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Abstract: This paper provides insights into the interpretation beyond simply combining self-
supervised learning (SSL) with remote sensing (RS). Inspired by the improved representation ability
brought by SSL in natural image understanding, we aim to explore and analyze the compatibility of
SSL with remote sensing. In particular, we propose a self-supervised pre-training framework for the
first time by applying the masked image modeling (MIM) method to RS image research in order to
enhance its efficacy. The completion proxy task used by MIM encourages the model to reconstruct
the masked patches, and thus correlate the unseen parts with the seen parts in semantics. Second,
in order to figure out how pretext tasks affect downstream performance, we find the attribution
consensus of the pre-trained model and downstream tasks toward the proxy and classification targets,
which is quite different from that in natural image understanding. Moreover, this transferable
consensus is persistent in cross-dataset full or partial fine-tuning, which means that SSL could boost
general model-free representation beyond domain bias and task bias (e.g., classification, segmentation,
and detection). Finally, on three publicly accessible RS scene classification datasets, our method
outperforms the majority of fully supervised state-of-the-art (SOTA) methods with higher accuracy
scores on unlabeled datasets.

Keywords: self-supervised learning; remote sensing; scene classification; deep learning; vision
transformer; masked image modeling

1. Introduction

Remote sensing (RS) collects information on objects without physical contact, whether
from satellites, planes, or unmanned aerial vehicles (UAVs) [1]. There are numerous uses
for remote sensing technologies, including environmental testing, geological surveys, oil
exploration, traffic control, and water conservation building [2–5]. As one of the most
important activities of remote sensing, remote sensing scene classification plays a crucial
role in the monitoring and measurement of the environment, and it also serves as the
foundation for other remote sensing tasks [6,7].

Recently, self-supervised learning (SSL) has seen significant interest in computer vision,
often focusing on different pretext tasks for pre-training. Considering the general benefits of
SSL, such as annotation-free and task-free properties, we intend to explore its potential with
remote sensing. However, the diversity of remote images is usually affected by different
factors, e.g., amounts, sensors, areas, scales, and objects, which are more complicated and
limited than natural images. Therefore, we expect that SSL with remote sensing could
further provide the debiasing capability for better feature representation, regardless of the
aforementioned diversity. This paper also tries to explain how the pretext task of SSL helps
optimize the model in remote tasks.
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In this paper, we propose a novel self-supervised framework for remote sensing, for
the first time. In particular, we adopt masked image modeling (MIM) empirically, which
enforces an autoencoder to reconstruct mask patches from the given unmasked patches,
as a proxy task. Moreover, to transfer self-supervised learning results to remote sensing
scene classification without a loss of generality for mainstream RS methods, we developed
and compared three transfer learning methods: KNN classification [8], linear probing,
and end-to-end fine-tuning. KNN classification directly examines the representational
ability of self-supervised pre-trained models by employing the weights obtained from
pre-training [9]. For linear probing, only the classifier is updated, while the parameters of
the previously trained model remain unchanged. For end-to-end fine-tuning, all network
parameters will be trained and updated using the remote sensing dataset. As a result, our
method with different transfer methods could achieve state-of-the-art performance over
existing supervised methods.

There are some empirical studies to explain SSL in natural image understanding,
but few of them are feasible for that in remote sensing, due to various task backgrounds
and settings. Therefore, we aim to interpret why and how self-supervised pre-training helps
remote sensing. First, we notice the consensus in self-supervised reconstruction (proxy
task), a self-supervised model (with SSL pre-training), and a supervised model (without SSL
pre-training). As shown in Figure 1, the class activation map of a purely supervised model
is larger but still overlaps with that of a self-supervised model. This area determining the
final prediction also shares the same location as the blur reconstruction in the proxy task,
which is also tricky and important for completion. This discovery, which is transferable
across proxy and classification tasks, is dubbed “attribution consensus”. At first glance,
this finding seems to be an exaggerated explanation for the performance improvement.
However, in cross-dataset validation, where models are pre-trained on one dataset, and then
trained on the other dataset for downstream tasks, the improvement persists, despite the
dataset gap. We believe the common prior in remote sensing completion and classification
contributes to the generalization. The majority of RS photos have a great deal of duplicated
information, and only a tiny portion of the image’s important information is employed for
downstream activities, such as categorization. At the same time, the reconstruction of such
an important area is much more difficult than the irrelevant background. Because this prior
knowledge is difficult to recover and recognize, it may be retained for downstream tasks
regardless of domain difference. As demonstrated in Figure 1, the entire remote sensing
image for the “tennis court” class contains a great deal of irrelevant background information.
The masked image removes a lot of redundant information and then uses the remaining
small amount of key information for reconstruction through the MIM method. When
the classification results are shown graphically, it is clear that self-supervision pays more
attention to the goal itself, while full supervision looks at a lot of background information.

In summary, the main contributions of this paper are as follows:
(1) We apply MIM self-supervised learning for the first time to remote sensing im-

age scene classification. On scene classification datasets that are available to the public,
our model does better than most fully supervised SOTA models and obtains very high
accuracy scores.

(2) To investigate the combination of self-supervised and remote sensing scene clas-
sification tasks, we developed three distinct transfer learning methods. We use these
techniques to investigate the effects of self-supervision and remote sensing scene classifica-
tion under different combination methods.

(3) We perform feature visualization of the self-supervised model of remote sensing
image representation learning, and investigate the reasons for why self-supervision can
perform representation learning more effectively.

The rest of this article is organized as follows. Section 1 provides a brief introduction
to the background and motivation of this paper. Section 2 presents related work research.
Section 3 presents the details of our self-supervised approach. Section 4 provides a discus-
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sion on the results. In Section 5, we discuss this research. Finally, conclusions are given in
Section 6.

Figure 1. Some remote sensing images. The categories for each row, from top to bottom, are “river”,
“overpass”, and “tennis court.” The images of each category have been processed multiple times,
and each row from left to right represents the original image, the image after the mask operation,
the image reconstructed using the MIM method, the visualization of self-supervised classification
results, and the visualization of fully supervised classification results.

2. Related Works
2.1. The Use of Transformer in Vision for Remote Sensing Scene Classification

Transformer [10] was originally proposed, and applied to natural language processing
(NLP). Transformer uses a self-attention mechanism to update the model parameters
via global computation on the input sequence. In the field of NLP, Transformers are
gradually outperforming recurrent neural networks [11,12]. Palma et al. [13] tried to
feed each pixel of an image into the Transformer, but it was computationally expensive.
Child et al. [14] designed sparse transformers, which are scalable modules for image
processing tasks. The Vision Transformer [15] divides the input image into many patch
input models, generally setting the patch size to 14 × 14 or 16 × 16. However , ViT did not
make good use of the overall information of the picture. Bello et al. [16] combines CNN
and Transformer, and the proposed DETR [17] first uses CNN to extract features of input
2D images, and then uses Transformers to process them. In addition, Tokens-to-Token
(T2T) ViT [18] designs a deeper and narrower model structure, using the “Tokens-to-
Token module” to model local information. DieT [19] refers to T2T and improves the ViT
model through knowledge distillation [20]. Recently, many researchers have combined
Transformers with traditional remote sensing tasks. For example, MSNet [21] improved
the original effect through remote sensing spatiotemporal fusion. Bazi et al. [22] explored
remote sensing scene classification using ViT. Xu et al. [23] used Swin Transformer and
UperNet, and achieved good results in remote sensing image segmentation.

2.2. Masked Image Modeling

Masked language modeling (MLM) [24,25] and its auto-regressive variants [26] have
achieved good results in self-supervised learning for natural language processing (NLP).
This method performs representation learning by predicting the invisible tokens of the
input from the visible tokens in a sentence or sentence pair/triple. This approach is a good
generative task, capable of learning with large-scale data for good language understanding.
Masked image modeling (MIM) [27–30] is similar to MLM in NLP. The context encoder
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approach [30] is to predict the masked part by masking part of the original image, which
is the predecessor of MIM. MIM methods can achieve good results using an autoencoder
structure. Autoencoding is a classic method for learning representations. It consists of
two parts: an encoder that maps the input to a latent representation, and a decoder that
reconstructs the input. PCA, k-means [31], and denoising autoencoder (DAE) [32] are also
autoencoders. Masked autoencoder (MAE) [33] is a form of denoising auto-encoding, but it
differs from classical DAEs in many ways by masking the input image with noise and
then reconstructing it to learn a powerful representation. The idea of SimMIM [34] is very
similar to MAE, but simMIM substitutes the entire decoder with a single linear projection
layer, resulting in comparable results.

2.3. Self-Supervised Learning

Self-supervised learning is a new deep learning framework. It is part of unsupervised
learning and uses unsupervised data [35,36] for representation learning. Unsupervised
learning uses datasets without any human annotation for model learning. For example,
k-means [37] clustering is a popular clustering algorithm that divides data into k groups
for unsupervised learning. Self-supervision, as a subset of unsupervised learning, does
not use human-labeled datasets, but uses the latent labeling information of the data itself
for model learning. This approach can reduce the need for large amounts of annotated
data and allow for the use of more unlabeled datasets. Self-supervised learning methods
have significant implications in computer vision, using different pretext tasks for pre-
training [38]. Designing a reasonable excuse task can allow self-supervised learning to learn
more critical information and allow the model to perform representation learning more
correctly. For example, patch-based methods [28,39,40] can understand images by learning
the relative positions of randomly sampled image patches. Recently, contrastive learning
studies [41,42] have shown promising results; e.g., [43,44], which compute similarity and
dissimilarity (or focus only on similarity) on images between two or more views. For
example, SimCLR [44] combines contrastive learning with some novel ideas, providing an
effective framework to improve the state of self-supervised learning in computer vision. In
this paper, a more efficient self-supervised method, MIM, will be investigated.

3. Methodology
3.1. MIM Architecture

We believe that the masked image modeling (MIM) strategy can well help self-
supervised models for representation learning on unlabeled datasets. MIM methods
typically mask a portion of the input image and train the model to recreate the masked area.
Many MIM models employ an encoder–decoder structure followed by a projection head,
such as BEiT [45] and MAE [33]. Here, we will adopt MAE as our MIM base model. MAE is
a simple auto-encoding method that can reconstruct missing images by observing partially
visible information. It is built on the Vision Transformer architecture and is divided into
two components: the encoder and the decoder. Figure 2 shows our self-supervised learning
training process, and the overall architecture of MAE can be seen in the upper part of the
figure. Like regular autoencoders, we use an encoder to map the input information to a
latent representation, and then we use a decoder to reconstruct the original information
using the latent representation. The self-supervised learning training process is divided
into two stages: pre-training and fine-tuning. First, representation learning is performed
on large-scale unlabeled datasets through pre-training. Then, we use transfer learning
to combine self-supervised and remote sensing image classification tasks by fine-tuning
a small number of epochs on the labeled dataset. During pre-training, we will use the
imagenet-1k [46] dataset, which does not contain labels for training. Additionally, a large
number of patches (e.g., 75%) of image patches are randomly masked out. The encoder
only performs feature processing on the unmasked part. Mask tokens are introduced after
the encoder, and all encoded patch sets and mask tokens are fed into a small decoder for
processing, which reconstructs the original image at the pixel level. The masking and



Remote Sens. 2022, 14, 4824 5 of 18

reconstruction work on the image can be seen in Figure 3. The pre-trained encoder has a
good representation learning ability, corresponding to the weights obtained by the model
trained on the unlabeled dataset. Our MIM model uses ViT [15] as the backbone, and the
corresponding encoder part consists of alternating layers of Multi-Head Self-Attention
(MSA) and multi-layer perceptrons (MLPs) blocks. Layernorm (LN) [47] is applied before
each block, and residual connections are applied after each block. If we denote the corre-
sponding number of layers by l and the resulting representation by Z, we can obtain the
following representation of the model:

Z′l = MSA(LN(Z′l−1)) + Zl−1 (1)

Zl = MLP(LN(Z′l)) + Zl (2)

After pre-training, the decoder is discarded, and we only use the encoder to perform
simple fine-tuning on the labeled remote sensing image scene classification dataset, thereby
transferring the model weights obtained from unsupervised pre-training to the downstream
task of RS image classification.

Figure 2. Our self-supervised learning training process.

Figure 3. Reconstruction of masked images via self-supervised learning. Every four images is a
group. (Left) Original image. (Middle) Random sampling for mask. (Right) Self-supervised model
to reconstruct the image.
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The MIM model consists of an encoder and a decoder, where the encoder is ViT [15],
which handles visible, unmasked patches. We use the settings in ViT to embed patches via
linear projection and to add positional embeddings, then we feed the patches into many
Transformer blocks to obtain the output. However, the encoder here will remove the mask
part and only process the unmask part of each image. Only a small fraction (e.g., 25%))
needs to be processed per image. So, the computation and memory consumption of training
the encoder will be small. The input to the decoder consists of encoded visible patches
and mask tokens. See Figure 2. Each mask token is a learnable vector representing the
missing part to be predicted. All tokens in this complete set have positional embedding
information; masked tokens would not be able to find their relative positions without this.
The decoder also uses a lot of Transformer modules. Only during pre-training does the
decoder participate in the image reconstruction task (replying the mask part with the output
of the encoder). The decoder is discarded, and only the encoder is used for fine-tuning on
downstream tasks after pre-training.

The MIM method uses only a small amount of information to restore the complete
picture by masking out most of the redundant information in the picture. Due to the
focus on the correlation and continuity of different parts, MIM will be more suitable for
the representation learning of a small amount of complex information and transfer to
downstream tasks. Especially when there are few target objects in the picture and there
is a lot of background information, the MIM method can pay more attention to the object
itself. In the subsequent visualization, we can also clearly see that the method focuses on
the target object itself and has a clear sense of boundaries.

In this paper, we use the MIM model, using it to perform unlabeled self-supervised
learning training results on the imagenet-1k dataset. To further combine self-supervised
learning with remote sensing images, we will perform transfer learning for remote sensing
image scene classification tasks. In order to study the various effects of self-supervision on
remote sensing images, we developed three transfer learning techniques.

3.2. Three Methods for Transfer Learning

By using a large-scale unlabeled dataset and by designing effective pretext tasks,
self-supervised learning can theoretically learn a global knowledge representation, but how
to ensure that this knowledge representation can be effectively transferred to the target task
is not yet conclusive. If a unified feature transfer method is adopted, the transfer may be
invalid or even damage the generalization of the model. Another core research question
for establishing an effective self-supervised remote sensing interpretation framework is
which transfer strategy should be adopted to achieve the best effect. In order to combine
MIM-based self-supervised learning and remote sensing image scene classification tasks
well, we designed three transfer learning methods to transfer the pre-trained models to
downstream tasks. The first two methods need to set hyperparameters and adjust the
model: 1. Linear probing [48] (only the last linear layer parameter is updated). 2. End-to-
end fine-tuning [48], also known as fine-tuning (update all model parameters). In addition,
in order to exclude the influence of hyperparameters on downstream tasks, we also use the
method of KNN classification [8] to complete the classification task. Below, we describe
these three methods.

Linear probing and end-to-end fine-tuning are used to optimize the pre-trained model
based on the dataset of the downstream task. The principle of fine-tuning is to use the
known network structure and known network parameters, modify the corresponding
output layer according to the requirements, and fine-tune the parameters of several layers.
The difference between these two fine-tuning methods and pre-training methods can be
seen from Figure 4. Since the pre-trained model has learned a certain representation ability,
fine-tuning does not require the model to be trained from scratch on large-scale data. This is
also a good thing for the small-scale remote sensing image scene classification dataset. This
method effectively utilizes the powerful generalization ability of deep neural networks,
and avoids designing complex models and time-consuming training.
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Figure 4. Gradient calculation and parameter update under different methods of self-supervised
learning: (a) pre-training on unlabeled dataset; (b) linear probing; (c) end-to-end fine-tuning.

For linear probing, we only update the classifier, keeping the other parameters of the
pre-trained model unchanged. As shown in Figure 4, linear probing only updates the linear
classifier in the last layer of the model, freezing all previous layers. In general, regularization
is not good for linear detection, so we remove many common regularization strategies: we
do not use cutmix [49], mixup [50], color jittering, or drop path [51]. We only perform some
weak augmentations, such as RandomResizedCrop and RandomHorizontalFlip. We chose
LARS [52] as our optimizer when doing linear probing, and the weight decay was set to
zero. Normally, when training a linear classifier (e.g., SVM [53]), the normalized input is
passed to the classifier. Here, we normalize the pre-trained features and use them to train a
linear classifier. Following [28], we use an additional BatchNorm(BN) layer [54] without
affine transformation (affine = False). It is beneficial to use BN to normalize the pre-trained
features when training the linear probing classifier. We use B to denote a mini-batch of size
m for the entire training set, and x to denote its elements. The empirical mean and variance
of B could thus be denoted through function (3). The outcome of normalization is x̂i. Here,
ε is an arbitrarily small constant that is added to the denominator to improve numerical
stability. Finally, the results of BN can be obtained using two learnable hyperparameters.

µB =
1
m

m

∑
i=1

xi, σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (3)

x̂i =
xi − µB√

σ2
B + ε

(4)

yi = γx̂i + β = BNγ,β(xi) (5)

This layer should be placed before the linear classifier to process the pre-trained
features generated by the encoder. We note that one layer does not harm the classification
performance, and it can be absorbed into the linear classifier after training: it is better
at parameterizing the linear classifier. For linear probing and end-to-end fine-tuning,
the classifier uses cross-entropy (CE) loss to calculate the difference between the predicted
result and the real result. The expression is then as follows:

cross− entropy = −
n

∑
i=1

p(xi)ln(q(xi)) (6)

where p(xi) is the ground truth label and q(xi) is the prediction of our model for each input
picture. The CE loss function closes the gap between the predicted result and the real result,
making the predicted result more like the real result.

For end-to-end fine-tuning, we will train and update all the parameters of the network
on the remote sensing dataset. We will compute the gradients of the entire model (rather
than just computing the gradients of the final linear classifier as in linear probing), optimize
the pre-trained model on the remote sensing scene dataset, and update all network param-
eters. We will unfreeze the entire pre-trained model and retrain it on remote sensing data
with a very low learning rate. By gradually adapting the pre-trained features to new data,
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the accuracy of the pre-trained model on downstream tasks can be improved. After some
fine-tuning after epochs, our model achieves high accuracy. Here, we choose the data aug-
mentation method of RandomAug [55], mixup, and cutmix. Like most Transformer models,
we use AdamW [56] as the optimizer. Similar to linear probing, we also normalize the
input to the linear classifier. Here, we use the LayerNorm (LN) [47] layer for normalization.
LN is an algorithm independent of batch size, so no matter the number of samples, it will
not affect the amount of data involved in LN calculation. Let H be the number of hidden
layer nodes in a layer, and let l be the number of layers; we can calculate the normalized
statistics µ and σ of LN:

µl =
1
H

H

∑
i=1

al
i , σl =

√√√√ 1
H

H

∑
i=1

(al
i − µl)2 (7)

The calculation of the statistics here has nothing to do with the number of samples,
and it is easier to ensure that the normalized statistics of LN are sufficiently representative.
The normalized value âl can be obtained by µl and σl . ε is a small decimal, preventing
division by 0. In LN, we also need a set of parameters called gain g and bias b, to ensure
that the normalization operation does not destroy the previous information. Assuming that
the activation function is f , the output of the final LN is hl .

âl =
al − µl√
(σl)2 + ε

(8)

hl = f (gl � âl + bl) (9)

Combining the above two formulas and ignoring the parameter l, we have:

h = f (
g√

σ2 + ε
� (a− µ) + b) (10)

Finally, our end-to-end fine-tuning achieves good results on three publicly avail-
able remote sensing datasets, surpassing most fully supervised CNN-based models and
approaching SOTA’s fully supervised Transformer-based models.

KNN classification directly utilizes the weights obtained via pre-training to directly
study the representational ability of self-supervised pre-trained models. The KNN method
freezes the entire pre-trained model, and computes and stores the features of the training
data for downstream tasks. Regarding the feature selection of the model output, there are
generally two kinds—class tokens as global features, and a series of patch tokens composed
of each patch. If a patch token is selected, an average pooling operation is required to obtain
the final feature result. If a class token is selected, it can be directly used as a global feature
for the next calculation. For the classification effect, there is not much difference between
the two methods on the classification effect, so for the sake of convenience, we choose the
class token for processing. After that, we extract features for each image in the test set and
training set, and save the feature results output by the model. For each image in the test
set, we multiply its feature matrix with all the training set feature matrices. According to
the sorting, we select the k training set images with the smallest difference between their
features (here, we set k to 10 according to the scale of the dataset). For the k images in the
training set, we count their class labels and use the class with the most occurrences as the
new label for this test set image. Finally, we calculate the accuracy of the entire dataset
based on the inference results of each test set image. The KNN classification method does
not require any other hyperparameter tuning or data augmentation, and can be run only
with downstream datasets, which greatly simplifies the transfer of pre-trained models to
downstream tasks.
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4. Experiments and Results
4.1. Dataset Description

We test our method on three publicly available remote sensing image datasets, named
NWPU-RESISC45 dataset (NWPU) [57], Aerial Image dataset (AID) [58], and UCMerced
Land-Use dataset (UCM) [59]. Table 1 shows the specific details of these three datasets.

Table 1. Characteristic of the datasets.

Dataset Scene Classes Image Size Images per Class Total

NWPU 45 256 × 256 700 31,500
AID 30 600 × 600 220∼420 10,000

UCM 21 256 × 256 100 2100

4.2. Training Details

The training equipment that we used is shown in Table 2. All experiments are trained
for 120 epochs. All experiments were implemented using Pytoch 1.8.1. The models were
trained on a Tesla P40 (24 GB) GPU × 4 in a single machine. We used the MAE model to
study our self-supervised MIM strategy, and used ViT-B [15] as the backbone of our model.
When ViT processes pictures, it will divide a picture into multiple patches. Here, we set the
patch size to 16 × 16. For the AID dataset, and the NWPU, and UCM datasets, we reshaped
the images to 224 × 224 pixels in order to reduce content loss. We set the batch size to 64,
and since four GPUS were used, the total batch size was 256. We used 12 Transformer
encoders, and the final class head is a simple linear layer that outputs classification results.

Table 2. Experimental environment.

Operation System Ubuntu 16.04.6 LTS

Framework PyTorch 1.8.1
Memory 251 GB

CPU Intel(R )Xeon(R) E5-2630 v4 @ 2.20 GHz
GPU 4 x Tesla P40

Since self-supervised pre-training requires more computing power, we will use pre-
trained weights obtained via unlabeled self-supervised training of the MIM model on
imagenet-1k. We fine-tune the pre-trained model and conduct studies on three different
transfer methods to explore how well self-supervised learning works on downstream
tasks. For fine-tuning, we use AdamW as the optimizer. The learning rate is set to 0.001,
and the weight decay is set to 0.05. For linear probing, we use LARS [52] as the optimizer.
The learning rate is set to 0.1, and the weight decay is set to 0. For KNN, we set the KNN
number to 10; that is, we select the 10 training set images that are closest to the test image
features for voting, and obtain the new label of the image. When performing the two
downstream tasks of fine-tuning and KNN, we use the mmselfsup open source model. The
training code will be available at: https://github.com/open-mmlab/mmselfsup, accessed
on 15 June 2022. For linear probing, we are using the Meta open source model. The training
code will be available at: https://github.com/facebookresearch/MAE, accessed on 15
June 2022.

For each dataset, we randomly select a portion of the dataset as the training set,
and the rest as the test set. For NWPU, we set the training set ratio to 10% and 20%.
For AID, we set the training set proportions to 20% and 50%. For UC-Merced, we set the
training set proportions to 50% and 80%. In addition, common evaluation metrics for scene
classification include overall accuracy (OA) and confusion matrix (CM). In addition, since
our dataset is divided into training and test sets via random sampling, all experiments are
repeated 10 times to reduce random effects. The experimental results represent the mean
overall accuracy as a standard deviation (OA ± STD).

https://github.com/open-mmlab/mmselfsup
https://github.com/facebookresearch/MAE
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4.3. Comparison of Three Transfer Methods

To validate the effectiveness of our self-supervised learning approach on downstream
tasks, we conducted three experiments on the three datasets. Table 3 presents the results of
the experiments of models under three different transfer methods.

Table 3. Classification accuracy of three different transfer methods on three datasets.

Dataset Train Ratio Linear Probing KNN End-to-End
Fine-Tuning

NWPU 10% 70.29 62.23 91.98
NWPU 20% 76.94 68.05 94.48
UCM 50% 84.48 80.38 97.86
UCM 80% 92.86 88.33 99.24
AID 20% 80.34 74.10 95.71
AID 50% 88.38 81.16 97.65

As can be seen from the table, the accuracy obtained via end-to-end fine-tuning is
more than 90%, but the linear probing is between 70% and 90%, and KNN is between 60%
and 90%. Fine-tuning can achieve better classification results than KNN and linear probing.
It can be seen from the comparison of different datasets that for larger-scale datasets, such
as the NWPU and AID datasets, that end-to-end fine-tuning can achieve better results than
the other two methods. For smaller-scale datasets, such as UCM, all three methods can
achieve better results, and the gap is small.

Overall, it can be seen from the above results that linear probing outperforms the KNN
method, and that end-to-end fine-tuning outperforms linear probing. When the dataset is
large and complex, end-to-end fine-tuning is much better than the other two methods. This
shows that in this case, more sufficient update parameters are needed for transfer learning
in order to fully combine self-supervision and remote sensing scenes. When the dataset
is relatively simple, linear probing can achieve good results with less training time and a
simpler parameter update method—which also makes it possible to quickly implement
transfer learning with limited computing power. For the KNN method that does not require
hyperparameters and parameter updates at all, the MIM self-supervised learning method
can also achieve a classification effect with an accuracy of greater than 80% in a simple
dataset scenario. KNN embodies the potential of self-supervised representation learning
from the side. These three methods show how reliable and useful our self-supervised
learning approach is. They also show how important fine-tuning is.

4.4. Self-Supervised Visualization

As shown in Figure 5, we show the visualization of AID. The left column repre-
sents the original image of the remote sensing scene classification dataset, the middle
column represents the visualization obtained by the self-supervised model, and the right
column represents the visualization obtained by the fully supervised model. Since our
self-supervised model backbone is ViT-B [15], ViT-B is also selected as the comparison
object for full supervision. We use the grad-cam method for visualization, and gradients
for visualization. The final classification is performed on the class labels computed in the
last attention block, the output is the category at the end, and the gradient corresponding
to the output is 0, so we should choose any layer before the final attention block. Here, we
select the norm layer of the last Transformer module of the ViT-backbone, which is before
the last fully connected layer.

For the AID dataset, we can clearly see the “river” in Figure 5; the self-supervised
attention is all on the river itself, and the visual attention map has a good sense of bound-
aries. Although the full supervisor also paid attention to the river itself; it scatters a lot of
attention to the parts unrelated to the river, which shows that the essential characteristics
of “river” are not well grasped, and that it is easily imaged by other objects. For most
remote sensing images, the self-supervised attention part mainly focuses on the key parts
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and tends to focus on complete and specific scene objects, and the visual attention map
is very concentrated and has a good sense of boundaries. The attention part of the full
supervision is all over the whole map, the attention is relatively scattered, and sometimes it
pays attention to the non-critical parts, and cannot pay attention to the key parts.

Figure 5. Self-supervised and fully supervised learning visualizations on AID datasets.

4.5. Comparison with Previous Results

The main goal of this paper is to demonstrate that self-supervised learning can improve
the performance of networks. Therefore, we use three types of methods to compare
our proposed approach with other state-of-the-art baselines. For remote sensing scene
classification, we will select the best results of the self-supervised downstream task fine-
tuning and compare them with CNN-based models, Transformer-based models, and some
self-supervised methods. The evaluation metric is the overall classification accuracy (OA).
In addition, we use the training results obtained by using a larger training set split ratio for
each dataset to draw a confusion matrix to show the classification of each category.

(1) Comparison with CNN-based models: As shown in Tables 4–6, on the NWPU
dataset, the overall accuracies of our self-supervised method are 91.98% and 94.48% with
training ratios of 10% and 20%, respectively. On the AID dataset, the overall accuracies of
our self-supervised method are 95.71% and 97.65% with training ratios of 20% and 50%,
respectively. On the UCM dataset, the overall accuracies of our self-supervised method are
97.86% and 99.24% with training ratios of 50% and 80%, respectively. Our self-supervised
method outperforms almost all of the CNN-based methods with simple fine-tuning, using
only the pre-trained weights from the unlabeled training set, and performs well with
different training proportions on the three datasets.

On the NWPU dataset, at 20% training scale, Figure 6 shows the confusion matrix
generated by the classification results obtained by our self-supervised method. As you can
see from the confusion matrix, the accuracy rate for most classes is greater than 95%. We
observed the greatest confusion between the “palace” and “church” categories. The main
reason may be that these two classes have high inter-class similarity.
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Table 4. Classification accuracy on the NWPU dataset compared to CNN-based models (OA ± STD).

Method
Training Proportion

10% 20%

AlexNet [46] 76.69 ± 0.19 76.85 ± 0.18
VGGNet [60] 76.47 ± 0.18 79.79 ± 0.65

GoogleNet [58] 76.19 ± 0.38 78.48 ± 0.26
SPPNet [58] 82.13 ± 0.30 84.64 ± 0.23

D-CNN with AlexNet [58] 85.56 ± 0.20 87.24 ± 0.12
D-CNN with VGGNet-16 [58] 89.22 ± 0.50 91.89 ± 0.22

DenseNet-121 [61] 88.31 ± 0.35 90.47 ± 0.33
EfficientNet-B0-aux [62] 89.96 ± 0.27 -
EfficientNet-B3-aux [62] 91.08 ± 0.14 -

Contourlet CNN [63] 85.93 ± 0.51 89.57 ± 0.45
VGG-MS2AP [64] 92.27 ± 0.21 93.91 ± 0.15

Inception-v3-CapsNet [65] 89.03 ± 0.21 92.60 ± 0.11
ACNet [66] 91.09 ± 0.13 92.42 ± 0.16

Xu’s method [67] 91.91 ± 0.15 94.43 ± 0.16

Ours 91.98 ± 0.19 94.48 ± 0.26

Table 5. Classification accuracy on the AID dataset compared to CNN-based models (OA ± STD).

Method
Training Proportion

20% 50%

VGGNet [60] 86.59 ± 0.29 89.64 ± 0.36
GoogleNet [58] 83.44 ± 0.40 86.39 ± 0.55

ARCNet-VGG16 [68] 88.75 ± 0.40 93.10 ± 0.55
SPPNet [58] 87.44 ± 0.45 91.45 ± 0.38

DenseNet-121 [61] 93.76 ± 0.23 94.73 ± 0.26
EfficientNet-B0-aux [62] 93.96 ± 0.11 -
EfficientNet-B3-aux [62] 94.19 ± 0.15 -

GBNet [69] 90.16 ± 0.24 93.72 ± 0.34
GBNet+global feature [69] 92.20 ± 0.23 95.48 ± 0.12
Inception-v3-CapsNet [65] 93.79 ± 0.13 96.32 ± 0.12

ACNet [66] 93.33 ± 0.29 95.38 ± 0.29
SE-MDPMNet [70] 94.68 ± 0.07 97.14 ± 0.15
Xu’s method [67] 94.74 ± 0.23 97.65 ± 0.25

Ours 95.71 ± 0.22 97.65 ± 0.80

Table 6. Classification accuracy on the UCM dataset compared to CNN-based models (OA ± STD).

Method
Training Proportion

50% 80%

VGGNet [60] 94.14 ± 0.69 95.21 ± 1.20
GoogleNet [58] 92.70 ± 0.60 94.31 ± 0.89
APDCNet [71] 95.01 ± 0.43 97.05 ± 0.43

D-CNN with AlexNet [58] - 97.42 ± 1.79
D-CNN with VGGNet-16 [58] - 96.67 ± 0.94

EfficientNet-B0-aux [62] 98.01 ± 0.45 -
EfficientNet-B3-aux [62] 98.22 ± 0.49 -

Contourlet CNN [63] - 98.97 ± 0.21
Inception-v3-CapsNet [65] 97.59 ± 0.16 99.05 ± 0.24

ACNet [66] - 99.76 ± 0.10
EFPN-DSE-TDFF [72] 96.19 ± 0.13 99.14 ± 0.22

SE-MDPMNet [70] 98.57 ± 0.11 98.95 ± 0.12
Xu’s method [67] 98.61 ± 0.22 98.97 ± 0.31

ARCNet-VGGNet16 [73] 96.81 ± 0.14 99.12 ± 0.40

Ours 97.86 ± 0.56 99.24 ± 0.47
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Figure 6. Confusion matrix for NWPU dataset under 20% training ratio.

(2) Comparison with Transformer-based models: We also compared our self-supervised
approach with other Transformers. Experimental results are shown in Table 7. Our self-
supervised method is close to the Transformer state-of-the-art model.

The experimental results show that directly using global attention-based ViT [15]
performs mediocrely in remote sensing scene classification, but ViT-Hybrid [15] performs
well. The Swin Transformer uses windows to combine local and global attention informa-
tion, and the results show that it far outperforms CNN-based methods. TRS [74] also has
good results using the Transformer model, which is the current SOTA model. However,
our self-supervised approach, with label-free pre-trained weights and simple fine-tuning,
achieves good results. On the AID dataset, at a 20% training rate, our method is the most
effective, outperforming the TRS model by 0.17%.

(3) Comparison with other self-supervised models: There are few studies on self-
supervised learning applied to remote sensing scene classification, and we need to conduct
more exploration and research. We found two self-supervised methods, ResNet-101+MTL
and ResNeXt-101+MTL [72], for remote sensing scene classification to compare with our
method. The experimental results are shown in Table 8.
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Table 7. Classification accuracy on the AID dataset compared to Transformer-based models.

Method
Training Proportion

20% 50%

ViT-Base [15] 91.16 94.44
ViT-Large [15] 91.88 95.13

ViT-Hybrid [15] 92.39 96.20
DeiT-Base [19] 93.41 96.04

PVT-Medium [75] 92.84 95.93
PVT-Large [75] 93.69 96.65
T2T-ViT-19 [18] 92.39 95.42

V16_21k [61] 94.86 97.80
TRS [74] 95.54 98.48

Swin-Base [76] 94.86 97.80
Swin-Large [76] 95.09 98.46

Ours 95.71 97.65

Table 8. Classification accuracy on the AID dataset compared to self-supervised models (OA ± STD).

Method
Training Proportion

20% 50%

ResNet-101+MTL [72] 93.67 ± 0.21 96.61 ± 0.19
ResNeXt-101+MTL [72] 93.96 ± 0.11 96.89 ± 0.18

Ours 95.71 ± 0.22 97.65 ± 0.80

Our method outperforms the original method on all experiments of the three datasets.
Among them, ResNeXt-101+MTL is better than ResNet-101+MTL. On the NWPU dataset,
at a 20% training rate, our method outperforms ResNeXt-101+MTL by 0.27%. On the
AID dataset, at a 20% training rate, our method outperforms ResNeXt-101+MTL by 1.75%.
On the UCM dataset, at a 80% training rate, our method outperforms ResNeXt-101+MTL
by 0.13%.

5. Discussion

Self-supervised learning is not only able to benefit from massive unlabeled data-driven
model learning at low cost, but it can also make full use of pretext tasks to mine the rich
inherent information of image data, resulting in improved performance in remote sensing
image intelligence tasks. How to utilize the inherent relationship between self-supervised
learning and remote sensing image representation, as well as how to effectively transfer
self-supervised learning characteristics, are crucial issues in the research on the intelligent
interpretation of remote sensing images under conditions of extremely abundant data
sources. To this end, we conducted a series of studies combining MIM self-supervised
learning with remote sensing image scene classification for the first time.

In this study, we mainly focused on three aspects: (1) For the first time, MIM self-
supervised learning is studied on the traditional remote sensing image scene classification
task, and the unlabeled dataset is used for representation learning to better learn remote
sensing. (2) In order to better combine self-supervised learning with remote sensing scene
classification, we designed three different transfer learning methods to study the transfer
effect of self-supervised learning on remote sensing image scene classification from different
perspectives. (3) To reveal how self-supervision achieves better representation, we conduct
a visual study of model-specific feature layers and compare them with fully supervised
models. Our work provides reliable guidance for self-supervised analysis on remote
sensing images. In the future, we will investigate not only classification tasks, but also the
segmentation and detection of remote sensing images, using our self-supervised method.
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6. Conclusions

In this paper, we investigate MIM self-supervised learning in the task of remote sens-
ing image scene classification for the first time. Using the MIM strategy, pre-training on
unlabeled datasets, and then simply fine-tuning on labeled remote sensing datasets without
the use of other supervised strategies, we achieve good classification results. Concurrently,
in order to improve the combination of self-supervised and remote sensing images, we
developed three distinct methods for transfer learning to apply the self-supervised learn-
ing representations to the classic downstream task of remote sensing image classification.
Finally, we perform a visual analysis of the feature network layer, and the results demon-
strate that self-supervised learning has a better representation learning effect than fully
supervised learning, and it focuses more precise and concentrated attention on the target
subject, which has a good representation learning potential. The results of the experiment
show that our self-supervised method works well on public datasets and does better than
most fully supervised learning methods without using other supervised remote sensing
image analysis strategies.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G.; software, Y.G.; validation, Y.G.;
formal analysis, Y.G.; investigation, Y.G.; resources, Y.G.; data curation, Y.G.; writing—original draft
preparation, Y.G.; writing—review and editing, Y.G., X.S. and C.L.; visualization, Y.G.; supervision,
C.L. and X.S.; project administration, C.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors thank the reviewers for their valuable suggestions and comments.
We also thank the production team for formatting the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of Google Earth imagery and object-based methods in

land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [CrossRef]
2. Zheng, X.; Gong, T.; Li, X.; Lu, X. Generalized scene classification from small-scale datasets with multitask learning. IEEE Trans.

Geosci. Remote Sens. 2021, 60, 1–11. [CrossRef]
3. Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36.

[CrossRef]
4. Zheng, X.; Wang, B.; Du, X.; Lu, X. Mutual attention inception network for remote sensing visual question answering. IEEE Trans.

Geosci. Remote Sens. 2021, 60, 1–14. [CrossRef]
5. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.

ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]
6. Chen, M.; Liu, D.; Qian, K.; Li, J.; Lei, M.; Zhou, Y. Lunar crater detection based on terrain analysis and mathematical morphology

methods using digital elevation models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3681–3692. [CrossRef]
7. Ye, F.; Xiao, H.; Zhao, X.; Dong, M.; Luo, W.; Min, W. Remote sensing image retrieval using convolutional neural network features

and weighted distance. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1535–1539. [CrossRef]
8. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In Proceedings of the OTM

Confederated International Conferences on the Move to Meaningful Internet Systems, Sicily, Italy, 3–7 November 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 986–996.

9. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3733–3742.

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30 . [CrossRef]

11. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

12. Stewart, R.; Andriluka, M.; Ng, A.Y. End-to-end people detection in crowded scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2325–2333.

13. Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064.

http://doi.org/10.3390/rs5116026
http://dx.doi.org/10.1109/TGRS.2021.3116147
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.004
http://dx.doi.org/10.1109/TGRS.2021.3079918
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.1109/TGRS.2018.2806371
http://dx.doi.org/10.1109/LGRS.2018.2847303
http://dx.doi.org/10.48550/arXiv.1706.03762


Remote Sens. 2022, 14, 4824 16 of 18

14. Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating long sequences with sparse transformers. arXiv 2019, arXiv:1904.10509.
15. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
16. Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention augmented convolutional networks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3286–3295.
17. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In

Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 213–229.

18. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10347–10357.

19. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.H.; Tay, F.E.; Feng, J.; Yan, S. Tokens-to-token vit: Training vision transformers
from scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada,
10–17 October 2021; pp. 558–567.

20. Abnar, S.; Dehghani, M.; Zuidema, W. Transferring inductive biases through knowledge distillation. arXiv 2020, arXiv:2006.00555.
21. Li, W.; Cao, D.; Peng, Y.; Yang, C. MSNet: A multi-stream fusion network for remote sensing spatiotemporal fusion based on

transformer and convolution. Remote Sens. 2021, 13, 3724. [CrossRef]
22. Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote

Sens. 2021, 13, 516. [CrossRef]
23. Xu, Z.; Zhang, W.; Zhang, T.; Yang, Z.; Li, J. Efficient transformer for remote sensing image segmentation. Remote Sens. 2021,

13, 3585. [CrossRef]
24. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
25. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
26. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
27. Chen, M.; Radford, A. Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever. Generative

pretraining from pixels. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020;
Volume 1, p. 1.

28. Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In Proceedings of the
IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1422–1430.

29. Yang, C.; Xu, Y.; Dai, B.; Zhou, B. Video representation learning with visual tempo consistency. arXiv 2020, arXiv:2006.15489.
30. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.
31. Hinton, G.E.; Zemel, R. Autoencoders, minimum description length and Helmholtz free energy. Adv. Neural Inf. Process. Syst.

1993, 6 .
32. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.
33. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, London, UK, 21–23 June 2022; pp. 16000–16009.
34. Xie, Z.; Zhang, Z.; Cao, Y.; Lin, Y.; Bao, J.; Yao, Z.; Dai, Q.; Hu, H. Simmim: A simple framework for masked image modeling. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–23 June 2022;
pp. 9653–9663.

35. Zhai, X.; Oliver, A.; Kolesnikov, A.; Beyer, L. S4l: Self-supervised semi-supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1476–1485.

36. Doersch, C.; Zisserman, A. Multi-task self-supervised visual learning. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2051–2060.

37. Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
38. Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018,

arXiv:1803.07728.
39. Noroozi, M.; Vinjimoor, A.; Favaro, P.; Pirsiavash, H. Boosting self-supervised learning via knowledge transfer. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9359–9367.
40. Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of the

European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 69–84.

41. Becker, S.; Hinton, G.E. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 1992,
355, 161–163. [CrossRef]

http://dx.doi.org/10.3390/rs13183724
http://dx.doi.org/10.3390/rs13030516
http://dx.doi.org/10.3390/rs13183585
http://dx.doi.org/10.1109/ACCESS.2020.2988796
http://dx.doi.org/10.1038/355161a0


Remote Sens. 2022, 14, 4824 17 of 18

42. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1735–1742.

43. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738.

44. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 1597–1607.

45. Bao, H.; Dong, L.; Wei, F. Beit: Bert pre-training of image transformers. arXiv 2021, arXiv:2106.08254.
46. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60 , 84–90. [CrossRef]
47. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
48. Wang, C.; Wu, Y.; Liu, S.; Yang, Z.; Zhou, M. Bridging the gap between pre-training and fine-tuning for end-to-end speech

translation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 9161–9168.

49. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 6023–6032.

50. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
51. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep networks with stochastic depth. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016;
pp. 646–661.

52. You, Y.; Gitman, I.; Ginsburg, B. Large batch training of convolutional networks. arXiv 2017, arXiv:1708.03888.
53. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
54. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.
55. Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical automated data augmentation with a reduced search space. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 702–703.

56. Ilya, L.; Frank, H. Decoupled weight decay regularization. In Proceedings of the ICLR, New Orleans, LA, USA, 6–9 May 2019.
57. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017,

105, 1865–1883. [CrossRef]
58. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of

aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]
59. Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci.

Remote Sens. Lett. 2015, 12, 2321–2325. [CrossRef]
60. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
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