, respectively. Figure 3c represents
the structure of ConvLSTM.

Taking Figure 3a as an example, the SPCLSTM module receives the feature map of
size C × H ×W extracted by the encoder and outputs a tensor of size C × H ×W after
modeling the spatial relationships in the feature map. C, H, and W denote the number
of channels and the height and width of the feature map, respectively. After partitioning
the feature map from the row perspective, we can obtain sequence data representing the
sequential relationships between rows. Then, the ConvLSTM structure is used to describe
the order relationship between rows. The structure of ConvLSTM is shown in Figure 3c.
The structure is very similar to that of LSTM, and the difference between the two lies in
the intermediate computing operations. The input and output of ConvLSTM are three-
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dimensional tensors, and the convolution operation is used to better obtain the relationship
between the spatial feature transformations of different rows or columns.

(a) SPCLSTM from a row perspective

(b) SPCLSTM from a column perspective

(c) Details of the ConvLSTM structure

Figure 3. Details of the SPCLSTM structure. (a) The SPCLSTM module from a row perspective.
(b) The SPCLSTM module from a column perspective. (c) The details of the ConvLSTM structure. c,
h, and w denote the number of channels and the height and width of the feature map, respectively.
(c) s represents the sigmoid function, and tanh represents the tanh function. h(t) represents the short-
term memory at time t in the LSTM structure, while C(t) represents the long-term state preserved by
the LSTM structure at time t in the cell structure. Elementwise Mul represents the product of two
matrix corresponding position elements.

ConvLSTM was first proposed in [23], and the computational procedure of it can be
formulated as follows:
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it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(1)

where ∗ in the formula denotes the convolution operation, and ◦ denotes the Hadamard
product. Xt is the input tensor, Ht is the hidden sate tensor, and Ct is the memory cell tensor.
Wx and Wh represent the convolution kernels corresponding to the input and hidden state,
while b means the bias term. σ represents the sigmoid function. The effect of predicting
the future state of a cell in the grid using local inputs and past states is achieved by the
convolution operator.

2.3.3. Multitask Learning

The purpose of multitask learning is to reuse existing prior knowledge to design mul-
tiple correlated tasks for a neural network and then accelerate the training and convergence
process of the network by optimizing multiple tasks simultaneously. We found that the
semantic segmentation of remote sensing images is greatly affected by mixed pixels, and
the object boundary is prone to blurring, which is more obvious in low-resolution images.
For the greenhouse extraction task, fuzzy boundaries have an important impact on the
optimization process during network training. Therefore, we add a multitask learning
strategy to the network structure to reduce the effect of ambiguous image boundaries.

In Figure 2, we add a multitask learning strategy after the SPCLSTM module, which is
the blue dashed box in the figure. The feature maps obtained after the spatial relationship
modeling by the SPCLSTM module are merged, and then the loss function is calculated after
the convolution operation. Therefore, in the whole network, the main loss is first calculated
from the main branch network, which is the loss value obtained by comparing the result
of the network after the decoder calculation with the real value. Second, the network
contains an auxiliary loss, and the auxiliary loss value is calculated using the results after
modeling the spatial relationship of the encoder’s output. Finally, we calculate the gradient
propagation by summing the two loss values. Unlike the loss value of the main branch
network, the calculation of the auxiliary loss value is performed after downsampling by a
factor of 32. By optimizing both loss functions simultaneously through multitask learning,
the model is better able to focus on the blurred boundaries of the images to obtain extraction
results with precise boundaries. More importantly, multitask learning can better promote
the directional propagation of gradients, which facilitates the training of the network and
accelerates convergence.

2.3.4. Superpixel Optimization

Superpixel segmentation is an oversegmentation technique that obtains accurate
boundary representations of image objects by clustering the image pixels. SLIC is a classical
superpixel segmentation method that converts images from the RGB color space to the
CIELAB color space for clustering and is also an unsupervised learning method. The SLIC
method is nondifferentiable, which means that SLIC cannot be directly applied to neural
networks. Inspired by the SSN [29], we add a superpixel branch to the network and use
the results of superpixel segmentation to optimize the results of semantic segmentation to
obtain more accurate boundary information.
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In contrast to their work, our superpixel branch consists of three steps. First, all the
features of the decoder are fused as the input of the differentiable SLIC module. Then, we
propose a superpixel optimization module (SOM), which performs a differentiable SLIC
step and an optimization step. We take the intermediate features and segmentation results
as the input, and the output is the greenhouse extraction result optimized by the superpixel
results. Finally, we use the optimized semantic segmentation results and the true label
values to calculate the loss function values to optimize the network. The structure of the
SOM is shown in Figure 4.

Figure 4. Superpixel optimization module. Conv in the figure represents the convolution operation
using a 1 × 1 size convolution kernel.

The inputs are all the outputs of the decoder in the network layer and the results of
the semantic segmentation of the main branch network. First, the superpixel segmenta-
tion results are obtained by differentiable SLIC processing. The semantic segmentation
results are then mask-optimized to obtain more accurate boundary results by using the
oversegmentation results of superpixel segmentation. Our mask optimization steps can
be described by Algorithm 1. Our input includes the result of the superpixel segmen-
tation and the extracted map of the semantic segmentation network. For each mask in
the semantic segmentation result, there must be a superpixel block intersecting it in the
superpixel segmentation result. Therefore, first, we traverse each superpixel block Rsup(i)
in the superpixel result and determine whether the superpixel block intersects a certain
mask Rseg(j) in the semantic segmentation result. If there is an intersection, we calculate
the Jaccard index of the intersection area and the superpixel block directly. The higher
the index is, the more similar the two results are. Here, we introduce a threshold θ; if
the value of the Jaccard index is greater than the threshold, we use the boundary of the
superpixel block as the final result. Otherwise, we use the boundary of the original mask in
the semantic segmentation result as the final result.
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Algorithm 1: Superpixel optimization module.
Input:

1. Superpixel segmentation result Rsup with M superpixel blocks; each
superpixel block is denoted as Rsup(i), 1 ≤ i ≤ M;

2. Semantic segmentation result Rseg with N pixel blocks; each pixel block is
denoted as Rseg(i), 1 ≤ i ≤ N.
Output: Optimized semantic segmentation result Ropt.

1 Begin
2 for i = 1 to M do
3 for j=1 to N do
4 if Rsup(i) ∩ Rseg(j) 6= ∅ then
5 Rint = Rsup(i) ∩ Rseg(j)
6 if Jaccard(Rint, Rsup(i)) > θ then
7 Ropt.add(Rsup(i))
8 else
9 Ropt.add(Rint)

10 end
11 else
12 continue
13 end
14 end
15 end
16 END
17 return Ropt

2.3.5. Loss Function

The loss function of our network consists of multiple parts. Greenhouse extraction is
a binary semantic segmentation task in which the network aims to distinguish between
the greenhouse and the background of the image. Like in [34], we use a joint loss function
which is a combination of the binary cross entropy (BCE) and dice coefficient loss. The
theory of BCE loss was first proposed in [35]. It has been widely used as a loss function for
binary classification, such as building segmentation [36], binary change detection [37]. We
first use BCE loss as the basic loss function to calculate the pixel difference between the
predicted result and the true label. The BCE loss is defined as follows:

LBCE = − 1
N

N

∑
i=1

(yilogŷi + (1− yi)(1− logŷi)). (2)

where N in the formula denotes the number of samples, yi represents the real label value,
yi ∈ {0, 1} , and ŷi represents the probability value of the predicted greenhouses.

Since the BCE loss needs to determine whether each pixel value is a greenhouse and
then average all the values, the final loss function value is influenced by the category with
more area when the distribution of categories in the image is unbalanced. In the greenhouse
extraction task, an image often contains more background information, and the greenhouse
is only a minority of the image. Therefore, we add the dice loss function. Dice loss was
first used in [38]. Compared with the BCE loss function, which considers the difference
between individual pixels, dice considers the intersection of all pixels in the same class as
the ground truth and is not affected by a large number of background pixels. The dice loss
function is calculated as follows:

Ldice = 1− 2|Y ∩ P|
|Y|+ |P| , (3)
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where Y denotes the true label value, P denotes the model predicted value, and | · | repre-
sents the number of elements in the set.

Since the network adopts a multitask learning strategy, the calculation of the loss value
includes the loss of multiple branches. For the main branch, we compute the difference
between the predicted result and the true label. For the auxiliary branch, since the middle
feature map is downsampled by a factor of 32 in the original size, we also downsample
the true label value by a factor of 32 and calculate the loss value with the auxiliary feature
map. For the superpixel optimization structure, we calculate the loss value between the
optimized result and the label value.

Therefore, the loss function of the network can be expressed as follows:

Ljoint = LBCE1 + Ldice1 + λ1 × (LBCE2 + Ldice2) + λ2 × (LBCE3 + Ldice3), (4)

where LBCE1, Ldice1, LBCE2, and Ldice2 represent the BCE and dice losses of the main branch
and the BCE and dice loss values of the auxiliary branch, respectively. LBCE3 and Ldice3
denote the BCE and dice loss values, respectively, between the superpixel optimization
results and the label values. λ1 and λ2 represent the proportions of the loss values of the
multitask learning structure and the superpixel optimization structure, respectively.

2.3.6. Evaluation Metrics

In our experiments, the F1 score and intersection over union (IoU) are used as the
evaluation metrics. The F1 score is the harmonic mean of precision and recall, with a
minimum value of 0 and a maximum value of 1. IoU represents the ratio of the intersection
of the predicted results and the true value to the union. Both of them are the most common
evaluation metrics in semantic segmentation [39], and the relevant formulas are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

IoU =
TP

TP + FP + FN
(8)

In the formula, TP, FP, and FN represent the numbers of true positives, false positives,
and false negatives, respectively. TP represents the number of correctly identified green-
house pixels, FP represents the number of non-greenhouse pixels incorrectly identified as
greenhouses, and FN denotes the number of greenhouse pixels incorrectly identified as
non-greenhouse pixels. Precision measures the percentage of correctly classified pixels
in the prediction results, and recall indicates the percentage of correctly predicted pixels
among the pixels that are the greenhouse results.

2.3.7. Train Details

All neural networks used in the experiments in this paper were built using the PyTorch
deep learning framework [40]. In the training phase, we used all training samples and
validation samples.

Before the samples were fed into the network, we performed data augmentation
to increase the number of samples. The data augmentation methods we employed in-
cluded random flipping, rotation, scaling, and random cropping of the samples to a size of
512 × 512. During testing, we used all 768 × 768 samples to obtain the output and used
only the output of the main branch to calculate the test accuracy. During the inference on
the province-wide range, we used the overlap-tile strategy to crop the large images to a
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size of 1024 × 1024, which could effectively solve the problem of poor edge performance in
the extraction results of the greenhouses.

We trained our network on 2 NVIDIA TITAN XP GPUs (12 GB memory). For the
proposed network architecture, the size of a mini-batch can be as large as 12. We chose
BCE and dice as the loss functions and used AdamW [41] as the optimizer, with the initial
learning rate set to 0.001 and the weight decay to 0. The learning rate was adjusted by
observing whether the F1 score of the validation set increased within 20 epochs. If there
was no increase, then the learning rate was adjusted to half of the previous rate. In addition,
we used a warm-up strategy in the first 500 training iterations, which can reduce the
probability of the network falling into a local optimum and can help the network train
better. Meanwhile, batch normalization [42] was used to help the network accelerate
convergence. For the hyperparameter settings in the superpixel optimization module, we
set the value of the threshold θ to 0.5. For the hyperparameter setting of the loss function,
we set the values of λ1 and λ2 to 0.2.

3. Results
3.1. Ablation Study
3.1.1. Quantitative Comparisons

To test the generalization ability of the proposed module on greenhouse extraction, we
tested the performance of different modules on our own large-scale agricultural greenhouse
dataset (LSAG dataset). We adopted the UNet structure as the baseline network and used
ResNet34 as the encoder. On this basis, the modules we proposed were added, and the
results for the Shandong Gaofen-1 satellite dataset are shown in Table 3.

Table 3. Ablation experiments for the network design, where UNet serves as a baseline. Xindicates
the adoption of the corresponding structure.

Module Metrics (%)

Baseline SPCLSTM Multitask SOM Precision Recall F1 IoU

X 74.87 74.96 74.92 59.89
X X 77.49 77.31 77.40 63.13
X X 78.86 73.40 76.03 61.34
X X X 77.44 78.21 77.83 63.70
X X X X 78.82 79.52 78.66 64.83

The baseline network UNet can achieve an F1 score of 74.92% on our dataset, while
the experimental accuracy can reach 77.40% after adding the SPCLSTM module. In the
ablation experiments, we set the number of layers of the SPCLSTM module to 2. The
SPCLSTM module can model the spatial information of the greenhouse in the image
from the perspective of rows and columns and better extract the image features of the
greenhouse to ensure that the greenhouse results have the correct spatial information. From
the quantitative results, the SPCLSTM module can effectively improve the precision and
recall of the greenhouse extraction results. That is, the SPCLSTM can effectively reduce false
detection and missed detection in greenhouse extraction. When adding a multitask learning
strategy to our architecture, we can achieve an accuracy of 76.03% in terms of F1 score on
our LSAG dataset. Compared with the baseline structure UNet and the results after adding
the SPCLSTM module, the network using the multitask strategy has a higher precision in
the prediction results, while the recall rate is significantly lower. The multitask structure is
more sensitive to the boundary information in the image and has stricter requirements for
the shape of the greenhouse due to the addition of the intermediate result calculation loss
in the process of network feature extraction, resulting in more missing information in the
process of extracting the model. In the fourth row in Table 3, we combine the SPCLSTM
and the multitask learning strategy. Compared with adding the SPCLSTM module or
the multitask learning strategy separately, the combination of the two modules can better
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balance the precision and recall of greenhouse extraction to improve the final accuracy
of the network. Finally, we added a superpixel segmentation structure to obtain the best
results. We first performed superpixel segmentation on the feature map of the decoder to
obtain the oversegmentation results and then used the oversegmentation results to optimize
the results of the main network semantic segmentation. Benefiting from the more precise
boundary information in the oversegmentation results of superpixel segmentation, the
results in the table show that our superpixel segmentation optimization strategy improves
both precision and recall. The F1 score improved by approximately 4% over the baseline.

3.1.2. Visualization Results

To qualitatively compare the effects of different modules, some result graphs of the
ablation experiments are shown in Figure 5. On the whole, the network with the SPCLSTM
module, multitask learning strategy, and superpixel segmentation structure added in the
last column can achieve the most accurate greenhouse extraction effect, but there are still
cases of false detections and missed detections.

Figure 5. Examples of greenhouse extraction ablation experiments. Red indicates missed detection
(the label value is a greenhouse that is not recognized), and blue indicates false detection (the
label value is not a greenhouse but is incorrectly identified as a greenhouse). From left to right:
(a) Gaofen-1 satellite image; (b) ground truth; (c) UNet; (d) UNet-SPCLSTM; (e) UNet-MultiTask;
(f) UNet-SPCLSTM-MultiTask; (g) UNet-SPCLSTM-MultiTask-SOM.

In the validation set results shown in Figure 5, we divide the example images into
three groups. The first and second rows represent scenes with a sparse distribution of
greenhouses. The third, fourth, and fifth rows are a group, representing a scene in which
the greenhouse and other objects coexist with a small difference in the distribution range.
The last row represents the large-scale greenhouse extraction task.
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In the first and second rows, the greenhouses are sparsely distributed in the image.
The baseline UNet has many missed detections and cannot completely extract the small
and sporadically distributed greenhouse shapes. In the first row, the SPCLSTM structure
can reduce false detections in the area near the greenhouse because it can model the spatial
characteristics of the greenhouse. The multitask learning strategy has stricter constraints
on the boundary information of the greenhouse and has a higher degree of discrimination
for small objects with similar textures in the image. Therefore, similar greenhouses and
buildings can be better distinguished. However, the current single structure generally
has some missed detections. After combining the SPCLSTM and a multitask learning
strategy, the network has a better learning ability for the spatial shape information and
boundary information of the greenhouse. For sparsely distributed greenhouses, more
complete results can be extracted. Finally, the SOM is added to optimize the semantic
segmentation results by using the obtained oversegmentation results. The network can
effectively reduce the false detection of buildings with similar textures. In the second row,
there are a large number of residential areas in the original image, and there are cultivated
areas with similar structural information near the greenhouse. The SPCLSTM structure has
a better ability to extract the spatial information of the greenhouse and can help obtain the
results of greenhouses with regular geometric shapes. The multitask learning strategy adds
an additional loss function to optimize the network, and the extracted greenhouse results
can fit the label values well on the edges. After combining the two and using the SOM,
our network is able to achieve a better balance between precision and recall. The extracted
greenhouse results are smoother and have a regular geometry.

In the second set of examples, the greenhouse occupies a large area in the image, and
there are also large-scale residential areas or cultivated or grassland areas in the image.
From the overall results, the baseline UNet has a large number of missed detections in
the application of large-scale greenhouse extraction. The main reason is that the texture
information of the greenhouses in the images is quite different, and simply extracting the
greenhouses based on the texture information can lead to missed detections. The structure
we propose can gradually reduce the missed detections, and the extracted results are
gradually regularized to better fit the edge of the greenhouse. In the third row, there are a
large number of irregularly distributed greenhouses in the image. The extraction results
of the baseline are very scattered and not smooth, and there are many missed detections
on the edges. The SPCLSTM structure can better consider the shape information of the
greenhouse in the image. Therefore, the SPCLSTM module has a good extraction ability,
whether the greenhouse in the image is vertical or horizontal. Although the multitask
learning strategy still has a large number of missed detections, the extracted greenhouse
results are more accurate on the edges. After combining the SPCLSTM module and the
multitask learning strategy, the extracted greenhouse results can better fit the real edge
information. Finally, our proposed SOM can effectively eliminate the missed detection
of small areas in the extraction of greenhouses. In the fourth row, the greenhouses in the
image are distributed in a large area of vertical strips, and the baseline is likely to miss some
greenhouses with dissimilar texture information. Since the SPCLSTM module can better
extract regularly shaped greenhouses and the multitask learning strategy can ensure that
the extracted greenhouse results have better edge information, the results are significantly
improved after combining the SPCLSTM module and the multitask learning strategy. With
the addition of the SOM, the network also has a stronger ability to identify areas with
large differences in texture information in the distribution area of the greenhouse, which
can reduce the missed detections in the distribution area. In the fifth row, there are a
large number of residential areas in the vicinity of the greenhouse. Moreover, the color
information of the residential area has a high similarity to that of the greenhouse, which
makes the extraction of the greenhouse in this area difficult. From the results, it can be
found that the baseline has more missed inspections in the adjacent parts of the residential
area and the greenhouse. The SPCLSTM module can consider the spatial information of
residential areas and greenhouses and has a higher ability to distinguish between residential
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areas and greenhouses. After incorporating a multitask learning strategy, the extracted
greenhouse results have higher accuracy on the edges. The superpixel segmentation
optimization strategy can further optimize the edge information of the extracted results. At
the same time, it can eliminate missed detections in the greenhouse area. However, these
groups of extraction results have false detections for non-greenhouses in the greenhouse
area, and these false detections in the greenhouse area need further study.

In the last set of images, we show the effect of different structures on large-scale
greenhouse extraction. In the last row, the greenhouse occupies most of the area in the
image, and there is also a small part of a residential area and grass. The baseline has more
missed detections in the large-scale greenhouse extraction results. The main reason is that
UNet only considers the texture information of the objects in the image, and there may
be objects with different texture information in the distribution area of the greenhouse.
After considering the spatial information of the greenhouse, the SPCLSTM can significantly
reduce the missed detections in the greenhouse extraction, and the geometry of the extracted
large-scale greenhouse results is more regular. After considering the edge information
of the greenhouse, the multitask learning strategy can effectively improve the results of
extracting the edge compared with the baseline. Finally, the SOM can be used to further
optimize the edge information of the extraction results. Our proposed network structure
can gradually eliminate the missed detection of large greenhouse areas in the image to
improve the greenhouse extraction results.

3.2. Comparing Methods
3.2.1. Quantitative Comparisons

We perform qualitative and quantitative comparisons with other state-of-the-art meth-
ods on the LSAG dataset. The mainstream methods compared include UNet [14], PAN [18],
DeepLabV3+ [43], UNet++ [44], HRNet [45], and AFNet [46]. UNet adopts an encoder–
decoder structure and fuses the corresponding features of the encoder during the upsam-
pling process of the decoder, which can preserve the low-level features and high-level
semantic features of the image. PAN adopts a feature pyramid attention (FPA) module in
the network to consider the contextual information at different scales and adopts a global
attention upsampling (GAU) module in the decoder structure to fully fuse low-level and
high-level feature information. DeepLabV3+ adopts an encoder–decoder structure and
controls the size of the receptive field through atrous convolution. UNet++ improves upon
UNet by adding dense convolutional layer connections and is able to balance the accuracy
and speed of the network through pruning operations. HRNet connects multi-resolution
convolutional streams in parallel, so the feature representation has richer semantic informa-
tion and more accurate spatial structure. AFNet fuses features at different levels to improve
the classification accuracy of target objects at the boundary. Our comparison results are
shown in Table 4.

Table 4. Quantitative comparison of our proposed structure and SOTA methods on the LSAG dataset.

Method Params
(M)

Train
Time (s)

Test
Time (s)

Precision
(%)

Recall
(%) F1 (%) IoU (%)

UNet 286 745 137 74.87 74.96 74.92 59.89
PAN 251 683 126 79.90 62.83 70.34 54.25

DeepLabV3+ 175 607 118 79.35 67.19 72.77 57.19
UNet++ 305 1020 223 82.02 64.53 72.23 56.53
HRNet 460 1528 378 83.14 67.84 74.71 59.63
AFNet 810 2104 583 80.26 72.08 75.95 61.22
Ours 290 816 162 78.82 79.52 78.66 64.83

In the table, train time represents the time for our model to train an epoch, and test
time represents the running time of the model on the test set. In terms of accuracy, our
network achieves the best results compared to state-of-the-art methods. The training time
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and testing time of the proposed structure are slightly worse than those of UNet and PAN.
The network structures of HRNet and AFNet are relatively complex, and the amount of
parameters and training time are very large. This is very inconvenient for large-scale
greenhouse extraction tasks. Considering the balance between time and accuracy, our
network is more competitive than the mainstream methods.

3.2.2. Visualization Results

A comparison of our visualization results is shown in Figure 6. On the whole, our
method can effectively reduce the missed detections and false detections in the green-
house extraction results of the network, whether it is performing a small-area greenhouse
extraction task or a large-scale greenhouse extraction task.

Figure 6. Some examples of the results on the LSAG dataset. Red indicates missed detection (the label
value is a greenhouse but is not recognized), and blue indicates false detection (the label value is not
a greenhouse but is incorrectly identified as a greenhouse). From left to right: (a) Gaofen-1 satellite
image; (b) Ground truth; (c) UNet; (d) PAN; (e) DeepLabV3+; (f) UNet++; (g) HRNet; (h) AFNet;
(i) Ours.

In Figure 6, we divide the comparison results into three groups. The first and second
rows are a group representing a sparsely distributed area of small greenhouses, and there
are many similar objects in the image. The third, fourth, and fifth rows are a group
representing a scene in which small-area greenhouses are densely distributed in a certain
area, and the greenhouses within this distribution range are slightly different in texture.
The last row represents a large-scale greenhouse extraction task. In the first and second
rows, all methods have some false detections and missed detections, but our network is able
to minimize the false and missed detections. In the first row, the surrounding arable land
will affect the extraction of the target greenhouse, and the mainstream network generally
misclassifies the cultivated land as greenhouses. In the second row, the similar buildings
in the image will also affect the extraction of the target greenhouse. The mainstream
networks mistakenly classify similar buildings around the greenhouse as greenhouses. Our
network establishes a spatial relationship between the rows and columns to model the
spatial characteristics of the greenhouse, which can effectively reduce false detections in
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the extraction results of the greenhouse. However, in this set of experiments, all the results
have missed detections, such as in the bottom right area of the second row. In this scenario,
the information of the greenhouse is not very different from that of the surrounding area,
except for the color, and the existing network structure has difficulty distinguishing it
directly based on color and texture.

In the second set of experiments, our network can extract more accurate greenhouse
results than the mainstream networks. The mainstream networks have some missed
detections in the greenhouse extraction task in this complex scene. In the third row, there
are a few buildings near the greenhouse area in the image that affect the extraction results.
At the same time, the greenhouses in the area have different color information, and there
are large gaps between the greenhouses in the area. Due to the use of attention, PAN is
more sensitive to the details in the image, and the extracted large-scale greenhouse results
are prone to fragmentation. In the results of the fourth row, the information of the image is
relatively complex, and the texture information of the greenhouse area is quite different,
so it is easy to miss detection. In this scenario, the greenhouse extraction effect of the
mainstream networks shows some missed detections, and the extraction results are very
irregular. In contrast, our network has a stronger geometric modeling ability to extract
greenhouse results with a more accurate geometry in complex scenes. In the fifth row, the
color information of the greenhouse in the image is quite different, and the difference from
the cultivated land in the surrounding area is very small. All networks can correctly extract
the location of the greenhouse area, but the extraction results of the mainstream networks
do not match the label values on the edge. The main reason is that the texture information of
this part of the image is very different from that of most greenhouse areas, and it is difficult
for mainstream networks to directly extract such areas with large differences. Our network
can extract greenhouse results with more accurate boundaries and geometry based on the
spatial distribution information of the features due to its ability to fully consider the spatial
information of the feature targets in the images. However, in this set of experimental results,
all networks have missed detections to some extent. Because the greenhouse information
in this small area is quite different from the main area where the greenhouse is distributed,
it is difficult for the network to judge whether the area is a greenhouse based on the texture
information in the image. Although there are still a small number of missed detections, our
network greatly improves compared to mainstream networks. The small number of missed
detections can be improved by further research on how to effectively combine other types
of data to obtain more information.

In the last row, we show the results of different network structures on the large-scale
greenhouse extraction task. The mainstream networks all have missed detections in the
results of large-scale greenhouse extraction tasks, resulting in extraction results that appear
very broken. In particular, the mainstream networks are more likely to miss greenhouses
with slightly different texture information in large areas. Our network combined with
a multitask learning strategy and SOM can effectively ensure that there are no scattered
missed detections in the extraction results. However, these groups of networks have
poor distinctions between greenhouses and roads, and roads are wrongly classified as
greenhouses. Because the color information of a greenhouse and a road in an image is
similar and the shapes of both are slender, the network cannot distinguish them simply
based on the texture information and spatial information. Therefore, it is necessary to
further limit the spatial information of the greenhouse to distinguish the greenhouse from
other objects with similar shapes.

3.3. Large-Scale Greenhouse Mapping

We completed the mapping of a 2.38 m greenhouse in Shandong Province, China,
using the proposed network structure, and the results are shown in Figure 7. In the figure,
the red area represents the greenhouse results extracted in the study area, accounting
for 1.35% of the total study area. We also show the proportion of greenhouse area in
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different counties at the county level. The deeper blue an area in the figure is, the higher
the proportion of the greenhouse area at the county level.

Figure 7. Mapping results of greenhouses from 2.38 m satellite imagery in Shandong Province, China,
based on the proposed architecture. Red pixels represent a greenhouse. Blue areas of different
intensities represent counties with different greenhouse densities.

4. Discussion
4.1. Numbers of SPCLSTM Layers

In our network, the complexity of the network model can be enhanced by stacking
SPCLSTM modules. Although complex networks have a stronger ability to model the
spatial features of images, choosing appropriate parameter values is still a problem that
needs to be considered. Here, we experimentally test the effect of the number of stacked
SPCLSTM modules on the network performance and model complexity. The results
are shown in Table 5. To eliminate the influence of the multitask learning strategy and
superpixel optimization module, we only add the SPCLSTM module based on UNet in
our experiment.

Table 5. Comparison of network performance with different numbers of SPCLSTM modules.

SPSLSTM
Num Params(M) Train

Time(s)
Test

Time (s)
Precision

(%)
Recall

(%)
F1 Score

(%) IoU (%)

1 84.8 340 68 75.51 78.85 77.14 62.59
2 84.8 392 75 77.49 77.31 77.40 63.13
3 84.8 447 87 77.64 77.10 77.37 63.01
4 84.8 510 98 77.16 77.64 77.40 62.92
5 84.8 576 107 78.24 76.48 77.35 62.77

As the number of SPCLSTM modules increases, the number of parameters of the
network does not change, while the train time and test time have a significant tendency to
increase. The train time here refers to the time it takes for the model to train an epoch. One
epoch means that all data are used once. While the test time here represents the running
time of our structure on the test set. In terms of accuracy, a higher level is reached when
the number of SPCLSTM modules is increased to 2. After that, the performance of the
network decreases slightly as the number of SPCLSTM modules continues to increase.
Therefore, we set the number of SPCLSTM modules to 2 as the hyperparameter setting
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of our experiments to ensure that the model has a high accuracy rate and the test time is
within an acceptable range.

4.2. Applications

The network structure proposed in this paper is mainly suitable for large-scale green-
house extraction tasks and has a strong ability to distinguish complex objects in large-scale
remote sensing images. The main advantage of our network over other mainstream
networks is that it can obtain greenhouse extraction results with accurate and complete
geometry and boundary information.

Our proposed structure is suitable for different scenarios. First, for sparsely distributed
greenhouse extraction tasks, ordinary convolutional neural networks cannot effectively
extract complete greenhouses. At the same time, it is easy to falsely detect ground objects
with similar texture information in the image. This situation occurs mainly because sparsely
distributed greenhouses generally account for a small proportion of the images. More
importantly, this type of greenhouse is often not very different from the surrounding
environment, which makes it difficult for ordinary convolutional neural networks to
directly extract complete greenhouse results. Second, for an extraction task with a dense
distribution of greenhouses in a certain area, the mainstream convolutional neural network
is often affected by the difference in the texture information of the greenhouses in the
region, resulting in more missed detections. From the experimental results, our method
can effectively ignore the color difference of greenhouses in the same area to reduce
the proportion of missed parts. Finally, for the large-scale greenhouse extraction task,
the mainstream convolutional neural network is easily affected by large differences in
the greenhouses in the region during the extraction process, and there are more missed
detection cases. From the experimental point of view, the main problem with the existing
mainstream networks in various scenes of greenhouse extraction applications is the high
number of missed detections in the extraction process for greenhouses with different texture
information. Our network has a good improvement effect in a variety of scene applications.

Our proposed structure is also applicable to different remote sensing image datasets.
For other types of remote sensing images, such as multispectral or hyperspectral, our
proposed structure still has strong applicability. In optical images, there are often some
objects that are difficult to distinguish through RGB bands, such as greenhouses and plastic
films. They tend to have similar texture and shape information in images. However,
hyperspectral images and multispectral images often have information of different spectral
bands, which is beneficial to the distinction of different ground objects. For different
types of image data, the network structure we adopt can be applied by changing the
number of input channels. At the same time, our proposed SPCLSTM structure can
preserve the spectral information of the corresponding ground objects. For multispectral
images, the SPCLSTM structure can firstly model the spatial information of ground objects
by considering the relationship between image rows and columns. At the same time,
the SPCLSTM structure can reserve all the spectral information of each ground object.
Further, the SPCLSTM structure can obtain the continuity information of spectral bands
in multispectral or hyperspectral images by dividing the features from the perspective of
spectral bands.

Our proposed network is similar to the UNet structure in that it has the form of
an encoder–decoder network, but the different modules used in the network can effec-
tively improve its performance and can be easily embedded in other frameworks. The
SPCLSTM module considers the spatial characteristics of the greenhouse structure from
the perspective of rows and columns, which strengthens the network’s ability to learn
the spatial information of the greenhouse. In the small-area greenhouse extraction task,
it is less affected by the surrounding environment, ensuring that the extraction results
will not be affected by the existence of similar ground objects. In large-scale greenhouse
extraction applications, greenhouses with large differences can also be accurately extracted
through similar spatial information. The multitask learning strategy calculates the loss
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value between the features with spatial information and the label value, which promotes
gradient propagation and accelerates the convergence of the network. It is most important
to ensure that the extraction results of the greenhouse have more accurate boundaries. For
sparsely distributed greenhouse extraction applications, the multitask learning strategy
has stricter constraints on boundary information to ensure fewer false detections in the
network. For large-scale greenhouse extraction tasks, the multitask learning strategy can
obtain more precise boundaries during the extraction process. According to the experi-
mental results, the adoption of the SPCLSTM module and multitask learning strategy can
yield very accurate greenhouse extraction results by simultaneously considering the spatial
geometric information and edge information of the greenhouse. Finally, the superpixel
optimization strategy further ensures the accuracy of the semantic segmentation results
on the boundary. We combine all the decoder outputs as the input of the superpixel opti-
mization module and then perform superpixel segmentation through differentiable SLIC.
The semantic segmentation results are then optimized using our proposed optimization
strategy. In the optimization process, the superpixel segmentation results and the semantic
segmentation results are essentially complementary. The superpixel segmentation results
add more precise boundary information to the semantic segmentation results, and the
semantic segmentation results assign the extracted semantic information to the superpixel
segmentation results. In the network, a convolutional layer is added to the superpixel
optimization branch to indicate that the branch is learnable. For sparsely distributed green-
house extraction tasks, the SOM can effectively reduce the false detection of small targets.
Additionally, for large-scale greenhouse extraction applications, the SOM can further fill in
the missed targets in the area.

In general, the proposed network module, including the SPCLSTM, multitask learn-
ing structure, and SOM, can gradually optimize the spatial geometric information and
edge information of the greenhouse to obtain the best extraction results for both sparsely
distributed greenhouse regions and large densely distributed greenhouse regions. The
experiments prove that our structure has strong robustness in practical applications.

4.3. Limitations

Although our study has strong advantages in large-scale greenhouse extraction, the
proposed structure still has some drawbacks. Similar to the extraction results of all main-
stream networks, our network structure still has a small number of false detections on
the large-area greenhouse extraction task. For greenhouses and adjacent cultivated land
in concentrated areas, there are still some cases of misclassification of cultivated land as
greenhouses in our network structure. For greenhouse extraction tasks in large areas, the
network structure cannot distinguish roads and greenhouses well. Because the greenhouses
and roads in the images are both slender objects and are similar in texture, simply applying
a combination of spatial and texture information cannot distinguish the two well.

In future research, we will first focus on the extraction of the spatial information of
ground objects. For slender targets, we will determine how to properly extract spatial infor-
mation to improve the discrimination between similar targets through information such as
the length and width of the targets. A second task is the fusion of spatial information and
texture information. There are many methods of data fusion, and our network only aims to
model spatial features after the texture information is extracted. In future research, various
methods of information fusion will be tested. Finally, we aim to improve the superpixel
optimization strategy. The currently adopted optimization strategy is still established
artificially, and this strategy is often influenced by the subjective features of researchers. In
future research, we will study how to use non-artificial strategies for optimization.

5. Conclusions

Large-scale greenhouse extraction is crucial for the sustainable development of modern
agriculture. However, existing greenhouse extraction networks do not fully consider the
spatial relationship of the objects in remote sensing images, and the extracted greenhouse
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results have errors on the boundaries, with relatively limited accuracy. In this paper,
we first construct a large-scale agricultural greenhouse dataset named LSAG. To better
model the spatial relationship of remote sensing ground objects, we propose the SPCLSTM
structure. It can calculate the correlation between different rows or different columns of
an image and has a stronger ability to extract the spatial features of objects. The extracted
greenhouse results have more accurate boundary information. In addition, we adopt a
multitask learning strategy in the network training process to calculate the loss value
between network features with spatial information and label values. The auxiliary loss is
used to optimize the training of the network and accelerate convergence. At the end of
the network, we add a superpixel optimization branch to obtain more accurate boundary
results for greenhouse extraction. We propose a learnable superpixel optimization module
to perform superpixel segmentation on the stacked decoder features and use the superpixel
segmentation results to optimize the semantic segmentation results of the main branch
network to obtain greenhouse extraction results with precise boundaries.

The experimental results show that our proposed structure achieves state-of-the-art
performance, with an F1 score as high as 78.66% on our large-scale agricultural green-
house dataset, which proves that the proposed module can effectively help the semantic
segmentation network to obtain greenhouse extraction results with precise boundaries.
The SPCLSTM module models the spatial features of ground objects, while the multitask
learning strategy and the superpixel optimization module can obtain results with more
accurate boundary information. The results of province-wide large-scale greenhouse extrac-
tion also demonstrate the feasibility of our structures in application. In future research, a
deeper study on the application of superpixel optimization to greenhouse extraction will be
considered to obtain a more efficient model, and the application of our network structure
for greenhouse extraction at the national level will be considered.
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Abbreviations
The following abbreviations are used in this manuscript:

BCE binary cross entropy
CNN convolutional neural network
ConvLST convolutional long short-term memory
FCN fully convolutional neural network
FN false negative
FP false positive
FPA feature pyramid attention
GAU global attention upsampling
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IoU intersection over union
LSAG large-scale agricultural greenhouse
LSTM long short-term memory
PAN pyramid attention network
PSPNet pyramid scene parsing network
ReLU Rectified Linear Unit
RNN recurrent neural network
SAR synthetic aperture radar
SCNN spatial convolutional neural network
SLIC simple linear iterative clustering
SOM superpixel optimization module
SPCLSTM spatial convolutional long short-term memory
SSN superpixel sampling network
TP true positive
UAV unmanned aerial systems
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