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Abstract: The asymmetric delay has a considerable impact on Global Navigation Satellite Systems
(GNSS) Positioning, Navigation and Timing (PNT) applications. In GNSS analyses, the impacts of
the asymmetric delay are commonly compensated by using the classical methods with considering
the north-south and east-west horizontal gradients. In this paper, we have initiatively proposed an
extended method where the north-south and east-west horizontal gradients as well as the second-
order horizontal gradients are included to better fit the asymmetric delay. The modeling accuracy
of the extended method was evaluated at globally distributed 905 GNSS stations during 40 days in
2020. Significant performance of the extended method respect to the classical method was found,
where the hydrostatic and wet modeling accuracy at 4◦ elevation angle was improved from 5.3 and
10.6 mm to 1.6 and 4.9 mm by 70% and 54%, respectively. The GNSS Precise Point Positioning (PPP)
performance using the extended method was also validated at 107 Multi-GNSS Experiment (MGEX)
stations. The superior performance on the coordinate repeatability and significant effectiveness on the
coordinate and Zenith Total Delay (ZTD) estimations were also found, and the maximal vertical (U)
coordinate and ZTD difference biases reached 8.6 and −4.5 mm. The extended method is therefore
recommended to substitute the classical methods in the GNSS analyses, especially under severe
atmospheric conditions.
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1. Introduction

The electromagnetic wave signals of Global Navigation Satellite Systems (GNSS)
are inevitably delayed and bent during their passage through the neutral atmosphere,
generating the tropospheric Slant Total Delay (STD) that can be written as [1–5]:

STD(e, α) =
ZHD·MFh(e) + ZWD·MFw(e)
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where �  and �  denote elevation angle and azimuth. ���  and ���  represent for 

Zenith Hydrostatic and Wet Delay. ���, ��� and ��� stand for hydrostatic, wet and 

gradient mapping functions. �� and �� are the two horizontal gradient components in 

north-south and east-west directions. 

The tropospheric delay can be divided into isotropic and anisotropic delays accord-

ing to the azimuthal variation characteristics. The isotropic part is the product of Zenith 

Path Delay (ZPD) and mapping function that has been well discussed in the existing lit-

erature [6–10]. The anisotropic part is usually expressed as the function of north-south 

and east-west gradients based on the assumption of the tilting atmosphere, deriving the 

frequently used classical methods such as TANZ, CHENHER, and TILTING [11–13]. The 

classical methods are suitable for the asymmetry delays from the thermal expansion of the 
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anisotropic part
(1)

where e and α denote elevation angle and azimuth. ZHD and ZWD represent for Zenith
Hydrostatic and Wet Delay. MFh, MFw and MFg stand for hydrostatic, wet and gradient
mapping functions. Gn and Ge are the two horizontal gradient components in north-south
and east-west directions.

The tropospheric delay can be divided into isotropic and anisotropic delays accord-
ing to the azimuthal variation characteristics. The isotropic part is the product of Zenith
Path Delay (ZPD) and mapping function that has been well discussed in the existing lit-
erature [6–10]. The anisotropic part is usually expressed as the function of north-south
and east-west gradients based on the assumption of the tilting atmosphere, deriving the
frequently used classical methods such as TANZ, CHENHER, and TILTING [11–13]. The
classical methods are suitable for the asymmetry delays from the thermal expansion of the
earth’s atmosphere and the distribution of the atmospheric water vapor on macroscale,
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while they are degraded under severe topographic perturbation or extreme weather situa-
tions, mainly due to the constraint of the simple sine and cosine structure [2].

To overcome this issue, the classical methods were extended. Gegout et al. [14] de-
signed the Adaptive Mapping Function (AMF) based on the mapping function continued
fraction and the CHENHER method, using tens of parameters to fit thousands of symmetric
and asymmetric delays simultaneously, and the fitting accuracy reaches millimeter level.
Masoumi et al. [15] proposed a directional model on the basis of the CHENHER method
where the omni-direction is divided into several discrete azimuthal wedges and the asym-
metry in each wedge is approximated independently, and the superior performance was
found both in asymmetry modeling and Global Positioning System (GPS) Precise Point Po-
sitioning (PPP) under extreme weather scenarios. Landskron and Böhm [2] developed the
Extended CHENHER (ECHENHER) method where the number of parameters is increased
from 2 to 4, and significant improvement was also found for the modeling at low elevation
angle and the Very Long Baseline Interferometry (VLBI) analyses.

However, up to now, the extended methods are all derived from the CHENHER
method and focus on asymmetric modeling, lack of researches based on the more rigorous
TILTING method and on the impacts of GNSS parameter estimation. In this paper, we
will initiatively introduce an extended method named Extended TILTING (ETILTING)
based on the ECHENHER and TILTING methods, and then systematically compare the
asymmetry modeling and GNSS PPP performance of the ETILTING method. This paper is
organized as follows: Section 2 describes the TANZ, CHENHER, TILTING, ECHENHER
and ETILTING methods. Section 3 evaluates the asymmetry modeling performance of
different methods. Section 4 compares the GNSS PPP performance by using the five
modeling methods. Section 5 summarizes the work and conclusions.

2. Asymmetric Delay Modeling Methods
2.1. Classical Methods

The classical methods are all based on the tilting atmosphere assumption, and the
different methods are mainly distinguished by their gradient mapping functions. MacMil-
lan [11] proposed the TANZ method to compensate for the asymmetric effects on VLBI
observations where the gradient mapping function is expressed by the product of the
mapping function and 1/ tan(e) as:

AD(e, α) =
MF(e)
tan(e)

·[Gn cos(α) + Ge sin(α)] (2)

where AD denotes the Asymmetric Delay (AD). MF is the mapping function and takes
MFh, MFw and MFw for the hydrostatic, wet and total asymmetry modeling, respectively.
Two years later, Chen and Herring [12] proposed the widely-used CHENHER method as:

AD(e, α) =
1

sin(e)· tan(e) + C
·[Gn cos(α) + Ge sin(α)] (3)

where C represents the gradient mapping function constant, and it takes values of 0.0031,
0.0007 and 0.0032 for the hydrostatic, wet and total asymmetry modeling, respectively. In
addition, Meindl et al. [13] derived the TILTING method using the assumption of tilting
zenith direction where the gradient mapping function is the derivation of MF respect to e as:

AD(e, α) =
dMF

de
·[Gn cos(α) + Ge sin(α)] (4)

where dMF
de is the gradient mapping function, and it takes the values of dMFh

de , dMFw
de and

dMFw
de for the hydrostatic, wet, and total modeling, respectively.
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2.2. Extended Methods

The extended methods proposed by Gegout et al. [14] and Masoumi et al. [15] are too
complicated to apply in operational modeling and positioning applications, and therefore
only the ECHENHER and ETILTING methods will be described in this section. Landskron
and Böhm [2] considered the higher-order variation of asymmetric delay and added the
second-order horizontal gradients to the standard gradient formula of the CHENHER
method (Equation (3)), deriving the ECHENHER method as:

AD(e, α) =
1

sin(e)· tan(e) + C
·[Gn cos(α) + Ge sin(α) + Gn2 cos(2α) + Ge2 sin(2α)] (5)

where Gn2 and Ge2 are the second-order horizontal gradient parameters. In this paper, we
introduce the ETILTING method on the basis of the TILTING and ECHENHER methods as:

AD(e, α) =
dMF

de
·[Gn cos(α) + Ge sin(α) + Gn2 cos(2α) + Ge2 sin(2α)] (6)

where dMF
de denotes the gradient mapping function that can change with the atmosphere

state, and it is the main advantage of the ETILTING method over the ECHENHER method.
The characteristics of the extended methods are compared with the classical methods in
Table 1.

Table 1. Characteristics of the classical and extended methods.

Types Methods
Gradient
Mapping
Function

Higher-
Order

Variation
Parameters Number of

Parameters

Classical

TANZ MF(e)
tan(e)

× Gn, Ge 2

CHENHER 1
sin(e)· tan(e) + C × Gn, Ge 2

TILTING dMF
de × Gn, Ge 2

Extended
ECHENHER 1

sin(e)· tan(e) + C
√ Gn, Ge, Gn2 ,

Gn2

4

ETILTING dMF
de

√ Gn, Ge, Gn2 ,
Gn2

4

3. Modeling Evaluations
3.1. Modeling Strategies

We use the ray-tracing technique to retrieve hourly Slant Hydrostatic Delay (SHD) and
Slant Wet Delay (SWD) from reanalysis products [16,17]. In this work, the fifth-generation
Re-Analysis (ERA5) products from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) were selected for the ray-tracing calculations [18,19], considering the supe-
rior temporal-spatial resolutions (1 h, 0.25◦ and 37 pressure levels) and performance [20].
The Slant Path Delays (SPDs) included SHD and SWD were retrieved at 14 elevation angles
(3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 10◦, 12◦, 15◦, 20◦, 30◦, 50◦, 70◦, and 80◦) and 16 azimuths (with an
interval of 22.5◦) [1,2], spanning four seasons (11–20 January, 11–20 April, 11–20 July, and
11–20 October in 2020) and covering 905 globally distributed stations as shown in Figure 1,
including 549 International GNSS Service (IGS) stations and 356 stations in China.

We used the classical (TANZ, CHENHER and TILTING) and extended (ECHENHER
and ETILTING) methods to model the asymmetry component of SPDs. Firstly, the asym-
metric delays at 7 elevation angles (3◦, 5◦, 7◦, 10◦, 15◦, 30◦ and 70◦) and 16 azimuths (with
an interval of 22.5◦) were calculated by subtracting the SPD average from the SPDs at 16 az-
imuths [1]. Then, the modeling was performed by taking the calculated asymmetric delays
as inputs and using the least-squares method where the hydrostatic and wet asymmetric
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delays are modeled separately with equal weighting [1]. Finally, the five corresponding
horizontal gradient models spanning 40 days and covering 905 stations were derived.
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3.2. Modeling Residual Evaluations

In this section, we evaluate the modeling residuals using the five methods. For the
evaluations, the precision index, Mean Absolute Error (MAE), was adopted [1,2,21]. The
MAE at a specific elevation angle and azimuth can be calculated as:

MAE(e, α) = |ADo(e, α)− ADc(e, α)| (7)

where ADo denotes the ray-traced asymmetric delay, and ADc represents the asymmetric
delay calculated from the horizontal gradient models. In this evaluation, the residual MAEs
at the input modeling elevation angles and azimuths were first computed over 40 days
and 905 stations. Then, the statistically residual MAEs at different modeling elevation
angles were retrieved by taking the average of the MAEs at all the input azimuths and
stations in 964 epochs (hours during a 40-day period) and shown in Table 2. We can find
that, in the three classical methods, the TANZ method, generally with the largest residual
MAEs, is obviously worst both for the hydrostatic and wet component modeling, while
the CHENHER and TILTING methods show the best performance for hydrostatic and
wet modeling, respectively. Compared with the classical methods, the extended methods
show significant improvements at the low elevation angles (≤10◦) and slight degradation
at the high elevation angles. The reason is that the asymmetric delays at different elevation
angles are equally weighted in the modeling, and the second-order horizontal gradient
estimations slightly contaminate the modeling at high elevation angles.

As shown in Table 2, the residual MAEs at 3◦ elevation angle are generally the largest,
and, therefore, we further present the residual MAE distribution for the 905 stations at
3◦ elevation angle in Figure 2, where the hydrostatic and wet MAE distributions have
different color bars. We can find that the MAE distribution for the three classical methods
is similar (Figure 2a–c). The hydrostatic MAE distribution has latitude and topography
dependence where the middle and low latitude stations around the ocean and mountains
show larger MAEs, mainly due to the effects of more active atmospheric states and more
severe atmospheric perturbations [22]. Compared with the hydrostatic MAE distribution,
the wet MAE distribution also shows latitude and topography dependence. Several middle
and low-latitude coastal areas, such as the north coast of South America, the west coast
of South America, the east coast of the Mediterranean Sea, and the east of Southeast Asia,



Remote Sens. 2022, 14, 4807 5 of 14

present large MAEs, indicating the deficiencies of the classical methods. Compared with
the classical methods, the extended methods show significant improvements both in MAE
distribution and magnitude (Figure 2d,e). For the hydrostatic component, the latitude and
topography dependence almost disappear, and the MAE magnitudes also clearly decrease.
As for the wet component, although the latitude and topography dependence still exist in
several regions, such as the east coast of the Mediterranean Sea and the east of Southeast
Asia, the MAE is obviously smaller compared to the classical methods.

Table 2. Residual MAEs (mm) for the modeling using different methods.

Methods Components e = 3◦ e = 5◦ e = 7◦ e = 10◦ e = 15◦ e = 30◦ e = 70◦

TANZ

Hydrostatic

8.78 5.01 3.64 2.23 1.14 0.31 0.04
CHENHER 8.49 3.63 2.11 1.21 0.63 0.18 0.02

TILTING 8.53 3.75 2.25 1.30 0.67 0.19 0.02
ECHENHER 2.39 1.72 1.66 1.22 0.71 0.22 0.03
ETILTING 2.45 1.92 1.80 1.29 0.74 0.22 0.03

TANZ

Wet

17.79 8.57 5.62 3.29 1.64 0.44 0.05
CHENHER 17.73 8.04 5.18 3.04 1.53 0.41 0.05

TILTING 17.67 7.55 4.66 2.70 1.36 0.37 0.04
ECHENHER 8.04 5.50 4.54 2.96 1.57 0.44 0.05
ETILTING 7.98 4.83 4.03 2.68 1.45 0.41 0.05

3.3. Modeling Accuracy Evaluations

In this section, we evaluate the modeling accuracy of different horizontal gradient
models at independent elevation angles that are not involved in the modeling (4◦, 6◦, 8◦,
12◦, 20◦, 50◦ and 80◦). We first calculated the MAEs at the 905 stations and 16 azimuths in
964 epochs, and then took the average MAEs at different elevation angles and showed the
statistical results in Table 3. We can also find that the CHENHER and TILTING methods
perform best for hydrostatic and wet modeling, respectively. The extended methods
obviously have better performance both for the hydrostatic and wet components at low
elevation angles, and the maximal improvement exceeds 6 mm. As for the two extended
methods, the ECHENHER method is slightly better for hydrostatic modeling, and the
ETILTING method has better wet modeling performance with a maximal improvement of
about 0.62 mm.

Table 3. MAEs (mm) for the modeling using different methods.

Methods Components e = 4◦ e = 6◦ e = 8◦ e = 12◦ e = 20◦ e = 50◦ e = 80◦

TANZ

Hydrostatic

5.81 4.30 3.08 1.67 0.68 0.11 0.03
CHENHER 5.27 2.69 1.71 0.91 0.39 0.07 0.02

TILTING 5.31 2.84 1.84 0.97 0.41 0.07 0.02
ECHENHER 1.51 1.76 1.52 0.98 0.45 0.08 0.02
ETILTING 1.63 1.93 1.62 1.02 0.47 0.08 0.03

TANZ

Wet

11.14 6.89 4.64 2.43 0.97 0.15 0.03
CHENHER 10.84 6.37 4.28 2.25 0.90 0.14 0.03

TILTING 10.64 5.81 3.82 2.00 0.81 0.13 0.03
ECHENHER 5.31 5.13 3.95 2.26 0.95 0.15 0.03
ETILTING 4.91 4.51 3.53 2.07 0.88 0.14 0.03

The modeling MAEs using different methods are generally largest at 4◦ elevation
angle, and the MAE distribution for the 905 stations is therefore presented at 4◦ elevation
angle in Figure 3. We can find that the classical methods have similar MAE distributions
(Figure 3a–c). The hydrostatic MAE distribution is correlated with the station latitudes, and
the middle and low latitude areas with more active hydrostatic atmosphere states show
larger MAEs [22]. In addition, the MAE distribution also depends on the topography to
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some degree, and some sea and land boundary areas show much larger MAEs. The wet
MAE distribution also shows obvious latitude and topography dependence, and several
coastal areas, such as the north and west coasts of South America and eastern areas of
Southeast Asia, have much larger MAEs. In contrast, the MAE distribution of the extended
methods is much better (Figure 3d,e), where latitude and topography dependence are not
obvious anymore.
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4. GNSS PPP Validations
4.1. Data Processing Strategies

In operational GNSS analyses, the effects of asymmetric delay are generally mod-
eled by the north-south and east-west gradient estimations using the classical method. In
this section, we initiatively use the extended method instead of the classical method for
horizontal gradient estimations considering the better modeling accuracy and compare
the multi-GNSS PPP performances of different methods. There are three classical meth-
ods (TANZ, CHENHER, and TILTING) and two extended methods (ECHENHER and
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ETILTING) involved in the GNSS analyses, where the classical methods estimate the Gn
and Ge parameters, and the extended methods additionally include the two second-order
horizontal gradient parameters (Gn2 and Ge2). In addition, the multi-GNSS PPP with no
horizontal estimations (NONE) is also performed. Therefore, a total of six PPP schemes
will be included in this section.

We use the Positioning and Navigation Data Analyst (PANDA) software [23] to analyze
the multi-GNSS (GPS+GLONASS+GALILEO+BDS3) data from 107 globally distributed IGS
Multi-GNSS Experiment (MGEX) stations as shown in Figure 1 [24], and the time period is
from 11–20 October in 2020. The satellite orbits are fixed by the German Research Center for
Geosciences (GFZ) GBM products, and the satellite clock corrections are estimated every 5 min
using the corresponding schemes to the PPP processing to avoid the influence of inconsistency.
The detailed processing strategies for the six PPP schemes are listed in Table 4.

Table 4. Data processing strategies for multi-GNSS PPP.

Observation

Sampling interval 300 s

Frequency combination Ionosphere-free combination

Elevation cutoff angle 3◦

Satellite system weighting factors GPS: 1; GALILEO: 1; GLONASS: 1.5; BDS MEO and
IGSO: 1.5; BDS GEO: 2.5

Elevation weighting strategy
{

p = 2sine, (e ≤ 30◦)
p = 1, (e > 30◦)

Error correction

Phase center variations igs14.atx

Higher-order ionospheric delay GIM and IGRF13 [25]

Ocean tide loading FES2014b

A priori tropospheric delay MFlsmcom+ZPD [10]

Parameter estimation

Satellite orbits Fixed from GBM 5 min products

Satellite clock corrections Fixed from estimated 5 min products

Mapping function Wet MFlsmcom [10]

ZWD stochastic model Piece-wise constant (1 h), random walk between
segments (15mm/

√
h)

Gradient mapping function

Scheme 1 NONE: NONE
Scheme 2 TANZ: m fw· cot(e)

Scheme 3 CHENHER : 1
sin(e)· tan(e)+0.0032

Scheme 4 TILTING : dMFw
de

Scheme 5 ECHENHER : 1
sin(e)· tan(e)+0.0032

Scheme 6 ETILTING : dMFw
de

Gradient stochastic model Piece-wise constant (2 h), random walk between
segments (10mm/

√
h)

Horizontal gradient

Scheme 1 NONE: NONE
Scheme 2 TANZ : Gn1 , Ge1

Scheme 3 CHENHER : Gn1 , Ge1

Scheme 4 TILTING : Gn1 , Ge1

Scheme 5 ECHENHER : Gn1 , Ge1 , Gn2 , Ge2

Scheme 6 ETILTING : Gn1 , Ge1 , Gn2 , Ge2

Station coordinates Daily constant

Receiver clock corrections White noise

Ambiguities Fixed
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4.2. Coordinate Repeatability

In this section, we compare the coordinate repeatability of the six PPP schemes. We
first extracted the 10-day coordinate time series from the PPP daily solutions and then
removed the effect of Atmospheric Pressure Loading (APL) on the time series by using
the APL products from Technische Universitat Wien [26,27]. After that, we calculated the
coordinate repeatability without and with APL correction as shown in Table 5.

Table 5. Coordinate repeatability (mm) for the six PPP schemes.

Schemes
Without APL Correction With APL Correction

N E U N E U

NONE 1.82 1.48 4.10 1.84 1.52 3.83
TANZ 0.92 0.88 3.39 0.95 0.94 3.10

CHENHER 0.91 0.88 3.41 0.94 0.94 3.13
TILTING 0.91 0.87 3.40 0.94 0.94 3.11

ECHENHER 0.89 0.85 3.37 0.93 0.90 3.09
ETILTING 0.88 0.84 3.35 0.92 0.89 3.06

We can find that the APL correction improves the vertical (U) coordinate repeatability
by about 0.3 mm with slightly contaminating the North (N) and East (E) components. The
six PPP schemes have different performances in which the PPP scheme without gradient
estimation (NONE) shows the worst repeatability, with a standard deviation of 1.84, 1.52
and 3.83 mm in the N, E and U directions, respectively. Compared with the NONE scheme,
the schemes using the three classical methods show improvements reaching about 0.9,
0.6 and 0.7 mm on average. As for the extended methods, the coordinate repeatability is
further improved by about 0.02, 0.05 and 0.05 mm, showing the advantages of estimating
the second-order horizontal gradients. While for the schemes using different classical
methods or extended methods, the coordinate repeatability is very close in which the
TILTING and ETILTING schemes are slightly better than the CHENHER and ECHENER
schemes. However, the coordinate repeatability differences between different schemes are
not as significant as the modeling accuracy differences, and the main reason is that the
modeling accuracy differences are concentrated on the low elevation angles, which are
greatly suppressed by the elevation-dependent weighting strategy.

In addition to the statistical coordinate repeatability, the coordinate repeatability
difference distribution between the TILTING and ECHENHER schemes and the ETILTING
scheme is also shown in Figure 4, where the red color represents that the TILTING and
ECHENHER schemes are worse than the ETILTING scheme. We can find that the coordinate
repeatability differences between the TILTING and ETILTING schemes are obviously larger
than those between the ECHENER and ETILTING schemes, demonstrating that the impact
of the number of horizontal gradient parameters to be estimated is larger than the gradient
mapping functions. In all 107 stations, there are 59, 69 and 60 stations with better N, E and
U coordinate repeatability for the ETILTING scheme than for the TILTING scheme, again
indicating the superior performance of the ETILTING method (left column of Figure 4).
The U coordinate repeatability differences are most remarkable in the three coordinate
components, and some middle and low latitude stations around the ocean show more
significant differences with the maximal value of 2.32 mm (left column of Figure 4c) that is
consistent with the modeling accuracy distribution.
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4.3. Coordinate and ZTD Differences

The coordinate repeatability cannot reflect the potential systematic bias in the position
time series. Therefore, we further analyzed the coordinate and Zenith Total Delay (ZTD)
differences between the TILTING, ECHENHER and TILTING schemes, where the statistical
difference bias and Root Mean Square (RMS) are summarized in Table 6. We can find that
the coordinate and ZTD differences between the TILTING and ETILTING schemes are also
more significant than the differences between the ECHENHER and ETILTING schemes,
illustrating the effectiveness of the second-order horizontal gradient estimation. Among
all the statistical components, the U coordinate and ZTD differences are larger than the
horizontal component differences, and the biases are 0.49 and −0.19 mm, respectively,
indicating the potential systemic biases between the TILTING and ETILTING schemes.

Table 6. Coordinate and ZTD differences (mm) between the TILTING and ECHENHER schemes and
the ETILTING scheme.

Components
TILTING-ETILTING ECHENHER-ETILTING

Bias RMS Bias RMS

N −0.04 0.36 0.01 0.16
E −0.07 0.44 0.02 0.18
U 0.49 1.45 −0.01 0.39

ZTD −0.19 0.99 −0.01 0.30
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In order to further illustrate the potential systematic bias, we plotted the bias and RMS
distribution of the coordinate and ZTD differences between the TILTING and ETILTING
schemes in Figure 5. We can find that the horizontal coordinate difference bias and RMS
are smaller than the U coordinate and ZTD. The U coordinate difference biases have the
opposite sign to ZTD, and the magnitudes are generally double those of the ZTD biases,
indicating the strong correlation between U coordinate and ZTD [28]. The U coordinate
and ZTD difference biases also depend on the station latitude, and the stations located
in the middle and low latitudes generally show larger values, such as WUH2 (China)
and NLIB (North America). At the two stations, the U coordinate and ZTD difference
biases are nearly equal to the corresponding RMSs, indicating the significant systematic
biases between the TILTING and ETILTING schemes. Considering the prominent biases,
we further presented the coordinate and ZTD difference time series in Figure 6. We can
find that the coordinate and ZTD difference time series between the two schemes are
consistently positive or negative, with the statistical N, E, U, and ZTD difference biases of
−1.08, 1.56, 8.61 and −4.47 mm for NLIB station, and of −2.53, 1.10, 5.10 and −3.02 mm
for WUH2 station, demonstrating the significant effectiveness of the proposed ETILTING
method relative to the TILTING method.
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5. Conclusions

The asymmetric delays have non-negligible impacts on GNSS analyses. In the past
decades, several classical methods, such as TANZ, CHENHER and TILTING, were pro-
posed for better eliminating the impacts. However, limited by the simple sine and cosine
structures, the classical methods perform poorly under the atmospheric state with severe
variation. To deal with the issue, more sophisticated extended methods were introduced.
In this paper, we reviewed the existing classical and extended methods and initiatively
proposed a new extended method named ETILTING. The modeling residual and accuracy
of the existing methods and the ETILTING method at 905 GNSS stations during 40 days
in 2020 were evaluated. We found that the extended methods show very significant im-
provements to the classical methods both for the modeling residual and accuracy, where
the hydrostatic and wet modeling accuracy of the ETILTING method at 4◦ elevation angle
is improved from 5.3 and 10.6 mm of the TILTING method to 1.6 and 4.9 mm by 70%
and 54%, respectively. As for the extended methods, the ETILTING method shows better
performance than the ECHENHER method, and the maximal improvement in the modeling
accuracy reaches 0.62 mm.

In addition, the multi-GNSS PPP performance of different methods was also validated
at 107 MGEX stations. The coordinate repeatability as well as the coordinate and ZTD
differences were systematically compared. The results show that the PPP scheme using
the ETILTING method can improve the N, E, and U coordinates repeatability from 0.94,
0.94 and 3.11 mm to 0.92, 0.89 and 3.06 mm, indicating the superior performance of the
ETILTING method to the TILTING method. In addition, the significant U coordinate
and ZTD biases between the schemes using the TILTING and ETILTING methods were
also found, and the maximum U coordinate and ZTD difference biases reached 8.6 and
−4.5 mm, illustrating the effectiveness of the ETILTING method. In brief, the extended
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methods have better accuracy and PPP performance. We recommend the extended methods
to substitute the frequently-used classical methods in the GNSS analyses, especially under
severe atmospheric conditions.
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