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Abstract: Tropical cyclones (TCs) are destructive natural disasters. Accurate prediction and monitor-
ing are important to mitigate the effects of natural disasters. Although remarkable efforts have been
made to understand TCs, operational monitoring information still depends on the experience and
knowledge of forecasters. In this study, a fully automated geostationary-satellite-based TC center
estimation approach is proposed. The proposed approach consists of two improved methods: the
setting of regions of interest (ROI) using a score matrix (SCM) and a TC center determination method
using an enhanced logarithmic spiral band (LSB) and SCM. The former enables prescreening of the
regions that may be misidentified as TC centers during the ROI setting step, and the latter contributes
to the determination of an accurate TC center, considering the size and length of the TC rainband in
relation to its intensity. Two schemes, schemes A and B, were examined depending on whether the
forecasting data or real-time observations were used to determine the initial guess of the TC centers.
For each scheme, two models were evaluated to discern whether SCM was combined with LSB for
TC center determination. The results were investigated based on TC intensity and phase to determine
the impact of TC structural characteristics on TC center determination. While both proposed models
improved the detection performance over the existing approach, the best-performing model (i.e.,
LSB combined with SCM) achieved skill scores (SSs) of +17.4% and +20.8% for the two schemes. In
particular, the model resulted in a significant improvement for strong TCs (categories 4 and 5), with
SSs of +47.8% and +72.8% and +41.2% and +72.3% for schemes A and B, respectively. The research
findings provide an improved understanding of the intensity- and phase-wise spatial characteristics
of TCs, which contributes to objective TC center estimation.

Keywords: tropical cyclone; tropical cyclone tracking; geostationary satellite; spiral band fitting

1. Introduction

A tropical cyclone (TC) is a large-scale atmospheric system caused by ocean–atmosphere
interactions. When a TC forms in the open ocean, it controls the heat and mass balance
between the ocean and atmosphere. Owing to its immense destructive power, a TC’s
landfall often results in a significant number of fatalities and economic losses [1,2]. Due to
the climatological and socioeconomic impacts of TCs, there has been a great deal of interest
in understanding their behavior [3]. However, ongoing climate change and anthropogenic
influences make TC behavior unpredictable, with varying TC occurrence frequencies,
changes in annual TC trajectory and location with changing lifetime–maximum intensity,
and an increase in the proportion of intense TCs over a lifetime [4–7]. To mitigate such
uncertainty, numerical–statistical approaches, which combine several numerical models
with near real-time observations, have been proposed. In particular, for 1–5-day forecasts,
an ensemble with geostationary-satellite-based operational observations improved the
model-based TC track forecast by 10% [8,9].
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There are two steps for tracking TCs using satellite data: (1) identifying the initial guess
location of a TC and (2) specifying the precise center of the TC. There are several methods
for identifying the initial location of a TC in satellite images, including manual delineation,
use of forecasting data, and use of the best track previously reported. Because TCs typically
have distinct spatial characteristics, such as rotating comma construction [10], it is relatively
easy to identify their approximate locations. Historically, manual identification of TC
locations from satellite data was used [10]. However, because manual identification is
operationally difficult for automated tracking of TCs, predictive fields of numerical models
and extrapolated fields based on previous TC tracks have been widely used to initially
estimate the location of TCs [11,12]. In the numerical-model- and extrapolated-location-
based TC center estimation algorithms, a real TC center is assumed to exist close to the
initial guess.

After estimating the initial position of a TC, its exact center should be determined.
There are two methods for determining a TC center: wind vector analysis and cloud pattern
recognition. While the former can determine the actual circulation center based on wind
vectors, it requires an active sensor system and is not suitable for TC monitoring using
geostationary satellite data with a high temporal resolution (e.g., hourly). The latter, on
the other hand, can be used with geostationary-satellite-based observations and is widely
used for operational TC center estimation systems. However, since there is no standardized
automated technique for determining a TC center using cloud pattern recognition, TC
center estimations are typically time-consuming and sensitive to the subjectivity of a
forecaster. Owing to the discrepancies in TC data resulting from such manual processes,
some researchers question the reliability of the best track determined by each regionally
specialized meteorological center [13]. To overcome these limitations, several automatic TC
center estimation techniques that use geostationary satellite data have been proposed.

Wimmers and Velden suggested automated rotational center hurricane eye retrieval
(ARCHER), which finds a TC center considering the ring shape and brightness temperature
(BT) gradient around a possible center area [14]. They utilized multifrequency microwave
imagery as well as geostationary data, such as infrared and visible channel images. Jaiswal
and Kishtawal [15] proposed a spiral feature extraction method that approximates the
logarithmic spiral function by extracting a spiral structure from the central dense overcast
region in infrared window (IRW)-channel-based TC images. Although the spiral structure
of a TC is readily identifiable in strong TC events, it is ineffective in weak or dissipating TCs.
Wei et al. [16] proposed a spiral-band model based on three-log spirals using IRW-based TC
images. The model was validated using TCs that formed in the western North Pacific (WNP)
in 2017, resulting in a mean absolute error of 0.35◦. However, because the parameters
for log spirals should be manually set for each TC image, this method is unsuitable for
operational use. Recently, Lu et al. [12] proposed a method for determining the TC center
using look-up-table-based spiral cloud belt matching (SCBeM). A TC cloud system (TCCS)
was extracted from visible and IRW channel images using a simple threshold approach, and
spiral template parameters were organized as a look-up table based on TC characteristics
such as TC intensity, size, and tail direction.

However, previous methods have some limitations: (1) they use numerical-model-
based forecasting of TC locations or extrapolated TC tracks to determine the region of
interest (ROI) for a TC center, which inherently includes uncertainty; (2) the fusion of
IRW and water vapor (WV) channels for objective TC center determination has received
minimal attention despite the potential of WV data for the identification of convective
cloud regions [17–20]; and (3) the current spiral-feature-based fitting approach identifies
TC-center-like regions by averaging the BTs matching the spiral-template-fitted region and
can incorrectly identify the strong convective region, such as TC outflows, as the TC center.

The purpose of this study is to investigate an advanced approach for TC center
estimation using both WV and IRW channel data collected by a geostationary satellite sensor.
Compared to previous research, the proposed method is novel in two aspects: (1) specifying
TC candidate regions (i.e., TC ROI) using operationally available satellite observations and
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(2) introducing an improved spiral-pattern-fitting-based TC center estimation algorithm
through an ensemble of WV and IRW channels. To reduce the uncertainty of the initial TC
location estimates, circle-in-circle templates that account for the spatial characteristics of a
TC according to intensity are proposed to identify the candidate region of the TC (i.e., ROI).
The improved logarithmic spiral band is then used to pinpoint the precise TC center region.
In this study, two schemes and two models for identifying the initial location of TCs and
determining their exact locations are evaluated. The detection results are evaluated based
on TC intensity and phase.

2. Data
2.1. Communication, Ocean and Meteorological Satellite Meteorological Imager

Meteorological Imager (MI) sensor data from the Communication, Ocean and Me-
teorological Satellite (COMS) were used to estimate TC centers. COMS, the first Korean
geostationary meteorological satellite, was launched in 2010. The MI sensor has five chan-
nels that observe the Earth every 15 min: four infrared channels with a spatial resolution
of 4 km, and one visible channel with a spatial resolution of 1 km (Table 1). In this study,
the WV (6.7 µm) and infrared-1 (10.8 µm, IR1) channels from 2011 to 2019 were used. The
spectral range of IR1 corresponds to the IRW band, which has been widely used for TC
observations [21–23]. Since the WV channel responds to the amount of mid- to high-altitude
WV and the IR1 channel responds to the cloud top’s coldness, these two channels have been
widely used for quantifying convective cloud regions [16,24–29]. Because of the obscurity
of the cirrus canopy, the combination of longwave infrared and WV channels contributes to
the determination of TC centers [30]. Figure 1 depicts the intensity of TCs observed via the
COMS WV and IR1 channels. While the regions with low BTs in the WV and IR1 channels
indicate deep convection [31], the spatial distributions varied with intensity: the stronger
the TC, the smaller the difference in BT between the two channels around the TC center.
Compared to the IR1 observations, the normalized BT lapse rates around the TC centers
were steeper for the WV observations (Figure 1c). The convection pattern was highlighted
by the large difference between the deep convective region and its surroundings.
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Figure 1. Intensity-wise tropical cyclones observed from Communication, Ocean and Meteorological
Satellite Meteorological Imager in 2017: typhoon NANMADOL with 50 kts wind speed (first row),
typhoon LAN with 90 kts wind speed (second row), and typhoon NORU with 115 kts wind speed
(third row). (a,b) show infrared-1- and water-vapor-channel-based images, respectively, and (c) rep-
resents the normalized brightness temperature distribution of the horizontal line with 101 pixels
(approximately 404 km; dotted lines in (a,b)) across the tropical cyclone center.
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Table 1. Specifications of the Communication, Ocean and Meteorological Satellite Meteorological
Imager sensor. Water vapor and infrared 1 channels were used for tropical cyclone center estimation
in this study.

Channel Wavelength
Range (µm)

Central
Wavelength (µm)

Spatial
Resolution (km)

Temporal
Resolution (min)

Visible 0.55–0.8 0.67 1

15

Shortwave Infrared 3.5–4.0 3.7

4
Water Vapor 6.5–7.0 6.7

Infrared 1 10.3–11.3 10.8

Infrared 2 11.5–12.5 12.0

2.2. Tropical Cyclone Track Data

For operational TC monitoring, an initial TC center estimate is essential. Two types of
initial guesses were employed in this study: (1) a TC center based on a numerical model
forecast and (2) the previously reported TC center location, normally 6 h prior. Real-time
TC warning and forecasting data from the Korea Meteorological Administration (KMA)
were used to compare these two initial estimates. When a TC developed in the western
North Pacific, real-time warnings were issued, based on radar and satellite observations.
Numerical model-based forecasts for the next five days were issued simultaneously. Both
datasets were released at 00:00, 06:00, 12:00, and 18:00 UTC, and the forecast data had
a temporal resolution of 24 h. They contained the location and sea-level pressure of a
TC center, maximum sustained wind speed of the TC, and radius or distance from the
TC center with wind speeds greater than 15 m/s (about 29.15 knots). Real-time warning
and forecasting datasets are available from the Meteorological Information Portal Service
System of the KMA (http://afso.kma.go.kr/) (accessed on 7 April 2021).

There are several TC categories based on their intensity. To evaluate the proposed
approach based on TC intensity, this study used the TC category by intensity, following the
standards of the KMA (Table 2).

Table 2. Intensity categorization of tropical cyclones according to the standard from the Korea
Meteorological Administration.

Category
Maximum Sustained Wind

m/s Knots (kts)

Category 1 17–25 34–48

Category 2 25–33 48–64

Category 3 33–44 64–85

Category 4 44–54 85–105

Category 5 54– 105–

3. Methods

The proposed TC center estimation model consists of two steps: (1) setting the ROI
and (2) TC center detection (Figure 2). In the first step, a square image containing a TC
system was segmented from raw satellite imagery using KMA-based forecasting data and
real-time track information (schemes 1 and 2). Then, clouds forming the TC with low BTs
were extracted to designate the TCCS, which enabled the establishment of parameters for
logarithmic spiral band (LSB) construction. Prior to matching the LSB to the TCCS, the
ROI was set using a score matrix (SCM), which was proposed to eliminate regions with
low probability of containing the center. In the second step, the TC center location was
determined according to two models (A and B). These processes were repeated for both
IRW and WV images, and the center location of the two-channel results was determined to

http://afso.kma.go.kr/
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be the final TC center. The estimation performance was evaluated using the joint typhoon
warning center (JTWC) best track as the reference data.
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3.1. Setting Region of Interest
3.1.1. Image Segmentation Using KMA-Based Tropical Cyclone Information

Our proposed approach consists of two schemes based on an initial guess of TC
location. Scheme 1 uses the KMA-forecasting track data released 6 h prior. Scheme 2 uses
the KMA-issued real-time track information for 6 h beforehand. Since the forecasting data
have a 24 h temporal resolution, they were interpolated into 6 h intervals to match the
real-time track. Based on the initial guess center, the candidate region of the TC center
was outlined before the ROI extraction. A different ROI range was used for each scheme,
owing to the difference between the two initial guesses. The ROI for scheme 1 (i.e., with
forecasting data) had a side length of 251 pixels (approximately 1004 km) based on the
initial guess location. Scheme 2 (i.e., with observation data) had a larger ROI with a side
length of 351 pixels (estimated 1404 km) at the initial center, considering its movement over
the past 6 h (Figure 3). The ROI size was based on the general coverage of TCs identified
in previous studies, and the size of a TC was determined as the radius of the area with
surface wind speed of 15 m/s or higher [32,33]. More than 92% of the TCs that occurred in
the WNP between the years 2000 and 2005 had radii of <4.5◦ (about 449 km) [34].

Figure 4 depicts the TCCS extraction procedure. In the delineated region, deep con-
vective areas with low BTs (<25% of the BT range in the region) were first identified.
Subsequently, small clusters of convective areas were eliminated with the exception of the
three largest clusters (Figure 4d). This process was repeated for all TC observations based
on the IR1 and WV channel images.
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Figure 3. Examples of interest regions according to the two schemes using Communication, Ocean
and Meteorological Satellite Meteorological Imager observations at 0600 UTC on 15 October 2017. The
blue circle is the tropical cyclone center predicted from Korea Metrological Association forecasting
reports at 0600 UTC on 15 October 2017 issued 6 h prior, and the red circle is the tropical cyclone
center observed at 0000 UTC on 15 October 2017. The blue and red dashed boxes are the interest
regions used for schemes 1 and 2, respectively.
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Figure 4. Pre-processing to extract a tropical cyclone cluster system (TCCS) using Communication,
Ocean and Meteorological Satellite Meteorological Imager sensor observation at 0600 UTC on 15
October 2017 as an example. (a) Brightness temperature (BT)-based infrared image observed from
Communication, Ocean and Meteorological Satellite Meteorological Imager. (b) Deep convective
region with a BT below the 25% quantile in the interest region. (c) Excluding the three largest clusters,
the orange-colored clusters represent small fragmented clusters. (d) The extracted TCCS.

3.1.2. Score Matrix

Prior to estimating the precise location of a TC center using LSB, it is necessary to
define the ROI within the TCCS. In this study, an SCM is proposed to quantify the degree
to which a region resembles the region surrounding a TC center, considering the spatial
characteristics and BT of the TC. A spatially TC-like template (hereafter referred to as the
spatial characteristic template (SCT)) and the region mask to the SCT (hereafter referred to
as the brightness temperature template (BTT)) are proposed to obtain the SCM.

The spatial characteristics of TCs vary with their intensity. Figure 5a depicts the plot
of normalized BT values across the center of the TCs by intensity category from the years
2011–2019. Based on this analysis, the BT distributions by distance from the TC center were
divided into five levels: R1, R2, R3, R4, and R5. Levels R1–R5 have approximate distances
of <6, 6–21, 21–34, 34–51, and 51 pixels from the TC center (1 pixel = approximately 4 km),
respectively. While BT decreased toward the TC center in categories 1 and 2, it tended
to be significantly elevated at R1, followed by a sharp decline at R2 and a subsequent
rise from R3 in categories 3–5. The very high BT region surrounding the center (i.e., R1)
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indicates TC eyes [35,36]. There are distinct BT distributions within R4 and R3 with respect
to weak and strong TCs, respectively. To generalize the intensity-wise spatial distribution
of TCs, two types of SCT were established: a gradient-descent circle-in-circle template with
radii of 6, 21, and 51 pixels in categories 1 and 2, and a gradient-descent circle-in-circle
template with the highest value in the central area having radii of 6, 21, and 34 pixels.
Because strong convection with a distinct spatial pattern occurs in a TC-center-like area, a
BT trend employing the same-sized template to the largest radius in the SCT was used; this
trend was designated the BTT. The SCT and BTT were convolved on the segmented TC
observation image to generate the matrices. Figure 5b shows the two types of SCT and BTT.
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Figure 5. Two spatial templates to calculate a score matrix, where (a) represents the morphologi-
cal characteristics around a tropical cyclone center by intensity category. To compare the spatial
distribution of the events, they were normalized into 0–1. The solid line in (a) shows a brightness
temperature (BT) trend in the infrared channel and the dashed line shows a BT trend in the water
vapor channel. (b) represents the templates for spatial characteristics and BT of a tropical cyclone
by intensity category. The size and value of each template are decided based on statistics across the
tropical cyclone center. R1–R5 (distance ranges from the tropical cyclone center) were determined
using α, β, γ, and δ, representing a distance of 6, 21, 34, and 51 pixels, respectively. Each pixel size
corresponds to approximately 4 km. The values of the spatial characteristic templates consist of (1,2,3)
and (4,2,3) toward the outside for intensity categories 1 and 2 and 3–5, respectively.

Using SCT- and BTT-based matrices, an SCM was extracted to specify an ROI, a
candidate region for determining the TC center. One is a correlation matrix containing
two-dimensional correlation coefficient values calculated between satellite observations
and SCT (referred to as CORRmat), and the other is a BT matrix containing an average of the
BT values included in the BTT (referred to as BTmat). CORRmat was normalized between
0 and 1, whereas BTmat was inversely normalized between 0 and 1. SCM is defined by
linearly combining the two matrices. The empirically determined coefficients of BTmat were
0.3 for a weak TC (categories 1 and 2) and 1.0 for a strong TC (categories 3–5), respectively.

Score matrix (SCM) =

{
CORRmat ∗ 1 + BTmat ∗ 0.3 (category ≤ 2)
CORRmat ∗ 1 + BTmat ∗ 1 (category ≥ 3)

(1)

A larger SCM value indicates a TC-center-like region. The ROI to apply LSB was
defined as the region containing the top 5% of the SCM values.
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3.2. Tropical Cyclone Center Determination
3.2.1. Logarithmic Spiral Band for Matching with the Tropical Cyclone Rain Band

A TCCS, as defined in Section 3.1.1, has distinct features, such as convective outflows,
a rain band with a significantly strong updraft surrounding the TC center, and divergence
from the center. The spiral patterns of cloud divergence around a TC center were organized
qualitatively by intensity [10,37], a method that has been widely used in the operational
analysis of TCs. To automate TC center detection, a logarithmic function was applied
to match the divergence pattern of a TC [12,38]. In this study, an improved LSB fitting
approach was proposed by fusing WV and IRW channels with KMA-based data, using the
spiral band fitting approach proposed by Lu et al. [12] as a benchmark.

LSB in a TCCS can be defined using a logarithmic spiral as follows:

x = (a − ω)ebγ cos(θ − l) + cx
y = (a − ω)ebγsin(θ − l) + cy

(2)

where x and y are the coordinates of the dots, which are the compositions of the LSB
template centered at (cx, cy). The parameters a andω determine the size and width of the
logarithmic spiral, respectively. Parameter b controls the direction of the logarithmic spiral
lines and θ and l control the angle and length of the LSB, respectively. The parameter γ
controls the distance from (cx, cy) and is empirically defined in the range of −4–+4. Because
it is challenging to set the circulation angle objectively, θ was applied in eight directions
ranging 0.125–1.875π at intervals of 0.25π in this study. Other parameters of the spiral line
(i.e., a,ω, b, and l) were defined depending on the intensity and size of the TC. The intensity
of a TC was classified into five categories according to its maximum sustained wind speed
(Table 2), and its size was determined by the TCCS area. If the ratio of the TCCS area to the
segmented region was less than 24%, the size was considered to be small (S). Similarly, the
medium (M) and large (L) sizes were empirically defined as ratios between 24% and 26%
and greater than 26%, respectively.

The LSB parameters were optimized based on the size of the TCCS and the intensity
of the TC estimated by the KMA observations or forecasts (Table 3). Lu et al. (2019)
proposed a spiral template with parameters suitable for their narrow ROI, defined as a
square area of side length 100 km centered at the predicted center location. However, it
was difficult to adhere to the previously proposed parameters because of the disparity in
the segmented Image and the ROI size between the present and previous studies. In this
study, the parameters were readjusted using a trial-and-error approach. The range of the
parameter values used in previous studies was first examined through manual verification.
Subsequently, several combinations of parameters were selected, and a random validation
set was used to determine the optimum set of parameters. Parameter a was tested with a
range of 20–28, andωwith a range from [0 10] to [0 15]. Parameter b was set to a tangent
of 10◦ (about 0.17) based on the assumption from Dvorak [37] that a rain band typically
has a 10◦ logarithmic spiral angle. Because the rain band length is closely related to TC
intensity, it was set using parameter θ, ranging from [0 2.5π] to [0 3.5π] with increasing
TC intensity [12]. The revised spiral template using the modified parameters was made
smaller and optimized to fit the eyewall of a TC. This prevents the misidentification of a
deep convective region, such as one that develops in the outflow of a TC, as a TC center.

3.2.2. Fitting Value for Identifying a Tropical Cyclone Center

By convolving an LSB template over the ROI, the fitting value matrix (Fmat) was
calculated to identify the convective region most similar to a TC center. In this study, two
Fmat extraction models were evaluated. In model A, Fmat consists of the BT averages over the
region where the TCCS and LSB overlap. In model B, Fmat is the linear combination of the
BT mean and SCM mean, which corresponds to the overlapped area between the TCCS and
LSB. While the method of model A has been widely used in previous studies [11,12,37], model



Remote Sens. 2022, 14, 4800 9 of 20

B can consider not only the BT tendency, but also the intensity-wise spatial characteristics
of a TC. For model A, Fmat was calculated using the following formula:

Fmat(ix, iy)=
∑ BT matching with LSB(ix,iy)

n
(3)

where BT matching with LSB(ix,iy) is the BT (K) of the pixels included in the LSB region and
n is the number of matched pixels. For model B, Fmat was calculated by additionally using
SCM values, excluding the dissipating TC cases for categories 1 and 2:

Fmat(ix,iy) =

{ ∑ BT matching with LSB(ix,iy)
n (category ≤ 2, when extinction)

∑ BT matching with LSB(ix,iy)
n − SCM(ix, iy)

(4)

where SCM(ix,iy) is the SCM value for each pixel. The rain band surrounding the TC
center has a colder and more uniform BT distribution than the outer region. Therefore, the
region with the lowest Fmat was most likely a TC center. Since the LSB was constructed in
eight directions, eight Fmats were created for each TC case. Among them, the pixel with
the lowest Fmat value was identified as the TC center for both the IRW and WV images.
Consequently, the final TC center was determined to be the midpoint between the two
center pixels.

Table 3. Parameters used for constructing an improved logarithmic spiral band.

Category Size a ω b l

Cat. 1
S
M
L

24
26
28

[0 13]
[0 14]
[0 15]

0.17 [0 2.5π]

Cat. 2
S
M
L

24
26
28

[0 12]
[0 13]
[0 14]

0.17 [0 2.5π]

Cat. 3
S
M
L

22
24
26

[0 11]
[0 12]
[0 13]

0.17 [0 2.75π]

Cat. 4
S
M
L

20
22
24

[0 10]
[0 11]
[0 12]

0.17 [0 2.75π]

Cat. 5
S
M
L

20
22
24

[0 10]
[0 11]
[0 12]

0.17 [0 3π]

3.3. Accuracy Assessment

The proposed TC center estimation models were evaluated using 190 TC cases reported
by the KMA from the years 2011–2019. The SCBeM was used as a control model to examine
the improvement of the proposed models. The SCBeM, recently proposed by Lu et al. [12],
also uses a spiral-pattern-fitting approach to determine TC centers. The comparison
confirmed the efficiency of the adjusted spiral template and SCM. To evaluate the two
models by the scheme, the median error (ME), mean absolute error (MAE), root mean
squared error (RMSE), and percentage of MAE less than 0.5◦ (P05) were used. To evaluate
the improvement in the performance of the proposed models compared with the control
model [12], the skill score (SS) was used.

MAE =
distance(y, ŷ)

n
(5)

RMSE =

√
1
n
× ∑ (distance(y, ŷ))2 (6)
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P05 = Proportion o f under 0.5◦ error (7)

SS =

(
1 − MAEmodel

MAEcontrol

)
× 100 (8)

where y indicates the TC reference center reported by the JTWC-based observation and
ŷ indicates the estimated center location using the proposed approach. The distance(y, ŷ)
indicates the distance error between the TC reference center and estimated center. SS was
considered an improvement of the proposed model compared to the control model pro-
posed by Lu et al. [12] (2019). MAEmodel is the proposed-model-based MAE and MAEcontrol
is the control-model-based MAE. While MAE and RMSE were used for general quantitative
evaluation of the models, P05 refers to the proportion of well-estimated cases where the
distance error was less than 0.5◦. MAE and RMSE are expressed in degrees. P05 is unitless,
ranging 0–1, whereas SS is expressed as a percentage. The LSB-based TC center estima-
tion approach relies on the structure of satellite-observed TCs, and, as a result, is highly
sensitive to their intensity [10,37,39,40]. Therefore, the results were examined according
to the intensity category (Table 2). In addition, the structure of a TC changes throughout
its developmental phases, even when its intensity remains constant. Consequently, the
proposed models were also evaluated by phase (i.e., development and extinction phases).
To evaluate the performance compared to the other automatic TC center estimation meth-
ods, ARCHER [11,14], which was operationally provided by the Cooperative Institute of
Meteorological Satellite Studies Group, was used. Since ARCHER utilizes the forecasting
information for the initial guess center determination, the scheme-1-based models were
compared to ARCHER. Because they provided their TC center estimation results for a short
period of time, a total of 97 observations for 17 typhoons from the years 2018–2019 were
used for comparison.

4. Results and Discussion
4.1. Evaluation of Tropical Cyclone Center Estimation Models by Intensity and Phase

Table 4 lists the quantitative error metrics for scheme 1 for all TC categories. In every
category, model B outperformed both model A and the control model. The overall MAEs of
the control model, model A, and model B were 0.53◦, 0.49◦, and 0.44◦, respectively. Models
A and B improved the performance by 6.6% and 17.4%, respectively, compared to the
control model. As the TC intensified, the errors of each model decreased. In category 1,
the MAEs of the control model, model A, and model B were comparable (0.59◦, 0.63◦, and
0.58◦, respectively), whereas they were significantly different in category 5 (0.40◦, 0.25◦,
and 0.11◦, respectively). For category 5, models A and B improved the performance by
38.7% and 72.8%, respectively, compared to the control model. P05 also increased as the TC
intensity increased. Model B had the highest P05, at 60%, whereas the control model had
the lowest, at 44%. In particular, model B demonstrated that 84% of category 4 cases and
97% of category 5 cases were correctly identified, with MAE values <0.5◦. Model B had the
highest P05, 0.42, 0.49, 0.65, 0.84, and 0.97, respectively, from categories 1–5, indicating that
it has a high probability of accurately pinpointing the TC center location.

The quantitative errors of the scheme-2-based TC center estimation for each category
are summarized in Table 5. In scheme 2, models A and B improved the performance in terms
of MAEs by 19.3% and 20.8%, respectively, compared with the control model. P05 for both
models (0.27 for model A and 0.29 for model B) was more than double that of the control
model (0.13). However, there were significant differences in the SS between models A and
B based on intensity. In the case of weak and normal TCs with categories 1–3, the SSs in
models A and B were comparable, whereas the differences were significant for the strong
TC cases with categories 4 to 5: model A resulted in SSs of +3.8%, +12.5%, and +32.1%
and model B resulted in SSs of +2.8%, +13.5%, and +33.8% for categories 1–3, respectively,
whereas model A yielded SSs of +35.5% and +53.2% and model B resulted in SSs of +41.2%
and +72.3% for categories 4 and 5, respectively. This implies that the SCM value, which
was additionally used in model B, particularly contributed to the TC center determination
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for strong TCs. Model B detected the TC centers for 52% and 83% of the validation cases
accurately, with MAE < 0.5◦, whereas the control model detected only 20% and 29% of the
validation cases with MAE < 0.5◦. Because scheme 2 had a larger ROI than scheme 1, there
was more confusion in estimating a TC center: the overall MAE of the control model based
on scheme 2 was over 1◦, whereas that of scheme 1 was 0.53◦. However, the SSs of models A
and B in scheme 2 were higher than those in scheme 1: compared to scheme 1, the overall SSs
of models A and B increased by 12.7% and 3.4%, respectively, when scheme 2 was used.

Table 4. Evaluation results of scheme-1-based tropical cyclone center estimation. Scheme 1 used the
forecasting reports issued from the Korea Metrological Association 6 h prior. The unit of mean error
(ME), mean absolute error (MAE), and root mean squared error (RMSE) is degrees (◦), and P05 is
unitless. The unit of skill score (SS) is percentage (%), which implies the improvement of models A
and B compared to the control model based on SCBeM. The improved cases are shown in bold.

Scheme 1

Control Model Model A Model B # of
SamplesMAE RMSE P05 MAE (SS) RMSE P05 MAE (SS) RMSE P05

Cat. 1 0.59 0.76 0.38 0.63 (−6.2) 0.80 0.35 0.58 (+1.2) 0.76 0.42 1023
Cat. 2 0.54 0.68 0.42 0.55 (−0.9) 0.69 0.41 0.49 (+9.0) 0.63 0.49 620
Cat. 3 0.51 0.63 0.47 0.43 (+15.7) 0.55 0.60 0.38 (+24.0) 0.52 0.65 888
Cat. 4 0.46 0.55 0.50 0.34 (+26.9) 0.43 0.73 0.24 (+47.1) 0.36 0.84 530
Cat. 5 0.40 0.48 0.61 0.25 (+38.7) 0.31 0.91 0.11 (+72.8) 0.19 0.97 109

All 0.53 0.67 0.44 0.49 (+6.6) 0.65 0.51 0.44 (+17.4) 0.60 0.59 3170

Table 5. Evaluation results of scheme-2-based tropical cyclone center estimation. Scheme 2 used the
real-time reports issued from the Korea Metrological Association 6 h prior. The unit of ME, MAE,
and RMSE is degree (◦), and P05 is unitless. The unit of SS is percentage (%), and it implies the
improvement of the model A and B compared to the control model based on SCBeM. The improved
cases are shown in bold.

Scheme 2

Control Model Model A Model B # of
SamplesMAE RMSE P05 MAE (SS) RMSE P05 MAE (SS) RMSE P05

Cat. 1 1.32 1.68 0.09 1.27 (+3.8) 1.63 0.13 1.29 (+2.8) 1.66 0.13 1023
Cat. 2 1.26 1.61 0.11 1.10 (+12.5) 1.45 0.18 1.09 (+13.5) 1.46 0.20 620
Cat. 3 1.29 1.64 0.14 0.88 (+32.1) 1.23 0.32 0.85 (+33.8) 1.21 0.33 888
Cat. 4 1.02 1.33 0.20 0.66 (+35.5) 0.99 0.49 0.60 (+41.2) 0.93 0.52 530
Cat. 5 0.82 1.07 0.29 0.38 (+53.2) 0.55 0.72 0.23 (+72.3) 0.43 0.83 109

All 1.23 1.59 0.13 0.99 (+19.3) 1.36 0.27 0.98 (+20.8) 1.36 0.29 3170

Two important findings emerged from the intensity-wise evaluations of both schemes,
particularly model B: (1) as the TC intensified, its MAE decreased and SS increased, and (2)
the P05 values rapidly increased as the TC intensified. The combination of both SCM and
LSB for extracting Fmat in model B contributed to locating an accurate TC center in both
schemes.

Figure 6 compares the MAEs by intensity and phase (i.e., the developing and decaying
phases of TCs). In both phases, the three models exhibited a similar pattern: the greater the
TC intensity, the lower the MAE. Nonetheless, the estimation results varied considerably by
phase; even within the same category, estimation errors were smaller for developing TCs
than for decaying TCs. During the developing phase, model B with scheme 1 produced an
MAE of 0.52◦ for weak TCs (categories 1–2) and 0.22◦ for normal and strong TCs (categories
3–5). During the decaying phase, weak TCs exhibited an MAE of 0.59◦, whereas normal and
strong TCs had an MAE of 0.31◦. When a TC grows, the pressure gradient focused on the
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TC center and its structural characteristics, such as a clear storm eye in the high-pressure
area and spiral inflows, are more evident than during the decaying phase [41,42].

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

considerably by phase; even within the same category, estimation errors were smaller for 
developing TCs than for decaying TCs. During the developing phase, model B with scheme 
1 produced an MAE of 0.52° for weak TCs (categories 1–2) and 0.22° for normal and strong 
TCs (categories 3–5). During the decaying phase, weak TCs exhibited an MAE of 0.59°, 
whereas normal and strong TCs had an MAE of 0.31°. When a TC grows, the pressure 
gradient focused on the TC center and its structural characteristics, such as a clear storm 
eye in the high-pressure area and spiral inflows, are more evident than during the decay-
ing phase [41,42]. 

 
Figure 6. Mean absolute error (MAE) of the control model and models A and B for both scheme 1 
(above) and 2 (below). The MAE of all models decreased as the tropical cyclone intensity increased. 
In both schemes, category 5 showed the best performance while category 1 yielded the largest esti-
mation error. 

As the TC intensifies, it becomes easier to determine its center location [12,16,43]. This 
is the result of the organization of the TC shape, which was affected by the pressure-gra-
dient wind balance induced by the thermal field [44–46]. When the gradient increases, 
owing to the pressure difference between the TC center and its surroundings, the sur-
rounding WV concentrates toward the center. In the developing phase, this causes the 
spatial extent of a TC to expand and convective clouds to become densely concentrated 
around the TC center. In contrast, the tangential wind of the inner and outer parts of a TC 
significantly decreases during the decaying phase because its decelerating rotation is ob-
served using satellite data [47]. This induces phase-dependent variation in the results. In 
the case of scheme 1—model B, the detection results in the developing phase were more 
accurate than those in the decaying phase, reducing the MAEs by 12.6%, 30.0%, 29.5%, 
35.8%, and 27.3% for categories 1–5, respectively. 

Figure 7 illustrates the TC-center-tracking results using the control model and model 
B according to the two schemes using typhoons JEBI (2018) and HAGIBIS (2019). Both the 
control model (red line) and model B (blue line) estimated the centers in the decaying phase 
(indicated by an asterisk) less accurately than those in the developing phase (indicated by 

Figure 6. Mean absolute error (MAE) of the control model and models A and B for both scheme 1
(above) and 2 (below). The MAE of all models decreased as the tropical cyclone intensity increased.
In both schemes, category 5 showed the best performance while category 1 yielded the largest
estimation error.

As the TC intensifies, it becomes easier to determine its center location [12,16,43]. This
is the result of the organization of the TC shape, which was affected by the pressure-gradient
wind balance induced by the thermal field [44–46]. When the gradient increases, owing
to the pressure difference between the TC center and its surroundings, the surrounding
WV concentrates toward the center. In the developing phase, this causes the spatial extent
of a TC to expand and convective clouds to become densely concentrated around the TC
center. In contrast, the tangential wind of the inner and outer parts of a TC significantly
decreases during the decaying phase because its decelerating rotation is observed using
satellite data [47]. This induces phase-dependent variation in the results. In the case of
scheme 1—model B, the detection results in the developing phase were more accurate than
those in the decaying phase, reducing the MAEs by 12.6%, 30.0%, 29.5%, 35.8%, and 27.3%
for categories 1–5, respectively.

Figure 7 illustrates the TC-center-tracking results using the control model and model B
according to the two schemes using typhoons JEBI (2018) and HAGIBIS (2019). Both the
control model (red line) and model B (blue line) estimated the centers in the decaying phase
(indicated by an asterisk) less accurately than those in the developing phase (indicated by a
solid dot) (Figure 7a). While model B accurately determined the centers for both schemes,
the control model generated highly variable tracks by scheme. The control model for scheme
1 followed the reference track reasonably well, whereas the model for scheme 2 yielded
erratic track estimations. This implies that proposed model B is less sensitive to the initial
guess center and can be used for operational purposes.
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Figure 7. Tracking results of the control model and model B based on two schemes for typhoon JEBI
in 2018 and typhoon HAGIBIS in 2019. (a,b) show the tracking results according to schemes 1 and 2,
respectively. The black, blue, and red lines indicate the JTWC best track, the estimated track by the
control model, and the estimated center by model B, respectively. A filled circle represents a tropical
cyclone in the developing phase, while an asterisk indicates a tropical cyclone in the decaying phase.

In addition, the operationally reported TC center determination results based on
ARCHER [11,14] were compared with the results from the proposed models. Table 6 shows
the center estimation performance of ARCHER, the scheme-1-based control model, and
the proposed models (i.e., models A and B). For all TC observations (i.e., 97 observations
for 17 typhoons), ARCHER, the control model, and models A and B produced MAEs of
0.45◦, 0.50◦, 0.46◦, and 0.38 ◦, respectively. Similar to the previous evaluation results
(Tables 4 and 5, and Figure 6), model B resulted in the best performance, followed by model
A and control model. ARCHER showed a performance comparable to that of model A.

Table 6. Comparison of the model performance of ARCHER, the scheme-1-based control model, model
A, and model B. The best-performing one is marked as bold.

Method Used Imagery MAE

Operational report
(Wimmers and Velden, 2010; 2016) ARCHER Himawari-8 AHI IR 0.45

Control model
(Lu et al., 2018) SCBeM COMS MI IRW 0.50

Model A LSB COMS MI IRW, WV 0.46

Model B LSB + SCM COMS MI IRW, WV 0.38

4.2. Tropical Cyclone Center Estimations Using Typhoon YUTU in 2018

Using Typhoon YUTU in 2018, the intensity- and phase-wise TC center estimation
results from the three models were validated. The ROI sizes and TC center detection errors
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are listed in Table 7. Models A and B calculated Fmat in the ROI extracted using an SCM,
whereas the control model calculated Fmat in a 125-pixel-square ROI based on the initial
guess for a TC center. For Typhoon YUTU (2018), the ROI size of models A and B decreased
by 31–61%, respectively, compared to the control model; therefore, the ROIs in models A
and B were narrower than those of the control model. As shown in Table 7, the detection
performances of models A and B are superior to those of the control model. This suggests
that SCM-based ROI extraction and improved LSB contribute to the accurate detection
of TC centers. Comparing the detection performance between the two proposed models,
model B demonstrated more accurate detection results in the eight cases of Typhoon YUTU
(2018) than the other models. It is suggested that the revised Fmat with an SCM in model
B improved TC center detection. Figure 8 depicts the TC center detection results of the
three models for the TCs listed in Table 7. The weaker the TC, the more likely it was for
the control model to misidentify the TC outflow as a TC center, whereas models A and B
detected the TC center relatively well. This is because the ROIs of the proposed models
were able to exclude regions that could be incorrectly identified, such as a region with
deep convection, but not a TC center region. This is evident in the case of the TCs at 0600
UTC on 30 October 2018 (category 3 TC in the decaying phase). While the outflow region
was incorrectly identified as a TC center by the control model, models A and B had already
excluded this region from the ROIs. In other words, the SCM helped to reduce confusion in
TC center detection.

Table 7. Region of interest size and tropical cyclone center detection errors of the control model and
models A and B for the eight tropical cyclone cases of typhoon YUTU (2018). The observation time
is represented in MM/DD/YYYY hhmn UTC. The most accurate detection result for each tropical
cyclone case is shown in bold.

Observed Time
(UTC) Phase Category

ROI Size (Pixels) Detection Error (◦)

Control Model A Model B Control Model A Model B

10/22/2018
1200

Developing

1 14,845 7681 7681 2.01 0.72 0.51

10/23/2018
0600 2 13,936 5490 5490 1.41 0.10 0

10/23/2018
1800 3 15,180 9483 9483 1.02 0.28 0.10

10/24/2018
0600 4 15,338 10,540 10,540 0.58 0.22 0.14

10/25/2018
0000 5 13,379 8112 8112 1.53 0.67 0.22

10/25/2018
0600

Decaying

5 10,490 5939 5939 0.95 0.14 0.10

10/26/2018
0600 4 14,634 5916 5916 0.32 0.36 0.10

10/30/2018
0600 3 12,446 7067 7067 2.82 0.70 0.70
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cyclone center estimated by the control model and models A and B. 

Figure 9 shows the scheme-2—model-B-based channel-wise TC observations and cen-
ter estimation results for typhoon YUTU (2018). Compared to IR1 channel observations, 
WV-based observations showed more concentrated patterns of low BTs, which corre-
sponded to the deep convective area. It caused the WV-channel-based F-value to appear 
to have a sharper gradient toward the TC-center-like region than the IR1 channel. How-
ever, due to the insignificance of the cirrus altitude in the TC system [11,40], the F-values 
of each channel do not always indicate the same point. Moreover, in some cases, such as 
Figure 9a,b, the pre-determined TC centers from each channel were positioned on differ-
ent directions relative to the real TC center. This is derived from the difference between 
the IR1 and WV channels for deep convective regions. From the years 2011–2019, about 
32% of the TC cases demonstrated that the pre-determined TC centers between IR1 and 
WV were located in directions that differed from the reference centers by greater than 90°. 
Consequently, the combination of IR1 and WV is believed to synergistically contribute to 
the objective TC center determination by reducing the obscurity of the cirrus canopy. 

Figure 8. Tropical cyclone center location estimated by the scheme-2-based control model and models
A and B by category and phase. Communication, Ocean and Meteorological Satellite Meteorological
Imager infrared-1-channel-based observations are used as background images, and regions of interest
are shown in color. The color of regions of interest represents normalized Fmat values (0–1) at the IRW
observation, and reddish color indicates lower Fmat. The black asterisks indicate the tropical cyclones
center determined by the JTWC best track and the red asterisks represent the tropical cyclone center
estimated by the control model and models A and B.

Figure 9 shows the scheme-2—model-B-based channel-wise TC observations and center
estimation results for typhoon YUTU (2018). Compared to IR1 channel observations, WV-
based observations showed more concentrated patterns of low BTs, which corresponded
to the deep convective area. It caused the WV-channel-based F-value to appear to have
a sharper gradient toward the TC-center-like region than the IR1 channel. However, due
to the insignificance of the cirrus altitude in the TC system [11,40], the F-values of each
channel do not always indicate the same point. Moreover, in some cases, such as Figure 9a,b,
the pre-determined TC centers from each channel were positioned on different directions
relative to the real TC center. This is derived from the difference between the IR1 and WV
channels for deep convective regions. From the years 2011–2019, about 32% of the TC cases
demonstrated that the pre-determined TC centers between IR1 and WV were located in
directions that differed from the reference centers by greater than 90◦. Consequently, the
combination of IR1 and WV is believed to synergistically contribute to the objective TC
center determination by reducing the obscurity of the cirrus canopy.
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Figure 9. Channel-wise tropical cyclone (TC) observations and TC center estimation results for
typhoon YUTU (2018). (a,b) are the TCs observed at 23 October 2018 0600 UTC and 25 October 2018
0600 UTC, respectively. The left column of (a,b) shows the IR1- and WV-channel-based observation,
while the right column depicts the contour lines of the F-value for the area around the center (the
black rectangle on the left column).

4.3. Novelty and Limitations

In this study, an improved LSB-based TC center estimation approach that exploits
the spatial characteristics of a TCCS is proposed. The SCM used to quantify the spatial
characteristics and BT trend of the TCCS contributed to both steps of the proposed TC
center estimation approach (i.e., ROI setting and TC center determination). This enabled
the identification of regions that may have been misidentified as TC centers during the ROI-
setting step. Thus, specifying ROIs using an SCM can be expected to not only contribute
to an increased focus on TC-like centers, but also reduce the algorithm’s running time.
It was also used to extract Fmat in model B, which improves the accuracy of TC center
detection. The improved LSB proposed in this study enables a better fit to the spiral-
shaped rainband surrounding the TC center than the control model. This contributes
positively, particularly when TC intensity is weak or moderate. It was confirmed that,
while the spiral band from the control model incorrectly identified the region with low
BT in outflows as a TC center, the LSB from the proposed model detected the rainband
surrounding the TC center relatively well (e.g., at 22 October 2018 1200 UTC, 23 October
2018 0600 UTC, 25 October 2018 0000 UTC, and 30 October 2018 0600 UTC; Figure 8).
The TC center estimation approach proposed in this study has several novelties: (1) it is
fully automated and can be used for operational purposes; (2) the advanced ROI-setting
process can prescreen potentially confusing regions such as outflows of the TC; and (3) the
improved LSB considers the size and length of the TC rainband in relation to its intensity.

However, the proposed algorithm had several limitations. (1) It was difficult to fit
the proposed LSB to rainbands in weak and decaying TCs because of the various TC
shapes. In this situation, numerical weather prediction models or microwave satellite data
can provide reliable center locations for weak TCs, although they cannot be obtained in
real time. Ground-based weather radar is also a great way to locate a TC center within
radar coverage. (2) Detection error can be caused by a large ROI, according to scheme 2
(with KMA-based observation data reported 6 h prior). This increases the likelihood that
distant convective clouds will be identified as TC centers. While SCM can mitigate such
erroneous TC center estimations, it has little effect on weak and decaying TCs, which have
irregularly shaped clouds. Since the extent of the ROI was based on the distance that a TC
could potentially travel during the data interval, reducing the report interval could reduce
misidentification of TC candidate regions.
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5. Conclusions

The primary objective of this study was to propose a fully automated operational TC
center estimation method using geostationary satellite data. Two steps are involved in
estimating TCs: (1) ROI setting and (2) TC center determination. While the majority of
previous studies have focused on the second step, ROI specification is crucial for accurate
and efficient TC center estimation. In this study, an SCM and improved LSB were proposed
for more accurate TC center determination and ROI setting. To investigate the optimal
method for TC center determination, two models were tested (models A and B) using two
schemes (schemes 1 and 2). The results were compared with those of the control model [12]
based on the intensity and phase of TCs using best-track reference data. Compared with
the control model, the proposed models improved the performance with errors of less than
0.5◦, with improvements of 10% and 16% in schemes 1 and 2, respectively. In particular, for
strong TCs (category ≥ 4), the models significantly improved by 35% and 43%, respectively.
Among the proposed models, model B achieved the best performance, with MAEs of 0.44◦

and 0.98◦ in schemes 1 and 2, respectively. Compared to the control model, the overall
performance of model B improved by 17.4% and 20.8% for schemes 1 and 2, respectively. In
particular, for Category 5, the performance of model B improved by 72.8% and 72.3% in both
schemes. Compared with model A, model B improved the performance by approximately
56.0% and 39.5% for schemes 1 and 2, respectively. These results indicate that specifying
the ROI using an SCM could effectively reduce false detections, and the combination of an
SCM and improved LSB, proposed as model B in this study, improves the accuracy of TC
center detection using geostationary satellite data.

While the proposed approach produced promising results, there is room for improving
the TC center detection. Recently, deep learning has been used for TC identification using
geostationary satellite data; however, it has not been explored for TC center determina-
tion from geostationary satellite images. Future work will include convolutional-neural-
network-based TC center determination because TCs and their centers have distinct spatial
characteristics based on their intensity and phase.
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Abbreviations

ARCHER Automated Rotational Center Hurricane Eye Retrieval
BT Brightness temperature
BTT Brightness temperature template
COMS MI Communication, Ocean and Meteorological Satellite Meteorological Imager
IR1 Infrared-1

https://datasvc.nmsc.kma.go.kr/datasvc/
https://datasvc.nmsc.kma.go.kr/datasvc/
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JWTC Joint warning typhoon center
KMA Korea Meteorological Administration
LSB Logarithm spiral band
MAE Mean absolute error
P05 Percentage of MAE less than 0.5◦

RMSE Root mean squared error
ROI Region of interest
SCBeM Spiral cloud belt matching
SCM Score matrix
SCT Spatial characteristic template
SS Skill score
TC Tropical cyclone
TCCS Tropical cyclone cloud system
WNP Western North Pacific
WV Water vapor
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