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Abstract: At present, deep learning has been widely used in SAR ship target detection, but the
accurate and real-time detection of multi-scale targets still faces tough challenges. CNN-based
SAR ship detectors are challenged to meet real-time requirements because of a large number of
parameters. In this paper, we propose a lightweight, single-stage SAR ship target detection model
called YOLO-based lightweight multi-scale ship detector (LMSD-YOLO), with better multi-scale
adaptation capabilities. The proposed LMSD-YOLO consists of depthwise separable convolution,
batch normalization and activate or not (ACON) activation function (DBA) module, Mobilenet with
stem block (S-Mobilenet) backbone module, depthwise adaptively spatial feature fusion (DSASFF)
neck module and SCYLLA-IoU (SIoU) loss function. Firstly, the DBA module is proposed as a general
lightweight convolution unit to construct the whole lightweight model. Secondly, the improved
S-Mobilenet module is designed as the backbone feature extraction network to enhance feature
extraction ability without adding additional calculations. Then, the DSASFF module is proposed to
achieve adaptive fusion of multi-scale features with fewer parameters. Finally, the SIoU is used as
the loss function to accelerate model convergence and improve detection accuracy. The effectiveness
of the LMSD-YOLO is validated on the SSDD, HRSID and GFSDD datasets, respectively, and the
experimental results show that our proposed model has a smaller model volume and higher detection
accuracy, and can accurately detect multi-scale targets in more complex scenes. The model volume of
LMSD-YOLO is only 7.6MB (52.77% of model size of YOLOv5s), the detection speed on the NVIDIA
AGX Xavier development board reached 68.3 FPS (32.7 FPS higher than YOLOv5s detector), indicating
that the LMSD-YOLO can be easily deployed to the mobile platform for real-time application.

Keywords: deep learning; synthetic aperture radar (SAR); multi-scale detection; lightweight; depthwise
separable adaptively spatial feature fusion (DSASFF)

1. Introduction

The synthetic aperture radar (SAR) is an active observation system that can transmit
microwaves under all-weather, day and night conditions and use the reflected microwaves
from objects to generate high-resolution images, while acquiring data from targets in
multi-polarization, multi-band and multi-view angles. With the development of detection
technology, the application field of SAR ship detection is also expanding. In the military
field, it can complete the task of target detection and identification to provide strong
protection for the safety of country [1].In the civilian field, it is widely used in marine
fisheries management and marine resources exploration [2].

At present, the amount of obtained SAR image data is increasing, and the requirements
for the accuracy and real-time performance of the algorithm are further improved. In
addition, with the improvement of SAR image resolution and the development of ship
size diversification, greater challenges have been posed towards detection methods for
multi-scale tasks and high-speed requirements [3]. Currently, the existing methods for SAR
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ship target detection could be summarized into two categories: traditional methods and
deep learning-based methods.

The traditional method in the target detection based on gray features is the constant
false alarm rate (CFAR) [4] method. The CFAR completes the detection of the target pixel
by comparing the gray value of a single pixel with the discrimination threshold. Under
the premise of a certain false alarm rate, the discrimination threshold is determined by the
statistical characteristics of the background clutter. Traditional SAR image target detection
relies on experts’ priori knowledge and feature mainly through manual design, which
makes it difficult to obtain obvious and effective features of the targets, resulting in poor
robustness of traditional methods for target detection [5].

The deep learning-based methods can be divided into two types: one is the two-stage
detection method based on region proposals, and the representative methods are R-CNN [6],
Fast R-CNN [7], Faster R-CNN [8], etc.; the other type is the single-stage detection method
based on target regression from the whole image, and the typical methods are SSD [9],
YOLO [10] and FCOS [11], etc. Single-stage detection methods are generally faster, but less
accurate than two-stage methods.

The multi-scale detection problem of SAR ship targets has always been the focus of
research. Li et al. [12] used convolution with different dilation rates to adaptively enhance
the detection ability of multi-scale targets. Jimin Yu et al. [13] added a channel attention
mechanism in the feature pyramid networks (FPN) structure to enhance the multi-scale
information association in different channels. Xi Yang et al. [14] proposed the receptive
field increased module (RFIM), which uses pooling operations of different convolution
kernel sizes for splicing, and combines the structure of the self-attention mechanism to
enhance the expression of multi-scale feature information. Guo et al. [15] proposed a
CenterNet++ detection model based on the feature pyramid fusion module (FPFM), which
uses deformable convolution in the cross-layer connection and the downsampling part to
enhance the extraction of target features. Sun et al. [16] proposed the bi-directional feature
fusion module (Bi-DFFM) and is added after backbone based on YOLO. Bi-DFFM uses
both top-down and bottom-up paths for feature extraction, which improves the detection
performance of multi-scale ship targets. Xiong et al. [17] combined the 2-D singularity
power spectrum (SPS) and the 2-D pseudo-Wigner–Ville distribution (PWVD) to enhance
spatial information extraction and have high detection accuracy even at low signal–noise
ratios (SNR).

In addition, with the increasing real-time requirements in practical scenarios, the
lightweight detection model is also an important topic of recent research. Sun et al. [18] pro-
posed a lightweight fully-connected backbone network in the form of channel shuffle and
group convolution, which enhanced the connection between different groups while reduc-
ing the parameters of the network. Li et al. [12] redesigned the feature extraction network
in Faster-RCNN using the inception structure, reducing the depth and parameter amount
of the network and increasing the fusion effect of multi-scale features. Miao et al. [19]
improved the Resnet-50 by using Ghost Convolution module instead of the standard
convolution module to build lightweight backbone. Chen et al. proposed a lightweight
ship detector based on YOLOv3 (Tiny YOLO-Lite) and adopted network pruning and
knowledge distillation for less model volume [20].

Although deep learning-based methods have better performance when compared to
traditional methods, there are still some problems to be solved before it can be better put
into practical applications [21]. The main challenges are as follows. Firstly, the detection of
ship targets under complex backgrounds has been a difficult problem. Due to the imaging
mechanism of SAR, a certain amount of speckle noise will be generated, which has great
impact on targets (especially for near-shore ship targets and side-by-side docking targets),
resulting in more serious cases of missed detection and false alarms [22]. Secondly, the ship
targets in real scenes have multi-scale characteristics due to the volume size factor of the ship
itself and the influence of different SAR imaging resolutions. Especially, the detection of
small targets is more difficult for the reason that the small targets occupy fewer pixel blocks,
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and the feature pixels with target information are easily ignored in the down-sampling
feature extraction after several times, which eventually leads to high miss detection rate [23].
Thirdly, deep learning-based SAR detection method has become more and more popular,
but few works have considered the problem of practical application. Although many
scholars have introduced lightweight models based on YOLO, few have tested them on
mobile platforms with limited computing power. In real-world scenarios, where computing
power is limited, deep learning-based mobile development boards can simulate real-world
usage scenarios, so the results of testing with development boards are more meaningful.
Our algorithm will run on the mobile development board instead of the high performance
server. The complexity of the model directly affects the detection efficiency [24]. Therefore,
designing a lightweight detection algorithm with high-performance on mobile development
boards is extremely important for solving practical application problems.

Using the above issues into consideration, in this paper a lightweight multi-scale ship
detection algorithm (LMSD-YOLO) with excellent performance is proposed. First, the DBA
module is designed as a general lightweight unit to build the entire network model. The
DBA module has lighter structure and better convergence performance. Second, Mobilenet
with stem block (S-Mobilenet) is constructed as an improved backbone better feature
extraction with fewer parameters. Meanwhile, the depthwise separable adaptively spatial
feature fusion (DSASFF) module is proposed to adaptively calculate the weights of the
output feature layer with fewer parameters and enhance the detection of multi-scale targets
(especially for small targets). Finally, combined with the regression of angle regression and
distance loss, the loss function has been redesigned for better performance.

The main objectives of this paper are summarized as follows:

(1) We propose a single-stage detection model LMSD-YOLO with smaller model size and
better performance in both detection speed and accuracy, and complete the deploy-
ment of real-time detection on the NVIDIA Jetson AGX Xavier development board.

(2) In order to construct a lightweight detection model, we propose the DBA module, as
a basic lightweight feature extraction unit, for reducing the amounts of parameters
and accelerating model convergence.

(3) In order to enhance the detection performance of multi-scale ship targets, we propose
the DSASFF module for achieving feature fusion between different scale layers with
less calculation in convolution operations.

(4) In order to obtain more accurate regression anchors, we adopt the SIoU as a loss of
function for the training of the LMSD-YOLO. A benefit by the improvement of angle
regression and distance loss, is that the SIoU has a faster speed and better accuracy in
the convergence process of model training.

(5) We compare the LMSD-YOLO with six state-of-the-art detection models on three
datasets of SSDD, HRSID and GFSDD, the experimental results show the proposed
model is lighter and more accurate.

The following parts of the article are arranged as follows. Section 2 gives a detailed
introduction to our proposed model. Section 3 introduces the experimental detail. Section 4
presents the ablation experiments for each module. Section 5 completes the comparison
experiments with other state-of-the-art detection models. Section 6 concludes the paper
with a summary.

2. Methodology

The overview of the proposed LMSD-YOLO is shown in Figure 1 and includes three
parts: backbone, neck and prediction. Firstly, the backbone network is composed of Mobile-
neck modules and the stem block is placed in front of the backbone. Then, in the neck part,
since the path aggregation feature pyramid network (PAFPN) structure can convey the
semantic and location information of targets, the extraction ability of multi-scale targets
is strengthened. Finally, in order to enhance the multi-scale feature fusion, the DSASFF
module is added before the prediction head.
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Figure 1. Overall architecture of the proposed LMSD-YOLO.

2.1. DBA Module

Traditional convolution blocks usually adopt convolution (Conv) batch normaliza-
tion (BN) operation and the Leaky Relu (CBL) module for feature extraction, as shown in
Figure 2a. In order to obtain a more lightweight network model, we propose a lightweight
DBA module as a basic computing unit. The DBA module consists of depthwise sep-
arable convolution(DSC)module, BN operation and activate or not (ACON) activation
function [25], where the main source of computation is the convolution of the image fea-
tures, while the BN and activation function have very few parameters. The structure of
DBA module is shown in Figure 2b.

Figure 2. The detailed structure of the CBL module and DBA module: (a) structure of CBL module;
(b) structure of DBA module.

We replace the CBL module with the DBA module as a lightweight basic unit in the
backbone and neck of the model. Compared with the traditional CBL module, the DBA
module proposed in this paper is more lightweight. The DSC module is used to reduce the
overall computational load of the module, and the ACON family functions can effectively
prevent neuron death in the process of large gradient propagation. The structure of the
DSC module is shown in Figure 3.
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Figure 3. The structure of DSC module.

Compared with the traditional standard convolution operation, the DSC module
decomposes the entire convolution operation into two parts: depthwise convolution
(DWC) [26] and pointwise convolution (PWC) [27]. The calculation equation of DSC
module is denoted as:

Output = DSC(input) = PWC1×1

{
ConcatN

i=1[DWC3×3(xi)]
}

(1)

where xi represents the input features of each channel, ConcatN
i=1 represents the combination

of the feature maps in the channel dimension. Moreover, 3 × 3 and 1 × 1 represent the size
of the convolution kernel size used in calculating DWC and PWC, respectively.

In the DWC process, one convolution kernel is responsible for one channel, and
one channel is only convolved by one convolution kernel. The number of feature map
channels generated by this process is exactly the same as the number of input channels.
The operation of PWC is very similar to the traditional convolution operation, using a
1 × 1 × C convolution kernel. Therefore, the PWC operation will perform a weighted
summation of the feature map in the depth direction, and compress the feature map in the
channel dimension to generate new feature maps.

The Relu [28] activation function is widely used by most neural networks because of
its excellent non-saturation and sparsity. However, since the Relu activation function only
has a single form, it is difficult to converge the lightweight model during the training stage.
In this paper, we adopt a new activation function, ACON activation function, to enhance
the fitting and convergence of the model. The classification of ACON family activation
functions is shown in Table 1.

Table 1. Summary of the ACON family.

ηa(x) ηb(x) ACON Family Function Expression

x, 0 ACON-A fACON−A(x) = x · σ(βx)
x, px ACON-B fACON−B(x) = (1− p)x · σ[β(1− p)x] + px

p1x, p2x ACON-C fACON−C(x) = (p1 − p2)x · σ[β(p1 − p2)x] + p2x
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where ηa(x), ηb(x) represent the linear function factor. p, p1 and p2 represent the change
coefficient of the linear function, σ denotes the sigmoid activation function and β denotes
the connection coefficient of the two linear function factors.

In order to accurately describe the linear and nonlinear control of neurons in the
ACON activation function, the linear parameters p1 and p2, and the connection coefficient
β are added as learnable parameters to adaptively learn and update the activation function.
ACON-C avoids preventing neuronal necrosis by controlling the upper and lower bounds
of the activation function. The first derivative of fACON−C(x) is:

d
dx

[ fACON−C(x)] =
(p1 − p2)

(
1 + e−β(p1x−p2x)

)
+ β(p1 − p2)

2e−β(p1x−p2x))x(
1 + e−β(p1x−p2x)

)2 + p2 (2)

lim
x→∞

d fACON−C(x)
dx = p1

lim
x→−∞

d fACON−C(x)
dx = p2

(3)

Equation (3) calculates the magnitude of the upper and lower bounds of the first-order
derivative of ACON-C. When x tends to positive infinity, the gradient is p1. While x tends
to negative infinity, the gradient is p2.

Then, calculating the second derivative of fACON−C(x) is shown as follows:

d2

dx2 [ fACON−C(x)] =
β(p2 − p1)

2eβ(p1−p2)x
(
(β(p2 − p1)x + 2)eβ(p1−p2)x + β(p1 − p2)x + 2

)
(
eβ(p1−p2)x + 1

)3 (4)

By making Equation (4) equal to 0, the upper and lower bounds of the first derivative
are calculated as follows:

max
(

d
dx [ fACON−C(x)]

)
≈ 1.0998p1 − 0.0998p2

min
(

d
dx [ fACON−C(x)]

)
≈ 1.0998p2 − 0.0998p1

(5)

As can be seen by Equation (5), the upper and lower bounds for ACON are both
related to p1 and p2. Since p1 and p2 are the learnable parameters, a better performing
activation function can be obtained during network learning. In this paper, ACON-C is
adopted as the activation function, and the implementation process is shown in Table 2:

Table 2. ACON-C activation function implementation process.

ACON-C Activation Function Implementation Process

1. Create learnable parameter vectors and randomly initialize p1, p2;
2. Calculate the mean value of the input features in the channel dimension and the width

dimension at the same time;
3. Send the output from the Step 2 through two convolution layers, all pixels in each channel

share their weights;
4. Use the sigmoid activation function to activate the output from the Step 3 to obtain β;
5. Calculate the ACON-C activate function according to Table 1.

2.2. Improved Mobilenetv3 Network

In LMSD-YOLO, the backbone of CSPDarknet53 [29] in standard YOLOv5s is replaced
by S-Mobilenet. Compared with the CSPdarknet53, the S-Mobilenet has fewer parameters
(only 6.2% parameters of the CSPdarknet53) and better feature extraction performance. The
structure and parameter settings of S-Mobilenet are shown in Table 3.
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Table 3. The detailed structure of S-Mobilenet, where SE means the squeeze-and-excitation module,
NL stands for the type of activation function.

Input Mod Stride Kernel Hidden Output SE NL

640 × 640 × 3 Stem block 2 3 - 16 × ACON-C
320 × 320 × 16 Mobile-neck 2 3 16 32

√
Relu

160 × 160 × 32 Mobile-neck 2 3 72 128 × Relu
80 × 80 × 128 Mobile-neck 2 5 96 64

√
ACON-C

40 × 40 × 64 Mobile-neck 1 5 240 128
√

ACON-C
40 × 40 × 128 Mobile-neck 2 3 120 256

√
ACON-C

40 × 40 × 256 Mobile-neck 2 3 288 512
√

ACON-C

The detailed structure of the stem block consists of maxpooling and convolution
operations, shown as Figure 4. Convolution operation can only obtain the local feature
information of the target, which reduces the description of the input global features. There-
fore, a new branch of maxpooling (the kernel size and the stride are both set to 2) is added
to enhance the extraction of global feature information without producing new parameters.
In order to completely retain the global and local information, the feature maps of the two
branches are concatenated in the channel dimension, meanwhile 1 × 1 Conv is adopted to
fuse the spatial information and adjust the output channels.

Figure 4. The structure of stem block.

The MobileNet network is a popular lightweight network proposed by Google in
2017 [30], which has been widely used in the field of computer vision as a mainstream
lightweight network, and has achieved excellent results. Mobilenetv3 [31] was proposed
by A. G. Howard et al. in 2019. The Mobilenetv3 network consists of a stacked set of block
modules, and the structure of the Mobile-neck block is shown in Figure 5.

Figure 5. The structure of Mobile-neck in Mobilenetv3.

In Figure 5, the DSC module is adopted to reduce the computational complexity of the
model, so that the number of groups in the network is equal to the number of channels.
Mobilenetv3 adopts an inverted residual structure after the depthwise filter structure. Since
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the SE structure introduces a certain number of parameters and increases the detection time,
Howard et al. [31] reduced the channel of the expansion layer to 1/4 of its original size. In
this way, the authors of Mobilenetv3 found the accuracy is improved without increasing
the time consumption. In the last layer of the block, 1 × 1 Conv is used to fuse the feature
layers of different channels to enhance the utilization of feature information in the spatial
dimension. At the same time, ACON-C is used instead of the h-swish function, which
further reduces the computational cost.

2.3. DSASFF Module

Generally, the detection performance of the target is improved by constructing complex
fusion mechanisms and strategies, such as the dense structure, but the complex structure
also brings more parameters, resulting in low detection efficiency [32]. In addition, feature
layers of different scales have different contribution weights during fusion. At present,
most multi-scale feature fusion strategies are 1:1 fusion according to the output, thus
ignoring the difference of target features at different scales, and increasing unnecessary
computational overhead.

In order to improve the detection ability of multi-scale targets, the DSASFF module is
introduced to enhance the feature expression ability of multi-scale targets. The structure of
the DSASFF module is shown in the Figure 6.

Figure 6. The detailed structure of DSASFF module.

The DSASFF module is embedded between the neck and prediction part, and the three
scale feature outputs of the neck part are used as the input of the module. The input feature
map is set to level l(l ∈ 0, 1, 2) according to the scale, and its corresponding feature layer
is named xl . In this paper, according to the size of input images and the SAR ship targets,
level 0, level 1 and level 2 are set to 128, 256 and 512, respectively. For the up-sampling
operation on x0, first we use the DSC operation with a kernel size 1 × 1 to compress the
number of feature map channels to the same as x1, and then double the size of the feature
map by interpolation. A downsampling operation is performed on the feature layer of x2,
using a two-dimensional maximum pooling (MaxPool2d) operation, and then the number
of channels is unified by adopting a DSC operation with the kernel size 3 × 3 and the
stride 2. The output of DSASFF module is denoted as:

out = αl · x0→l + βl · x1→l + γl · x2→l (6)

where out represents the output feature map of the l level, α, β, γ correspond to the
learnable weight parameters in the feature maps of the l− 1, l and l + 1 layers, respectively,
which are obtained by applying DSC module as follows.

[α, β, γ] = DSC[x0, x1, x2] (7)
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The range of these parameters is compressed between [0, 1] by SoftMax, and the
relationship between the three parameters is satisfied by Equations (8) and (9):

αl + βl + γl = 1 (8)

αl =
eλl

α

eλl
α + eλl

β + eλl
γ

(9)

The definitions of three parameters λα, λβ and λγ in Equation (9) can be obtained by
computing the parameters in SoftMax when updating the network by back propagation
method. The strategy of the DSC module makes the convolution process more efficient.
Meanwhile, the DSASFF module not only has multi-scale feature extraction capability, but
also reduces a lot of repeated redundant computation.

2.4. Loss Function

SCYLLA-IoU (SIoU) [33] is used as the loss function for bounding box regression.
Compared with CIoU, DIoU and GIoU, SIoU considers the matching angle direction and it
makes the box regress to the nearest axis (x or y) faster. SIoU loss is defined as:

L = WboxLbox + WclsLcls (10)

where Lbox is box regression loss, Lcls is focal loss, and Wbox, Wcls represent box and
classification loss weights respectively.

The Lbox is further defined as:

Lbox = 1− IoU +
Ldis + Lshape

2
(11)

where IoU represents intersection over union loss, Ldis and Lshape denote distance loss and
shape loss, respectively. The IoU loss represents the intersection ratio of the predicted box
and the ground truth, which is defined by:

IoU =

∣∣B ∩ BGT
∣∣

|B ∪ BGT |
(12)

The mechanism of angle regression is introduced in SIoU and the schematic diagram
of border regression is shown in Figure 7.

Figure 7. Bounding box regression model.

Where B and BGT are the predicted bounding box and ground-truth box. α, β are the
angles with the horizontal and vertical directions, respectively. σ represents the distance
between the center of B and BGT . Cw and Ch denotes the length and width.
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The direction of the regression of the prediction box is determined by the size of the
angles. In order to achieve this purpose, we adopt the following strategy for optimizing
the angle parameter θ,

θ =

{
α, α ≤ π/4

π/2− β, else
(13)

The angle loss (Langle) is calculated by Equations (14)–(17):

Langle = 1− 2 ∗ sin2(arcsin(x)− π/4) (14)

x =
ch
σ

= sin(θ) (15)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2
(16)

ch = max
(

bgt
cy , bcy

)
−min

(
bgt

cy , bcy

)
(17)

Combined with the Langle above, the distance loss Ldis is redefined and calculated by
Equations (18)–(21):

Ldis = ∑
t=x,y

(
1− e−γρt

)
(18)

ρx =

(
bgt

cx − bcx

cw

)2

(19)

ρy =

(
bgt

cy − bcy

ch

)2

(20)

γ = 2− Langle (21)

where ρx, ρy represent the normalized distance errors in the x or y directions respectively.
Ldis is also positively related to the size of θ. Considering that the shape of the prediction
box also affects the accuracy of the matching, Lshape is calculated as:

Lshape = ∑
t=w,h

(
1− e−ωt

)θ (22)

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
(23)

ωh =

∣∣h− hgt
∣∣

max(h, hgt)
(24)

where ωw, ωh represent the normalization coefficients in the horizontal and vertical di-
rections, respectively, and their definition is expressed as Equations (23) and (24). θ is
used to control how much attention is paid in the shape cost. In this paper, θ is set as
4 on three datasets by referring to Gevorgyan’s suggestion [33] and our own experimental
analysis results.

2.5. Network Complexity Analysis

Time complexity and space complexity can be used to evaluate and analyze the
network model. Time complexity represents the time cost to run the model and is usually
measured in floating point operations (FLOPs).

The time complexity of the convolutional neural network (FLOPsnet ) can be ob-
tained by:

FLOPsnet =
N

∑
l=1

M2
l · K

2
l · Cl−1 · Cl (25)
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where Ml represents the size of the output feature map of the l–th layer, and Kl represents
the area of the convolution kernel. N is the depth of the network, and l is the number of
current convolutional layers. Cl represents the number of output channels of the l–th layer.

The time complexity determines the training and testing time of the model and is the
main factor for the real-time performance. Space complexity refers to the total amount
of forward propagation and memory exchange completed by the network model, which
can be measured by the total number of model parameters (Model_Params). The space
complexity of the network model can be divided into two parts: the weight parameters
(Weight_Params) and the output feature parameters (Feature_Params) by each layer, i.e.,

Model_Params = Weight_Params + Feature_Params (26)

The Weight_Params represents the sum of the weight parameters corresponding to
each layer in the model. The Feature_Params refers to the computational parameters caused
by the input feature map. The calculation process of Weight_Params and Feature_Params
are shown in Equations (27) and (28).

Feature_Params =
N

∑
l=1

M2 · Cl (27)

Weight_Params =
N

∑
l=1

K2
l · Cl−1 · Cl (28)

Convolution is an essential operation for the network to complete feature extraction,
and the calculation amount (FLOPsCONV ) of the standard convolution module can be
expressed as:

FLOPsCONV = Cin · Cout · K2 ·M2 (29)

where Cin is the number of input channels and Cout is the number of convolution output by
the module. DSC can reduce parameters compared with standard convolution operation,
especially in the backbone network that uses a large number of standard convolution,
the effect of reducing parameters is more obvious. The calculation amount of the DSC
(FLOPsDSC ) operation can be calculated by Equation (30):

FLOPsDSC = Cin · K2 ·M2 + Cin ·Cout · K2 (30)

The ratio of the computational effort of DSC operation and standard convolution is
calculated by Equation (31):

FLOPsDSC

FLOPsCONV
=

Cin · K2 ·M2 + Cin ·Cout · K2

Cin · Cout · K2 ·M2 =
1

Cin
+

1
K2 (31)

When we process the input image, the number of input channels (Cin) is generally
relatively much larger than kernel size (K), so the ratio of the FLOPsDSC and FLOPsCONV is
further reduced. In addition, we perform a computational analysis of the proposed DSASFF
module. Two convolution operations are used for the input features to complete the feature
extraction and the corresponding weight value calculation respectively. Then the input
feature map is multiplied with the weight values to obtain the output features. Therefore,
the calculation amount of DSASFF module (only considering the complex calculation effect
brought by the convolution operation) can be expressed as

FLOPsDWASFF = FLOPsfeature · FLOPsweight =
(

Cin · K2 ·Ml
2 + Cin ·Cout · K2

)2
(32)

where FLOPsfeature and FLOPsweight represent the calculation amount of feature extraction
and the calculation amount of weight value, respectively, and both of are calculated by the
DSC module.
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Compared with the standard ASFF module [34], the DSASFF module proposed in this
paper can reduce the calculation amount of each layer when the convolution kernel size
remains unchanged, which greatly reduces the overall calculation complexity of the model.

3. Experiments

In order to truly reflect on the scenarios of model deployment and operation, we set
up a training platform and a testing platform to complete the training and testing tasks for
multiple sets of datasets. In the training platform, we used a high-performance graphics
host with 1080ti GPU to complete training on different datasets. Then we used the NVIDIA
Jetson AGX Xavier mobile development board as the platform to deploy the model and
make an accurate evaluation [35].

3.1. Experimental Platform
3.1.1. Training Platform

The experimental training platform is based on the high performance host with Intel
Core I7-8700K CPU, 32GB RAM for DDR4 3200MHz, NVIDIA GTX1080ti (11GB) GPU and
the operating system is Ubuntu 20.04 LTS. PyTorch 1.8.0 based on Python 3.7 was used
as the development language; moreover, CUDA 10.2 and cuDNN 7.6.5 were adopted to
accelerate training on the GPU device. The trained model was transplanted to the NVIDIA
Jetson AGX Xavier development board for the detection speed test.

3.1.2. Testing Platform

For the testing part of the experiment, we used NVIDIA Jetson AGX Xavier as the
development board to achieve ship detection on the mobile device. NVIDIA Jetson AGX
Xavier has 512 CUDA processors based on Volta architecture for accelerated visual image
processing calculations, 8-core CPU and 32G LPDDR4x memory. Meanwhile, NVIDIA Jet-
son AGX Xavier features the characteristics of high performance, low power consumption,
large memory bandwidth, etc., which is very suitable for mobile equipment to complete
the analysis and processing of a large volume of data. We adopted the NVIDIA JetPack
SDK based on the ARM architecture as the development environment to install necessary
dependencies such as PyTorch, OpenCV and CUDA10.1.

3.2. Datasets

In order to verify the reliability and robustness of the proposed model in this paper,
test and verification experiments were carried out on three datasets (SSDD, HRSID and
GFSSD) with different slice resolutions. The detailed parameters of the datasets are shown
in Table 4.

Table 4. Partial details of three datasets.

Datasets SSDD HRSID GFSSD

Image numbers 1160 5604 1238
Ship Numbers 2551 16,965 3302

Image Size 500 × 500 800 × 800 1000 × 1000

Scenes in_shore, off_shore, multi_scale targets, different levels of noise

In our experiments, the label files of the original datasets based on VOC format were
converted to the txt label files required by YOLOv5, which is convenient for subsequent
training and testing. Inspired by relevant research [12,13,23], the training set and testing
set of the three datasets were randomly divided with a ratio 8:2.

3.2.1. SSDD

The SAR ship detection dataset (SSDD) [36] is widely used for testing of the detection
model, and it mainly consists of 1160 images and a total of 2456 ship targets, provided
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by Sentinel-1, TerraSAR-X and RadarSat-2 satellites. The image size in the dataset was
500 × 500, the distance resolution was 1~15m, and multiple polarization modes and many
complex sea scenes were included. Figure 8a shows the distribution of ship target length
and width information on SSDD.

Figure 8. Ship scale information on three datasets: (a) distribution of ship targets ship on SSDD;
(b) distribution of ship targets on HRSID; (c) distribution of ship targets on GFSSD.

3.2.2. HRSID

The high-resolution SAR images dataset (HRSID) [37] is a public dataset released by
Su Hao from the University of Electronic Science and Technology of China in January 2020,
and it is mainly used for ship detection, semantic segmentation and instance segmentation
tasks in high-resolution SAR images. The dataset was collected by Sentinel-1 and TerraSAR-
X, satellites, with a total of 5604 images and 16,965 targets. The resolution of the images
in the HRSID dataset was 800 × 800. The ship target information in HRSID is depicted in
Figure 8b.

3.2.3. GFSSD

In this paper, we established a multi-scale SAR ship dataset with a more balanced data
distribution-GaoFen3 SAR-ship Detection Dataset (GFSDD). GFSDD was collected from
the GaoFen3 satellite. The imaging mode was the Sliding Spotlight (SL), and the distance
resolution was between 1.7 m and 3 m. The dataset contains many scenarios such as near
shore, far sea, multi-scale targets and high noise. There are a total of 1238 images in GFSDD
(containing a total of 3302 ship targets) and the size of each image is 1000 × 1000. Figure 8c
shows the distribution statistics of ship target length and width information in GFSDD.

Compared with the other two public datasets, it can be seen from Figure 8 that the
GFSDD dataset has a more balanced distribution of ship targets with different scales.

3.3. Experimental Details

Since the structure of LMSD-YOLO is based on YOLOv5s, we adopted the experimen-
tal results of YOLOv5s as the baseline. In the training stage, the initial learning rate was set
to 0.01, and the optimization method was stochastic gradient descent (SGD). The batch size
was set to 16, and the k-means clustering was used to obtain multi-scale anchors which
match the different datasets. In the testing stage, the threshold of NMS was set to 0.45, and
the confidence threshold was set to 0.25. We also set the input image size as 800 × 800 in
HRSID, 512 × 512 in SSDD, and 1024 × 1024 in GFSSD, respectively.

3.4. Evaluation Indices

In this paper, precision (P), recall (R) and mean average precision (AP) were used as
the evaluation indicators of our proposed model. The precision represents the percentage
of ships detected correctly in all detection results, and the recall represents the percentage
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of ships detected correctly in the ground truth. The calculation of precision and recall are
as follows:

P =
TP

TP + FP
(33)

R =
TP

TP + FN
(34)

where TP (true positive) is the number of ship targets detected correctly, FP (false positive)
is the number of ship targets detected incorrectly, and FN (false negative) is the number of
ship targets that were missed. The AP is the average of the accuracies obtained for IoU at
0.05 intervals between 0.5 and 0.95 and can be calculated by using both precision and recall:

AP =
∫ 1

0
P(R)dR (35)

where P denotes the precision, and R denotes the recall. In order to better evaluate the
performance of the model on the development board, we also calculate frames per second
(FPS), model parameters and floating-point operations per second (FLOPs). The FPS is
defined as:

FPS = 1/T (36)

where T is the detection time for a single image. FPS represents the number of detected
images per second on the test platform (the average frame rate in the validation datasets).
Both model parameters and FLOPs reflect the complexity of the model.

4. Results
4.1. Effect of DBA Module

The DBA module maintains the structure of the traditional convolutional feature
extraction unit, and reduces the number of module parameters while ensuring good feature
extraction capability. Table 5 shows the comparison results of parameter amounts using
DBA and CBL under different input conditions.

Table 5. Parameters for DBA module and CBL module in backbone and neck parts.

Module Type Backbone Params (M) Neck Params (M)

CBL 4.73 2.85
DBA 3.86 1.93

The training process on three datasets using the DBA module is also analyzed, as
shown in Figure 9.

Figure 9. The training process of the four methods (YOLOv5s, YOLOv5s-DBA, LMSD and LMSD-
DBA) on three datasets: (a) training results on SSDD dataset; (b) training results on HRSID dataset;
(c) training results on GFSSD dataset.
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From Figure 9, it is seen that using the DBA module can speed up the lightweight
model convergence. The experiments were completed by using YOLOv5s and LMSD-
YOLO respectively, and the results show that the use of the DBA module accelerated the
convergence of the model to a certain extent. The AP tends to be flat and stable in about
100 epochs on the SSDD and HRSID datasets and about 110 epochs on the GFSDD dataset
when the DBA module is involved. By contrast, after using the DBA module, the AP starts
to converge in 40 epochs (speed up about 60%) on the SSDD and HRSID datasets, while
80 epochs (speed up 28%) on the GFSDD dataset. Table 6 shows the results of the test
performance with and without DBA module. From Table 6, it can be found that YOLOv5s
with DBA module can achieve a lighter model with 6.5 M Params and 13.8 G FLOPs (0.7 M
reduce of Params and 2.9 G decrease of FLOPs when compared with YOLOv5s without the
DBA module).

Table 6. The test performance for YOLOv5s and LMSD with and without DBA module on SSDD.

Modules P R AP Params (M) FLOPs (G)

YOLOv5s 95.3 94.6 96.3 7.2 16.7
YOLOv5s-DBA 94.9 94.3 96.1 6.5 13.8

LMSD 95.8 92.4 97.2 5.3 7.9
LMSD-DBA 96.5 94.1 98.0 3.5 6.6

4.2. Effect of S-Mobilments Module

Table 7 shows the experimental results under different backbone networks based
on YOLOv5s. In this paper, compared with the three mainstream backbone networks
of Darknet53, CspDarknet53 and Mobilenetv3, the proposed S-Mobilenet has the fewest
model parameters (reducing 95.3% compared to Darknet53 and 58.7% with CspDarknet53),
and the computational FLOPs is only 5.5 G. Meanwhile, the S-Mobilenet has approximately
improved by 0.4% in precision and makes a 0.9% improvement in AP over Mobilenetv3
with fewer parameters. It also confirms that the ability to extract feature from the target
is enhanced.

Table 7. The performance comparison of different backbone structures. All tests use YOLOv5s as the
test framework on the SSDD dataset.

Backbone P R AP Params (M) FLOPs (G)

Darknet53 93.2 95.8 94.5 61.9 156.3
CspDarknet53 95.3 94.6 97.4 7.2 16.5
Mobilenetv3 94.8 95.2 96.7 3.7 6.4
S-Mobilenet 95.1 94.3 97.8 2.9 5.5

4.3. Effect of DSASFF Module

Table 8 shows the performance of different feature fusion structures. We mainly selected
the mainstream feature fusion modules of FPN, BiFPN, PANet and ASFF for comparison.

Table 8. The performance comparison of different feature fusion structures (all tested in SSDD).
Weight volume (M) denotes the size of the model weights after training. FPS is used to describe the
detection speed, measured in the NVIDIA Jetson AGX Xavier development board.

Neck Method P R AP Params
(M)

FLOPs
(G)

Weight
Volume (M) FPS

FPN 95.0 91.8 95.3 7.2 15.9 12.1 36.3
BiFPN 96.7 93.6 96.5 8.7 18.9 17.6 32.1
PANet 96.3 92.0 96.1 7.8 16.5 14.4 35.6

FPN + ASFF 97.5 92.4 97.4 12.6 25.0 25.4 30.7
FPN +

DSASFF 96.9 94.1 97.2 8.0 16.9 14.9 34.8
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The DSASFF module can be seen to have lighter model parameters (with 8.0 M
Params and 16.9 G FLOPs), which means that a reduction of 36.5% in Params and 32.4% in
FLOPs is achieved when compared with the ASFF on YOLOv5s directly. Through the
demonstration of experiments, the DSASFF module can reduce the parameters’ expansion
as much as possible (reduced 10% compared with BiFPN and 54% compared with ASFF),
while enhancing the detection accuracy, indicating the effectiveness of the lightweight
network structure of the designed DSASFF module.

5. Discussion

In order to evaluate the performance of LMSD-YOLO, the six indicators: Params,
FLOPs, FPS, P, R, AP, were considered on three datasets: SSDD, HRSID and GFSSD. The
input images of three datasets were adjusted to 640 × 640. The Params and FLOPs were
obtained on the computer with 1080ti GPU, while FPS can be calculated on the NVIDIA
Jetson AGX Xavier development board. Table 9 compared the experience results of LMSD-
YOLO with six other state-of-the-art methods.

Table 9. Comparison of experimental results with six other state-of-the-art methods on SSDD, HRSID
and GFSSD. The best result is marked in bold.

Method
Params

(M)
FLOPs

(G) FPS
Weight

Volume (M)
SSDD HRSID GFSSD

P R AP P R AP P R AP

Faster R-CNN
[10] 41.4 134.4 6.9 320.2 78.8 92.3 89.1 67.2 90.5 67.6 87.2 80.5 85.6

FCOS [24] 32.1 126.0 15.8 127.8 84.2 92.6 89.5 62.9 86.1 72.7 87.6 82.3 86.8
CenterNet [25] 16.5 72.5 20.9 88.3 83.3 94.3 89.1 65.3 91.3 68.6 86.5 81.1 84.7
SSD-512 [11] 24.3 87.72 18.1 97.2 92.9 88.0 94.1 80.1 83.0 81.5 88.4 85.7 89.2
YOLOv3 [14] 61.9 156.3 16.4 123.6 91.2 92.4 92.5 83.7 83.5 84.3 89.5 84.4 88.6

YOLOv5s 7.2 16.7 35.6 14.4 95.3 94.6 96.3 94.7 89.4 92.6 89.8 87.3 89.0
LMSD-YOLO 3.5 6.6 68.3 7.6 96.5 94.1 98.0 92.7 86.6 93.9 92.3 87.5 91.7

As shown in Table 9, the proposed LMSD-YOLO method has the least model param-
eters and weight volume and obtains the fastest detection speed (reached 68.3 FPS) in
real-time detection. Compared with the baseline method, the LMSD-YOLO has a great
improvement in AP (from 96.3% to 98.0% on SSDD, from 92.6% to 93.9% on HRSID and
from 89.0% to 91.7% on GFSSD) while the model parameters are only half of the YOLOv5s.
The improvement in detection accuracy is attributed to the stem block and DSASFF module
in LMSD-YOLO, which strengthen the extraction of multi-scale ship target features and
reduce a large number of false alarm rates.

The effectiveness of the proposed LMSD-YOLO for small and multi-scale ship tar-
gets in real scenes is verified on SSDD and HRSID datasets. We conducted comparison
experiments with the three methods: Faster-RCNN, SSD and YOLOv5s, and the results are
shown in Figures 10 and 11.

Figure 10 shows the detection results in two scenarios selected from the SSDD dataset,
where scenario 1 contains inshore ship targets and scenario 2 includes small ship targets.
The green anchors represent the ground truth of ship targets, the purple anchors denote the
results by Faster-RCNN, the yellow anchors represent the results by SSD, the blue anchors
represent the results by YOLOv5s and the red anchors indicate the detection results by
LMSD-YOLO.

As shown in scenario 1 (a1) of Figure 10, compared with other models, the LMSD-
YOLO can accurately detect inshore and small ship targets which are hidden between ships
with a higher confidence. In scenario 2 (a2) of Figure 10, the detection results based on
Fast-RCNN (b2) and SSD (c2) cannot accurately detect the multi-scale ship targets and
produce false alarm targets at the edge of the land. In the detection results of YOLOv5s
(d2), although the targets are accurately detected, the method proposed in this paper (e2)
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has higher confidence in all targets, with an average improvement of 6% and a maximum
improvement of 10%.

Figure 10. Visual detection results on SSDD datasets, (a1) and (a2) denote ground truth of targets,
(b1) and (b2) are detection results on Faster-RCNN, (c1) and (c2) are detection results on SSD,
(d1) and (d2) are detection results on YOLOv5s, (e1) and (e2) represent detection results on LMSD-
YOLO, respectively.

Figure 11 shows the detection results in two scenarios selected from the HRSID dataset,
where scenario 3 consists of multi-scale offshore ship targets with pure sea background and
scenario 4 includes small inshore ship targets in river course.

In scenario 3 (a1) of Figure 11, the results show our proposed model can detect all
targets accurately, while all the other three models have missed detections for small targets.
In scenario 4, because of complex background and small ship targets, one ship target
is missed at the edge of the whole image and one small ship target failed detection in
Figure 11(b2,c2,d2). The confidence of the detected targets is low using the other three
methods (including Fast-RCNN, Fast-RCNN and YOLOv5s). However, the proposed
model in this paper has no missed or failed detection and has higher confidence than
other methods.
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Figure 11. Visual detection results on HRSID datasets. (a1) and (a2) denote ground truth of tar-
gets, (b1) and (b2) denote detection results on Faster-RCNN, (c2) and (c2) are detection results on
SSD, (d1) and (d2) are detection results on YOLOv5s, (e1) and (e2) represent detection results on
LMSD-YOLO.

6. Conclusions

In order to solve problems of multi-scale SAR ship target detection and inefficient op-
eration of deployment on the mobile devices, this paper proposed a lightweight algorithm
for the fast and accurate detection of multi-scale ship targets. The proposed algorithm was
deployed on the NVIDIA Jetson AGX Xavier development board and the ability of real-time
detection was also evaluated. Specifically, the DBA module is used as the basic unit of the
model to construct the entire model structure, and strengthen the convergence capabilities
of the lightweight model with fewer parameters. Meanwhile, the S-Mobilenet module
is proposed as the backbone to compress the amount of model parameters and improve
the feature extraction ability. In view of the multi-scale characteristics of ship targets, the
DSASFF module was proposed and added before the prediction head to learn the different
scale features’ information adaptively with fewer parameters. Experiment results on SSDD,
HRSID and GFSSD datasets show that the LMSD-YOLO can achieve the highest accuracy



Remote Sens. 2022, 14, 4801 19 of 20

with the smallest model parameters when compared with other state-of-the-art methods.
In addition, the LMSD-YOLO can meet the requirements of real-time detection.

Our algorithm is currently tested on small scene slices, and there are still difficulties
in implementing target detection directly from large-scale SAR images. In the future, an
end-to-end lightweight target detection algorithm will be designed in combination with
the SAR image segmentation algorithm to enhance the applicability.
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