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Abstract: Various land degradation processes have led to land productivity reduction, food insecurity
and ecosystem destruction. The Loess Plateau (LP) suffered from severe land degradation, such
as vegetation degradation, soil erosion and desertification. This study assessed land degradation
changes by considering different land degradation types including vegetation degradation, soil
erosion, aridity, loss of soil organic carbon and desertification in the Huangfuchuan watershed of the
northern LP. A comprehensive land degradation index (LDI) was developed by combining different
degradation processes using the fuzzy logic modeling method. Our results showed significant land
use transitions from bare land and sandy area to grass land and forest land from 1990 to 2018, which
were consistent with an obvious increase in vegetation cover from 31.24% to 40.72%. The soil erosion
rate predicted by the RUSLE model decreased by 51.95% during 1990–2018. The basin-average
LDI decreased from 0.68 in 1990 to 0.51 in 2018, suggesting the great success of land degradation
prevention in a fragile ecological environment region on the LP during the past decades. This study
proposed an integrated framework for land degradation assessment in the high erodible area. The
results can provide good references for the improvement of ecological environment in the future.

Keywords: land degradation index; fuzzy logic modeling; spatial and temporal distribution;
Huangfuchuan watershed; Loess Plateau

1. Introduction

Land resources provide fundamental materials, such as food, fiber, and medicine, for
human survival and development [1,2]. However, unreasonable land uses have led to
critical land degradation in the past decades throughout the world [3], which threatens
one-third of the global land area and affects more than 3 billion people, especially rural
communities in poverty [4]. Land degradation results in land productivity reduction,
population displacement, food insecurity, environment pollution and ecosystem destruc-
tion [5–7]. Evidence has been detected suggesting that land degradation is becoming an
increasing threat, both to regional and global security in general [8,9].

Land degradation has become one of the most serious environmental problems, attract-
ing great attention from both governments and global international researchers. Previous
studies have demonstrated that land degradation involves multiple forms of environmental
problems, requiring interdisciplinary and multidimensional investigation [10,11]. Signif-
icant efforts have been undertaken to assess the land degradation processes and extent
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for various ecosystem types across different study sites. For example, Akinyemi et al. [12]
assessed physical, chemical and biological degradation by using the Composite Land
Degradation Index (CLDI) in an African agro-pastoral region. Yang et al. [2] simulated
the spatiotemporal land degradation changes through analytic hierarchy processes with
five indices. Masoudi et al. [11] developed a risk assessment of land degradation model
(RALDE) considering various parameters including natural, human, and degradation
trends. Turner et al. [13] reported six broad clusters of potential driving forces resulting in
land degradation (such as climatic factors, technological factors, economic factors, political
and institutional factors, demographic factors, and cultural factors) adapted from Geist and
Lambin [14]. Prăvălie [10] reported that there currently were 17 land degradation pathways,
i.e., aridity, landslides, loss of soil organic carbon, soil acidification, permafrost thawing,
pollution, salinization, vegetation degradation, water and wind erosion, etc., which were
active in various spatial scales. Among them, five land degradation processes, comprising
water erosion, aridity, loss of soil organic carbon, salinization and vegetation degradation,
were the dominant types of land degradation with reduced ecosystem service functions
world widely.

In recent years, techniques of remote sensing (RS) and geographic information systems
(GIS) have been widely applied to investigate land degradation processes and risks [15–18].
Several studies assessed land degradation with an individual process, such as vegetation
degradation [19], soil erosion [20,21], and land desertification [22]. These research studies
have facilitated the mechanism of land degradation at the regional and global scales. Many
researchers also assessed comprehensive land degradation in different regions through
different models [2,11,12]. However, it is difficult to reveal the land degradation processes
and its spatiotemporal variation. The processes and mechanisms of land degradation vary
by region and are complex [23,24]. Therefore, an integrated assessment of land degradation
using various variables to represent key degradation processes could give more reasonable
and accurate results for land degradation mitigation.

The most common spatial models used in GIS-based land degradation studies fall
into deterministic models, such as Boolean overlay, and weighted linear combination [25].
However, these models are subject to deterministic structures and are not best compatible
with multi-degradation processes. Compared to deterministic models, the fuzzy logic
method could address the variability, imprecision, and ambiguity of the degradation
processes [26], and has been used to assess land suitability of specific plants [26–28], soil
quality index in terms of land degradation and desertification [29], and land subsidence
risk [30]. Apparently, the fuzzy logic method is an efficient tool to qualitatively assess
various land conditions, though most of them focused on a single land change process.

The Chinese Loess Plateau (LP) is characterized by severe land degradation, such
as vegetation degradation, soil erosion and desertification [31,32]. The land degradation
caused by soil erosion is the most serious issue in the LP. It is mainly distributed in the
loess hilly area and plateau-gully area. In recent years, the LP has experienced significant
changes to the land surface with implantations for numerous soil conservation practices
and ecological restoration projects [33,34]. The “Grain for Green Program” (GFGP) initiated
in the late 1990s was the largest ecological restoration project aiming to reduce soil loss,
mitigate severe flood risk, and improve the livelihoods of the LP [35]. This project has
successfully improved the vegetation cover leading to a visible “greening” trend in the
LP [36]. Meanwhile, the soil erosion rate and sediment load to the Yellow River have been
significantly reduced [37]. Considerable studies were undertaken to assess the change
in soil erosion and vegetation cover on the LP [38–41]. However, the changes of various
land degradation processes on the LP have been rarely investigated. Furthermore, limited
studies have been undertaken to clarify the responses of land degradation to the imple-
mentation of soil-water conservation and ecological restoration. Therefore, the objectives
of this study are to (1) comprehensively analyze the multidimensional land degradation
processes (i.e., water erosion, loss of soil organic carbon, desertification, aridity and vegeta-
tion degradation) in the Huangfuchuan watershed of the northern LP; and (2) develop an
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integrated framework to assess key land degradation processes by using the fuzzy logic
method via combing remote sensing images, field survey and modelling data. The results
could provide a scientific approach and reference for land degradation prevention on the
LP and similar regions.

2. Materials and Methods
2.1. Study Area

The Huangfuchuan watershed is located in the northern LP (110◦18′–111◦12′E,
39◦12′–39◦54′N), with an area of 3246 km2 (Figure 1). The Huangfuchuan river origi-
nated from southern inner Mongolia has a length of 137 km, and flows into the midstream
of the Yellow River. The watershed is characterized by a semi-arid continental climate,
with mean annual precipitation of 380–420 mm and annual temperature of 6.2–7.2 ◦C.
The frequently occurring storms between June and September have led to severe soil
erosion and substantial sediment yield, nearly 80% of which are concentrated in the wet
season [42]. The deeply weathered coarse sandstone and the highly erodible loess resulted
in high sediment yield in the watershed [43]. In particular, the bare deeply weathered
sandstone covered with very sparse or no vegetation has extremely high sediment yield,
and contributes approximately 70% of the coarse sediment in the watershed [44]. The
Huangfuchuan watershed experiences multiple land degradation pathways due to its
fragile ecological environment, though previous studies confirmed evident reduction in
soil erosion and increase in vegetation cover [37].
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Figure 1. Location of the study area. (a) The Huangfuchuan watershed in the LP. (b) The rain-
fall stations in Huangfuchuan watershed. (c) The soil sampling points in different land uses in
Huangfuchuan watershed.

2.2. Data Sources

We collected various data through interpretation of remote sensing images, field
sampling, and geospatial analysis. The data consisted of meteorological variables, a digital
elevation model (DEM), land use/cover, vegetation cover, and soil properties, which are
listed in Table 1. Furthermore, these data were applied to assess land degradation via fuzzy
logic modelling during different periods in the study area.
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Table 1. Data used for land degradation assessment in the Huangfuchuan watershed.

Data Time Resolution Data Sources

DEM - 30 m Geomatics Center of Shaanxi Province
Land cover 1990 30 m Landsat 5 TM, 22 August

2000 30 m Landsat 5 TM, 23 July
2011 30 m Landsat 5 TM, 10 September

2018 10 m Resources and Environmental Sciences and Data Center,
Chinese Academy of Sciences (Landsat 8 ETM)

NDVI 1990 30 m Landsat 5 TM, 13 August and 11 September 1989
2000 30 m Google Earth Engine
2011 30 m Google Earth Engine
2018 30 m Google Earth Engine

Soil properties 2017 - Field Sampling
Climate 1979–2018 - China National Climate Center

Precipitation 1990–2019 10 stations Yellow River Water Resources Commission
Terrace 2018 30 m Field investigation

The daily meteorological data in the Huangfuchuan watershed were derived from the
China meteorological forcing dataset (1990–2018), which can be downloaded in the China
National Climate Center. Daily rainfall at 10 stations was acquired from the “Hydrological
Yearbook of the Yellow River Basin (1990–2018)” (Figure 1b). The data quality, consistency
and accuracy were checked by the agencies before their release.

Digital elevation model (DEM) with 30 m resolution was obtained from the Geomatics
Center of Shaanxi Province and processed using 3D analysis in ArcGIS 10.7 (ESRI). The
DEM was used to estimate soil erosion by making use of the topographical parameters of
the watershed, e.g., the slope gradient and slope length, etc.

The data source of land use with different periods (1990, 2000, 2011, 2018) has been
introduced in Zhao et al. [32] and Xu et al. [45]. The data were interpreted from TM or
ETM images with a resolution of 30 m through supervised classification (Table 1), and had
been verified through field survey to guarantee data quality. Seven land use types were
identified: sandy land, forest land, arable land, urban area, grass land, water body, bare
land. Among all periods, the dominant land use type was grass land, accounting for more
than 70% of the watershed.

The annual normalized difference vegetation indexes (NDVI) in 2000, 2011, and 2018
(same as land use, 30 m) were estimated by Google Earth Engine (GEE) using the maximum
synthesis method. Due to the lack of data on GEE, NDVI data in 1990 were calculated using
Landsat 5 TM remote sensing image data (USGS, http://www.usgs.gov.vom (accessed on
20 May 2021)).

A total of 106 sampling points were selected to collect soil samples in the Huang-
fuchuan watershed (Figure 1c). The sampling points covered different land use and soil
types, and were obtained in June 2017. The soil properties (particle size, soil organic
carbon etc.) of the samples were measured to calculate soil erodibility factor (K) for soil
erosion modelling.

All the spatial data were resampled to 100 m grid size using the nearest neighborhood
method. These spatial data were used to estimate different land degradation maps.

2.3. Fuzzy Logic Modeling of Land Degradation Assessment System

An integrated land degradation index (LDI) was developed to consider multiple
degradation processes based on the fuzzy logic modelling method (Figure 2). Firstly, sev-
eral dominant land degradation processes were selected, i.e., vegetation degradation, soil
erosion, aridity, loss of soil organic carbon and land desertification in the Huangfuchuan
watershed. Secondly, each LDI was estimated or simulated by its corresponding models.
Different land degradation maps were generated during the periods. Finally, land degrada-
tion maps were used as input layers to obtain the LDI using fuzzy logic theory with the
procedure of fuzzification, fuzzy rule inference, and defuzzification (Figure 2). The LDI,

http://www.usgs.gov.vom
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ranging from 0.0 to 1.0, denoted the degree of land degradation with a low value of no
degradation and high value of severe degradation. The LDI maps were estimated by using
the Arcpy in ArcGIS 10.7. More detailed procedures are described as below.
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Figure 2. Flowchart of land degradation assessment based on the fuzzy logic modeling method.
(a) The membership of vegetation degradation, aridity and loss of soil organic carbon. (b) The
membership of soil erosion and desertification.

2.3.1. Dominant Land Degradation Processes

Land degradation is the result of a combination of natural factors (e.g., climate, soil,
topography and vegetation) and human activities (e.g., farming, grazing and development
and construction) [46]. Selecting dominant processes that can organically link the internal
mechanism and external representation from many land degradation processes has become
the key to establishing the land degradation assessment system. The selected land degrada-
tion processes should reflect the practical problems of the watershed, be easy to quantify
and calculate, and have physical significance and representativeness. According to the
previous research studies and field survey [10,13,16,31,47], we selected five dominant land
degradation processes, including vegetation degradation, soil erosion, aridity, loss of soil
organic carbon and land desertification to assess land degradation in the study area.

1. Vegetation degradation

Vegetation degradation is mainly manifested in the changes of vegetation types,
vegetation structure and vegetation cover. Among them, the change of vegetation cover
(VC) can most intuitively show the vegetation degradation. Significant correlation has
been confirmed between vegetation cover and NDVI [48], and pixel dichotomy model is
usually used to calculate vegetation cover. VC can be estimated by the linear difference
ratio between vegetation index and soil index:

VC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(1)
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where NDVIsoil and NDVIveg, respectively, represent the NDVI value of bare soil pixels and
complete vegetation cover pixels. Here, we used the 98% and 2% percentile of the NDVI
raster values for NDVIveg and NDVIsoil in the study area, respectively.

2. Soil erosion

Soil erosion is the most serious land degradation process in Huangfuchuan watershed.
Soil erosion rate is an important indicator to measure soil erosion intensity. The soil
erosion rate was estimated by the revised universal soil loss equation (RUSLE) [49], which
considers various influencing factors (R, rainfall erosivity factor; K, soil erodibility factor;
LS, slope length and gradient factor; C, vegetation and crop management factor; P, soil
conservation factor).

The rainfall erosivity factor (R) was estimated by the approach proposed by Zhang et al. [50]
using daily data at 10 stations in the Huangfuchuan watershed (Figure 1b). Field mea-
sured soil properties were used to estimate the K factor via the soil-erodibility nomograph
method [51] (Figure 1c). The slope length (L) and the slope gradient (S) factors were
estimated using the approach from Liu et al. [52]. The C factor was determined by com-
bining both land use and vegetation cover [32,53] to conform to the erosion features in
the watershed. The P factor was determined according to Zhao et al. [39] with related soil
conservation measures.

3. Aridity

Aridity is an important form of land degradation, especially in arid and semi-arid
regions, which is usually expressed by aridity index [10]. Aridity index (AI) is an indicator
of the degree of available water, which is expressed by the ratio of water budget to heat
balance. In arid and semi-arid regions, AI is closely related to climate change studies, and
can be estimated using the ratio of actual evapotranspiration to precipitation:

AI =
P

ET0
(2)

where P is precipitation (mm), ET0 is actual evapotranspiration (mm) estimated by the
FAO−Penman−Monteith approach [54]. The inverse distance weighting interpolation
method was used to interpolate the data of meteorological stations around the watershed
to obtain the AI data.

4. Loss of soil organic carbon

The soil organic carbon (SOC) denotes one of the key soil attributes, which has great
impacts on many physical and biochemical properties of soil [7,55]. SOC loss is one of the
important and popular land degradation indicators [56]. The soil organic carbon content of
the soil samples was measured by the potassium dichromate oxidation method [57], and the
SOC map in the whole basin was obtained by the Kriging interpolation method. However,
the temporal changes of SOC maps were not considered since the historical data was not
available. Thus, an unchanged SOC map was used for land degradation assessment.

5. Desertification

Desertification index, namely the percentage of bare sand, was used to measure wind
erosion and desertification. Regions with sandy land and bare land use types were considered
as desertification regions, and desertification indexes of regions with other land use types
were assigned as 0. In the desertification regions, considering the role of vegetation, the
desertification index was estimated by subtracting VC from Equation (1) (Figure 3).
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2.3.2. Fuzzification

Fuzzification is a process of converting the values of indices into fuzzy membership
values through the fuzzy membership function, and unifying the values of all indices
into the membership range of 0–1 for further analysis. Similar to the methods used by
Joss et al. [36], three land degradation levels were established for each land degradation
process: fuzzy high degradation (FHD), fuzzy moderate degradation (FMD) and fuzzy no
degradation (FND).

Triangular fuzzy membership functions were used to calculate the membership val-
ues. Based on the relationship between indices and land degradation degree in different
processes, two relative function forms were applied. The indices and land degradation
degree of vegetation degradation, aridity and loss of soil organic carbon had the opposite
relationship (Figure 4a). On the contrary, there were positive correlations between the in-
dices and land degradation, such as soil erosion and desertification. The fuzzy membership
function in Figure 4b was applied. The threshold of each fuzzy membership function is
determined by the expert experiences, which are shown in Table 2.
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Table 2. Factors and their suitable ranges.

Factors Min Middle Max

Vegetation cover (%) 10 30 50
Soil erosion rate (t km−2 a−1) 5000 10,000 15,000

Aridity index 0.03 0.34 0.65
Soil organic carbon content (g/kg) 5 10 15

Desertification index 0.3 0.55 0.8

2.3.3. Fuzzy Rule Inference

Fuzzy rule inference divides land degradation into five integrated degradation de-
grees based on all processes instead of only one process. The five degradation degrees
include: serious degradation (SD), high degradation (HD), moderate degradation (MD),
low degradation (LD) and no degradation (ND). The membership values denoted the
land’s degree of belonging to each of the five degradation degrees. The comprehensive
fuzzy output value was estimated by the empirical IF-THEN reasoning rules including
conditions (IF part) and conclusions (THEN part). Generally, the IF part is composed of one
or more conditions connected through “And” or “Or” language [26]. For example, IF the
vegetation cover is FND, soil erosion rate is FMD, aridity index is FMD, soil organic carbon
content is FND, and desertification index is FND, THEN, the land is LD. All inference rules
were designed based on professional knowledge. After determining the specific rules of
application, the minimum–maximum (MIN–MAX) fuzzy rule inference method was used
to execute the fuzzy rules inference [26].

2.3.4. Defuzzification

The land degradation index (LDI) was estimated by defuzzification by transforming
the fuzzy membership values of five integrated degradation degrees from the fuzzy rule
inference into a representative value [58]. Similar to the fuzzification process, the defuzzi-
fication process is realized by the fuzzy membership function. The fuzzy membership
function diagram of LDI (Figure 5) was established to represent the membership value of
each comprehensive degradation degree, by dividing the land degradation level from 0.0
to 1.0 into six sections on average. The weight of each comprehensive degradation level is
determined by the center of maximum (COM) method [26]. The spatial distribution of LDI
in each grid can be estimated by the weighted average calculation of LDI value.

LDI =
∑ MembershipLD × LD

∑ MembershipLD
(3)

where LD is corresponding weight value of comprehensive degradation level, MembershipLD
is fuzzy membership value of comprehensive degradation level.
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3. Results
3.1. Changes in Vegetation Cover and Land Use

Spatial and temporal changes of vegetation cover (VC) can be clearly detected from
1990 to 2018 (Figure 6). Overall, we found high VC in the south and east, and low values
in the northwestern watershed, which is consistent with the spatial distribution of pre-
cipitation and land use types. From 1990 to 2018, average VC of the watershed increased
from 31.24% to 40.72%, and nearly 29.30% of the watershed had VC above 50% in 2018,
indicating that the watershed vegetation cover improved greatly due to the afforestation
started in 1999 by the Chinese government. An insignificant decrease in VC was detected in
some small areas, which can be attributed to desertification, coal mining and urbanization.
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map in 2000. (c) VC map in 2011. (d) VC map in 2018.

Figure 7 showed the spatial and temporal changes of land use between 1990 and 2018.
Statistics indicate that the main land use type was grass land accounting for more than 70%
of the Huangfuchuan watershed. Overall, arable land and sandy area were concentrated
near the river, and urban area was mainly located in the middle reaches of the watershed.
The bare land was mainly located in the steep slopes, and the forest land was scattered
throughout the watershed. Changes in land use can be evidently examined from 1990 to
2018 (Figure 7). The forest land showed a great increase from 2.41% in 1990 to 8.37% in 2018.
The arable land showed a slight decrease from 9.76% in 1990 to 4.37% in 2010, and then
gently increased to 7.46% in 2018. The bare land was mainly located in the steep slopes,
showing an obvious decrease from 8.27% in 1990 to 1.72% to 2018. Similarly, the sandy area
decreased from 4.55% in 1990 to 0.56% in 2018. Between them, the bare land and sandy
area covered a total area of 416.15 km2 in 1990, and decreased to 74.01 km2 in 2018. These
changes showed that the policies, i.e., “returning farm land to grass land and forest land”
in 1999 played an important role in land use changes. These trends were consistent with
the obvious changes in the watershed’s vegetation cover (Figure 6). In addition, the urban
area showed a dramatic increase from 5.92 km2 in 1990 to 76.06 km2 in 2018, suggesting
rapid urbanization and population increase during the past years.
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3.2. Soil Erosion Rate Changes

As the most serious and prominent land degradation process in the Huangfuchuan
watershed, soil erosion was predicted by the empirical RUSLE model. According to
the Chinese soil loss standard (SL 190-2007, made by Ministry of Water Resources of
People of Republic China, 2007), the soil erosion rates can be divided into six classes:
severe erosion (>15,000 t km−2a−1), very strong erosion (8000–15,000 t km−2a−1), strong
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erosion (5000–8000 t km−2a−1), moderate erosion (2500–5000 t km−2a−1), slight erosion
(1000–2500 t km−2a−1), and very slight erosion (0–1000 t km−2a−1). Figure 8 illustrates the
spatial distribution of soil erosion during periods. Similar to vegetation cover and land use
changes, average annual soil erosion rate reduced over 50% from 1990 to 2018.
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In 1990, about 60% of the watershed was characterized by severe, very strong and
strong soil erosion. Severe erosion area mainly distributed in the central and southern steep
slopes of the watershed, with low vegetation cover and wide distribution of bare sandstone.
By 2000, soil erosion rates had declined by 0.13%, while the trend was not significant.
Afterwards, average annual soil erosion rate showed a rapidly decrease, indicating effective
erosion control from various conservation measures i.e., “returning farm land to grass land
and forest land” in 1999. The average soil erosion rate decreased from 12,869.05 in 2000 to
6191.37 t km−2a−1 in 2018. The area of severe erosion decreased significantly, from 909.85 in
1990 to 317.78 km2 in 2018, with a decrease about 65%. Meanwhile, the very slight erosion
area increased obviously with an increase of over 80%, from 500.86 to 913.10 km2. By 2018,
the very slight, slight and moderate erosion area accounted for 65.47% of the watershed,
and was only 40.74% in 1990.

3.3. Land Degradation Changes

Figure 9 showed the spatial and temporal distribution of land degradation index
(LDI) in the Huangfuchuan watershed. Overall, the LDI was classified into five grades
according to the order from low to high: severe degradation (0.9–1), high degradation
(0.8–0.9), moderate degradation (0.65–0.8), low degradation (0.4–0.65), and no degradation
(0–0.4). Overall, areas with no degradation were concentrated in valleys and tablelands
with flat terrain and high vegetation cover, while areas with high degradation were con-
centrated in tributary watershed with steep slopes and low vegetation cover. In 1990, the
low degradation areas (<10%) were distributed in the channels in the eastern part of the
watershed, and the severe degradation areas accounted for 42.01% of the watershed. By
2018, the low degradation areas with 48.02% whereas the severe degradation area reduced
to 18.22%, and mainly located in the northwest. From 1990 to 2018, the average LDI has
gradually decreased from 0.68 to 0.51, from moderate degradation to low degradation.
Overall, land degradation was obviously transformed from high to low, especially near the
vicinity of rivers and flat valleys.
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4. Discussion
4.1. Land Degradation Assessment

This study proposed a framework for land degradation assessment based on the fuzzy
logic modelling method, which has been applied in many studies [26–30,59,60]. For fuzzy
logic modelling, the selection of parameters must be noted firstly. Five dominant land
degradation processes were selected using experts’ empirical knowledge according to the
local situations of the Huangfuchuan watershed. Vegetation degradation, soil erosion,
aridity, loss of soil organic carbon and desertification were considered as the dominant land
degradation processes in the study watershed.

Indicators representing each land degradation process set thresholds based on expert
knowledge and past studies combined with filed survey. Based on the dominant position of
sparse grassland in Huangfuchuan watershed, a relatively low vegetation cover compared
with others [61,62] was selected as the maximum threshold representing the no degradation
degree. Due to the serious soil erosion [37], we used 5000 instead of the commonly used
1000 t km−2 a−1 [63] as criteria to determine whether land degradation had taken place or
not, in order to obtain higher parameter sensitivity. In some research studies, aridity index
(AI) less than 0.65 is considered the beginning of land degradation [64]. By UNESCO [65],
AI less than 0.03 means hyper-arid. These set the upper and lower limits of AI to express
land degradation. Soil organic carbon thresholds were set at 15 g/kg and 5 g/kg based
on the literature and watershed soil conditions [66,67]. Based on the importance of deeply
weathered coarse sandstone and sandy land in the watershed natural conditions [43], the
desertification index was set to relatively high thresholds. Although the method of selecting
indices and their thresholds was subjective [60], field surveys were sufficient to confirm its
rationality. However, indices and their thresholds may vary in other areas.

Due to the complexity of land degradation and the internal relationship between
different land degradation processes [10], we applied the minimum–maximum fuzzy rule
inference method rather than the weighted linear combination method to aggregate differ-
ent land degradation processes [28]. The most important land degradation process was
soil erosion in the study area, which was estimated by the RUSLE model. The watershed
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has relatively complex geomorphology, and gully erosion and gravitational erosion are the
main soil erosion types providing dominant sediment source [49]. Though detailed soil
erosion processes cannot be estimated by the empirical RUSLE model, regional patterns
and high erosion prone area could be detected with its widely application at continental
and global scales [68–70]. In addition, the uncertainties of results caused by input maps
could be reduced by the COM defuzzification method, because the small fluctuation of
input maps does not alter the optimal compromise value of LDI [26].

4.2. Causes of Land Degradation Changes

Our results indicated that LDI decreased significantly in the Huangfuchuan watershed
in the past decades. This was confirmed by the evident decline of watershed-averaged
LDI from 1990 to 2018 [47,71]. Furthermore, LDI of different land use exhibited consistent
trends, suggesting land improvement during the study period (Figure 10). LDI of grass
land showed a stable decline from 0.67 in 1990 to 0.51 in 2018. Similarly, LDI of forest
land and arable land decreased by approximately 0.11 and 0.08, respectively, which can be
attributed to land use changes and the increase in vegetation cover (Figure 6). The area of
forest land, grass land and arable land accounted for more than 80% of the watershed, thus
their changes dominated land degradation processes. According to our analysis, vegetation
restoration and soil and water conservation measures were responsible for vegetation
improvement, decrease in soil erosion and desertification. These changes were the driving
forces behind LDI changes. By contrast, the average LDI of bare land and sandy area,
although declining, remained much higher than those of the other land uses. The high
values of LDI resulted from low vegetation cover, SOC and severe soil erosion in these
deeply weathered coarse sandstone areas. Thus, further conservation measures are needed
to prevent land degradation and reduce soil erosion in the bare land with deeply weathered
coarse sandstone and sandy area in the watershed.
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Apparently, vegetation restoration has been confirmed to be the main driving factor for
the decrease in LDI. However, it has to be noted that water demand for vegetation in parts
of the LP might have already approached sustainable water resource limits [72,73]. Water
shortage and widely distributed dry soil layers require optimal plant species and a better



Remote Sens. 2022, 14, 4779 16 of 19

match of plant densities to the natural environment, rather than artificial trees in many
parts of the region [35]. Though soil erosion was greatly reduced and vegetation cover
showed significant improvement [32], the conflict between water resources and vegetation
restoration existed in such an arid area.

Overall, the LDI values in the Huangfuchuan watershed of sandy land and bare land
were still quite high (Figure 10), and vegetation restoration has proven to be an effective
method to control land degradation. Therefore, considering the limitation of water resources
on vegetation restoration, planting grass and shrubs together with hydraulic structure
construction in the bare sandy land with deeply weathered coarse sandstone would be an
important strategy to reduce land degradation in the Huangfuchuan watershed.

5. Conclusions

This study assessed spatial and temporal variation of land degradation in the Huang-
fuchuan watershed of the northern LP. A comprehensive LDI was developed with the fuzzy
logic modelling method by considering different land degradation processes, i.e., vegetation
degradation, soil erosion, aridity, loss of soil organic carbon and land desertification.

Overall, vegetation restoration led to an evident increase in vegetation cover from
31.24% in 1990 to 40.72% in 2018. An increase over 10% of grassland and forest land and
a decrease in bare land and sandy area were detected due to the Grain for Green project
initiated in 1999. Average annual soil erosion rate simulated by the RUSLE model exhibited
more than 50% decrease from 1990 to 2018.

The integrated LDI showed an evident decrease from 0.68 in 1990 to 0.51 in 2018 in
the Huangfuchuan watershed, suggesting that land condition and ecological environment
had been improved due to various soil and water conservation projects during the past
decades. A great success has been achieved in land degradation prevention and control in
a fragile ecological environment region in the LP. This study proposed a valid framework
to assess multidimensional land degradation processes in the high erodible watershed.

Author Contributions: Conceptualization, P.T. and G.Z.; methodology, A.L., W.X. and Q.F.; software,
A.L. and W.X.; validation, Q.F.; investigation, A.L. and W.X.; resources, W.X.; data curation, W.X.;
writing—original draft preparation, A.L. and P.T.; writing—review and editing, A.L., P.T., G.Z., X.M.
and J.G.; visualization, A.L. and J.G.; supervision, P.T. and G.Z.; funding acquisition, P.T. and G.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Nos., U2243211, 42077076 and 42077075).

Data Availability Statement: Not applicable.

Acknowledgments: We thank the reviewers to provide valuable comments to improve the quality of
this paper. Great appreciations are also given to all the data centers, which provided essential help
for obtaining the datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Keith, H.; Vardon, M.; Stein, J.A.; Stein, J.L.; Lindenmayer, D. Ecosystem accounts define explicit and spatial trade-offs for

managing natural resources. Nat. Ecol. Evol. 2017, 1, 1683–1692. [CrossRef] [PubMed]
2. Yang, C.; Li, Q.; Chen, J.; Wang, J.J.; Shi, T.Z.; Hu, Z.W.; Ding, K.; Wang, G.H.; Wu, G.F. Spatiotemporal characteristics of land

degradation in the Fuxian Lake Basin, China: Past and future. Land Degrad. Dev. 2020, 31, 2446–2460. [CrossRef]
3. Kust, G.; Andreeva, O.; Cowie, A. Land degradation neutrality: Concept development, practical applications and assessment.

J. Environ. Manag. 2017, 195, 16–24. [CrossRef] [PubMed]
4. UNCCD. United Nations Convention to Combat Desertification—Global Land Outlook, 1st ed.; UNCCD Secretariat: Bonn, Germany,

2017. Available online: http://refhub.elsevier.com/S0012-8252(21)00190-2/rf2255 (accessed on 8 March 2022).
5. Gisladottir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112.

[CrossRef]

http://doi.org/10.1038/s41559-017-0309-1
http://www.ncbi.nlm.nih.gov/pubmed/28963477
http://doi.org/10.1002/ldr.3622
http://doi.org/10.1016/j.jenvman.2016.10.043
http://www.ncbi.nlm.nih.gov/pubmed/27825772
http://refhub.elsevier.com/S0012-8252(21)00190-2/rf2255
http://doi.org/10.1002/ldr.687


Remote Sens. 2022, 14, 4779 17 of 19

6. Hurni, H.; Giger, M.; Liniger, H.; Studer, R.M.; Messerli, P.; Portner, B.; Schwilch, G.; Wolfgramm, B.; Breu, T. Soils, agriculture
and food security: The interplay between ecosystem functioning and human well-being. Curr. Opin. Environ. Sustain. 2015,
15, 25–34. [CrossRef]

7. IPBES. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services—The Assessment Report on Land Degradation
and Restoration; Summary for Policymakers; IPBES Secretariat: Bonn, Germany, 2018. Available online: http://refhub.elsevier.
com/S0012-8252(21)00190-2/rf0905 (accessed on 20 February 2022).

8. Von Braun, J.; Gerber, N.; Mirzabaev, A.; Nkonya, E. The Economics of Land Degradation; ZEF Working Paper No. 109; Elsevier:
Amsterdam, The Netherlands, 2013. [CrossRef]

9. Costanza, R.; de Groot, R.; Sutton, P.C.; van der Ploeg, S.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the
global value of ecosystem services. Glob. Environ. 2014, 26, 152–158. [CrossRef]

10. Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [CrossRef]
11. Masoudi, M.; Elhaeesahar, M.; Cerdà, A. Risk Assessment of Land Degradation (RALDE) in Khuzestan Province, Iran. Eurasian

Soil Sc. 2021, 54, 1228–1240. [CrossRef]
12. Akinyemi, F.O.; Tlhalerwa, L.T.; Eze, P.N. Land degradation assessment in an African dryland context based on the Composite

Land Degradation Index and mapping method. Geocarto Int. 2019, 36, 1838–1854. [CrossRef]
13. Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.;

Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land
degradation and restoration. Ecol. Model. 2016, 319, 190–207. [CrossRef]

14. Geist, H.J.; Lambin, E.F. Dynamic causal patterns of desertification. Bioscience 2004, 54, 817–829. [CrossRef]
15. Mbow, C.; Brandt, M.; Ouedraogo, I.; De Leeuw, J.; Marshall, M. What four decades of earth observation tell us about land

degradation in the Sahel? Remote Sens. 2015, 7, 4048–4067. [CrossRef]
16. Vicenteserrano, S.; Cabello, D.; Tomás-Burguera, M.; MartínHernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A. Drought

variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices (1982–2011).
Remote Sens. 2015, 7, 4391–4423. [CrossRef]

17. Fiorillo, E.; Maselli, F.; Tarchiani, V.; Vignaroli, P. Analysis of land degradation processes on a tiger bush plateau in south West
Niger using MODIS and LANDSAT TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 56–68. [CrossRef]

18. Ajaj, Q.M.; Pradhan, B.; Noori, A.M.; Jebur, M.N. Spatial monitoring of desertification extent in western Iraq using LANDSAT
images and GIS. Land Degrad. Dev. 2017, 28, 10–37. [CrossRef]

19. Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361,
1108–1111. [CrossRef]

20. Zhang, Y.; Degroote, J.; Wolter, C.; Sugumaran, R. Integration of modified universal soil loss equation (MUSLE) into a GIS
framework to assess soil erosion risk. Land Degrad. Dev. 2009, 20, 84–91. [CrossRef]

21. Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a pan-European assessment of land
susceptibility to wind erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [CrossRef]

22. Feng, L.; Jia, Z.; Li, Q.; Zhao, A.; Zhang, Z.; Zhao, Y. Spatiotemporal change of aeolian desertification land distribution in northern
China from 2001 to 2015. J. Indian Soc. Remote Sens. 2018, 46, 1555–1561. [CrossRef]

23. Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan
Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [CrossRef]

24. Jiang, L.; Jiapaer, G.; Bao, A.; Li, Y.; Guo, H.; Zheng, G.; Chen, T.; De Maeyer, P. Assessing land degradation and quantifying its
drivers in the Amudarya River delta. Ecol. Indic. 2019, 107, 105595. [CrossRef]

25. Romshoo, S.A.; Amin, M.; Sastry, K.L.N.; Parmar, M. Integration of social, economic and environmental factors in GIS for land
degradation vulnerability assessment in the Pir Panjal Himalaya, Kashmir, India. Appl. Geogr. 2020, 125, 102307. [CrossRef]

26. Feng, Q.; Chaubey, I.; Engel, B.; Cibin, R.; Sudheer, K.P.; Volenec, J. Marginal land suitability for switchgrass, Miscanthus and
hybrid poplar in the Upper Mississippi River Basin (UMRB). Environ. Model. Softw. 2017, 93, 356–365. [CrossRef]

27. Cai, X.; Zhang, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol.-Columb. 2011, 45, 334. [CrossRef]
[PubMed]

28. Lewis, S.M.; Fitts, G.; Kelly, M.; Dale, L. A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the
United States. Comput. Electron. Agric. 2014, 103, 39–47. [CrossRef]
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