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Abstract: Forest carbon flux is critical to climate change, and the accurate modeling of forest carbon
flux is an extremely challenging task. The remote sensing model (the MODIS MOD_17 gross primary
productivity (GPP) model (MOD_17)) has strong practicability and is widely used around the world.
The ecological process (the Biome-BioGeochemical Cycles Multilayer Soil Module model (Biome-
BGCMuSo)) model can describe most of the vegetation’s environmental and physiological processes
on fine time scales. Nevertheless, complex parameters and calibrations pose challenges to the
application and development of models. In this study, we optimized all the input parameters of the
MOD_17 model for the calibration of the Biome-BGCMuSo model to obtain GPP with continuous
spatiality. To determine the contribution of input parameters to the GPP of different forest types, an
Extended Fourier Amplitude Sensitivity Test (EFAST) was performed on the Biome-BGCMuSo model
firstly. Then, we selected the sample points of each forest type and its different ecological gradients
(30 for each type), using the GPP simulation value of the optimized MOD_17 model corresponding
to the time and space scale to calibrate the Biome-BGCMuSo model, to drive the calibrated Biome-
BGCMuSo, and we simulated the different forest types’ net primary productivity (NPP). According
to dendrochronological measurements, the NPP simulation results were verified on the whole regional
scale. The results showed that the GPP values of different forest types were highly sensitive to C:Nleaf

(C:N of leaf), SLA1 (canopy average specific leaf area in phenological phase 1), and FLNR (fraction of
leaf N in Rubisco). The coefficient of determination (R2) between the simulated forest NPP and the
measured NPP was 0.64, and the root-mean-square (RMSE) was 26.55 g/C/m2/year. Our study aims to
reduce uncertainty in forest carbon fluxes simulated by the Biome-BGCMuSo model, providing feedback
for understanding forest ecosystem carbon cycling, vegetation productivity, and climate change.

Keywords: forest carbon fluxes; MODIS MOD_17 GPP; Biome-BGCMuSo; forest type; model incorporation

1. Introduction

Forests are an important part of terrestrial ecosystems and play an important role
in the global carbon cycle [1,2]. The forest ecosystem is the main carbon pool on land,
and its carbon content accounts for more than half of the entire terrestrial ecosystem [3].
However, due to the influence of climate change, human activities, and the natural growth
and degradation of forest vegetation, it shows a dynamic change law [4,5] and leads to
uncertainties in the simulation of carbon fluxes in different regions and forest types, so it is
always a challenge to model forest carbon fluxes accurately [6,7]. Vegetation productivity
is an important indicator for evaluating carbon flux including gross primary productivity
(GPP), net primary productivity (NPP), and net ecosystem exchange (NEE) [8,9].

The current methods for quantitative estimation of forest ecosystem productivity can
be summarized as: inventory method, eddy correlation method, and model method. The
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forest inventory method usually estimates the carbon storage in the forest by measuring the
change in biomass, and then obtains the net primary productivity through the conversion
factor [10]. The advantage of the inventory method is to directly measure the carbon storage
of vegetation and soil at the sample scale, but it has a long inventory cycle and suffers great
uncertainty from sample to area. The eddy covariance method has been proven to be accu-
rate in detecting changes in ecosystem carbon fluxes on fine time scales [11,12], but since
the sites are scarce and costly that makes it difficult to extend to regional-scale applications.
With the development of remote sensing technology, people can take advantage of the
macroscopic and dynamic characterizations of remote sensing and its unique application
potential in large-scale surveys that are spatially continuous. However, remote sensing
can only obtain instantaneous observation data and cannot provide continuous temporal
characterization; moreover, pure remote sensing information is also difficult for reflecting
the interaction between the forest ecosystem and the outside world [13,14].

For vegetation productivity simulation, current widely used models include two types:
light use efficiency (LUE) models and ecological process models. The LUE model based on
remote sensing can obtain regional-scale and time-continuous information. Representative
models include CASA [15], GLO-PEM [16], MODIS MOD17 model [17], C-Fix [18], etc.
However, such models cannot reflect the internal mechanism of the forest ecosystem or
the interaction between the forest ecosystem and the surrounding environment [13]. The
ecological process model can describe most of the physiological and ecological processes of
vegetation on fine time scales [19], such as photosynthesis, respiration and transpiration.
Representative models include TEM [20], BEPS [21], Biome-BGC [22], etc. However, the
ecological process models require a large amount of detailed ground information as input
data, and a series of related initialization states and vegetation physiological ecology; these
will result in great uncertainties especially in the regional application.

Many scholars in previous studies have used the incorporation of LUE model and ecologi-
cal process model to reduce the uncertainty of simulations of carbon fluxes. Chiesi et al. [23]
proposed a method for parameter calibration of the process model based on the incor-
poration of the remote sensing model (C-Fix)-process model (Biome-BGC); the mothed
suppressed the uncertainty of the simulation results, but the mothed was only applied to
a single ecological gradient in the Mediterranean region and its generalizability remains
unknown. The optimized MOD_17 model was used to couple the process model Biome-
BGC in the region, and the simulation results were demonstrated more accurately and
reliably [24–26], but this method was only suitable for single dominant tree species (Picea
crassifolia) in this region. Sánchez-Ruiz et al. [27] simulated forest-year NPP in the Spanish
peninsula based on the Monteith method and the Biome-BGC model incorporation, but it
is limited to a temperate oceanic climate area.

According to the research gaps mentioned above, our research aims were: (1) to
explore the sensitivity parameters for different forest types in the study area using the
extended Fourier analysis method; (2) to strengthen the robustness and applicability of the
incorporation of the remote sensing model and Biome-BGCMuSo model in obtaining forest
carbon fluxes; and (3) to reveal the temporal and spatial trends of forest NPP in typical
forest-covered areas such as the cold temperate zone of China, and the impact of climate
change on forest carbon fluxes as well.

2. Materials and Methods
2.1. Study Area

The Greater Khingan Mountains in Inner Mongolia (119◦36′26′′–125◦24′10′′E,
47◦03′26′′–53◦20′00′′N) are located in the northeast of Inner Mongolia Autonomous Region
(Figure 1) and are one of the four major state-owned forest areas in China. The main
ecological function area is 1.067 × 105 km2 (about 46% of the entire Greater Khingan
Mountains), and the main forest coverage rate is 79.56%. The region plays an irreplaceable
and important role in water conservation, oxygen production, carbon sequestration, soil
conservation, biological protection, and genetic diversity. This area belongs to the northern
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forest belt of Eurasia. It is an important barrier for China’s northern homeland security system
and a key forest carbon pool in China. The soil types in the study area are mainly brown
coniferous forest and swamp soil, with a thickness of about 40–60 cm [28]. It has an extremely
important strategic position of ecological construction. This area is located in the high latitude
and alpine zone, with an altitude of 400–1500 m. It belongs to the cold temperate continental
monsoon climate. The annual average temperature is −3.5 ◦C, extreme temperatures reach
−50.2 ◦C, and the annual precipitation levels from 300 to 450 mm are usually concentrated
in the range from July to September; it is one of the most sensitive areas in the world to
respond to climate change and the soil layer is poor.
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Figure 1. The location and forest observation sample sites in the Greater Khingan Mountains in
Inner Mongolia.

2.2. Data and Preprocessing
2.2.1. Meteorological Data and Dendrochronological Measurements

Model input meteorological files of Biome-BGCMuSo include daily minimum and
maximum temperature, daily average temperature, daily precipitation, daily shortwave
download radiation (Sard), daily average water vapor pressure difference (VPD) and
sunshine hours (Daylen). Therefore, we collected the ground meteorological element-driven
data (CMFD) with high spatial and temporal resolution from 1992 to 2018 in China [29]. This
dataset is produced by combining the existing international Princeton reanalysis data, GLDAS
data, GEWEX-SRB radiation data, and TRMM precipitation data as the background field, and
combining the conventional meteorological observation data of the China Meteorological
Administration, with a spatial resolution of 0.1◦ [30,31]. To keep the same size as the Biome-
BGCMuSo model simulation unit, we first used python (version 3.10) to convert 75,920
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(8 × 365 × 27) scene CFMD data from network Common Data Form (NetCDF) to Tag
Image File Format (TIFF) and then use the nearest neighbor interpolation method to
resample them into a resolution of 1 km (Albers projection, WGS-84 coordinate system).
Then, we extracted daily minimum temperature, daily maximum temperature and daily
precipitation data from the CMFD data. Finally, VPD, Sard and Daylen were calculated
using the MT-CLIM 4.3 algorithm for the Biome-BGCMuSo model-driven.

In order to verify the feasibility of parameters of the Biome-BGCMuSo model and the
accuracy of the simulation results, 46 sample plots were selected from the Greater Khingan
Mountains in Inner Mongolia during August 2013 and August 2016. The main forest types
included Larix gmelinii and Betula platyphylla pure forest, Larix and Betula mixed forests, etc.,
and forest structural parameters and dendrochronological measurements were carried out.
Collected samples were packaged back to the laboratory after the dendrochronological
measurements, and the annual ring width was measured by a WinDENDRO annual ring
analyzer with a measurement accuracy within 0.001 mm. The COFECHA algorithm was
used for manual cross-dating, and the DBH value of each standard sample tree was obtained
year by year. According to the biomass growth equations of each forest type [32,33], the
annual forest biomass increment was calculated, and also the average ratio of the biomass
to the carbon of Larix gmelini (0.5211) and Betula platyphylla (0.491) [34]; the forest NPP for
each plot was obtained, then they were used to verify the model simulation results.

2.2.2. Remote Sensing Data

In this study, the time series (2012–2015) of the GLASS LAI/f PAR product [35] was
obtained to optimizeMOD_17 model. GLASS LAI is a high-quality remote sensing data
product with a long time series, no missing data, and global coverage. During the pro-
duction procedure of this product, cloud removal, snow removal, missing value filling,
filtering and other processes had been carried out to reduce some errors and increase the
practical applications and the possibility of obtaining data, and they were provided free of
charge to users.

The land-use data were produced by using the fine resolution observation and global land
cover monitoring (FROM-GLC-seg) product (http://data.ess.tsinghua.edu.cn/index.html
(accessed on 25 June 2021)) from Landsat TM and ETM+ data, using the Random Forest (RF)
classifier with high overall accuracy. The CO2 concentration data are downloaded from
the observational dataset from the Mauna Loa Observatory in Hawaii (https://gml.noaa.
gov/obop/mlo/programs/esrl/co2/co2.html (accessed on 21 July 2021)). The soil texture
dataset is provided by the Resource and Environmental Science Data Center (RESDC) of
the Chinese Academy of Sciences (https://www.resdc.cn (accessed on 29 July 2021)); it is a
1:1 million soil-type map which was mapped on the second soil survey in China profile
data. The soil types were divided into three categories: sand, silt, and clay; their values
were in percentages, and the spatial resolution is 1 km. The DEM data were obtained
from ASTER GDEM (https://www.gscloud.cn (accessed on 5 September 2021)) and it was
used to calculate the slope and aspect datasets. In order to maintain consistency with the
simulated spatial scale of the Biome-BGCMuSo model, we reprojected and resampled the
above data into Albers projection, WGS-84 coordinate system with the resolution of 1 km.

2.3. Methods

To assess the spatiotemporal dynamic changes in forest NPP, the method we used
included four steps: first, the MOD_17 model was optimized using CMFD data, GLASS
LAI/f PAR products, and the value of εmax for the main forest types in the study area; sec-
ond, Biome-BGCMuSo was subjected to sensitivity analysis using the EFAST method, and
the most sensitive parameters were retained for the next calibration step; third, sample plots
representing different forest types were selected in the region, and the process model’s sen-
sitive parameters for each forest type were calibrated based on the model–model coupling
method; and fourth, the simulated forest NPP was validated using dendrochronological
measurements, together with the spatiotemporal dynamic changes in forest NPP and its

http://data.ess.tsinghua.edu.cn/index.html
https://gml.noaa.gov/obop/mlo/programs/esrl/co2/co2.html
https://gml.noaa.gov/obop/mlo/programs/esrl/co2/co2.html
https://www.resdc.cn
https://www.gscloud.cn
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relationship with climatic factors were analyzed. Figure 2 shows the overall flowchart of
the approach used in this study. Details of each step are given in subsequent sections.
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2.3.1. The MOD_17 Model

The MOD_17 model [36] was developed according to the radiation conversion effi-
ciency theory of Monteith [37], a remote sensing-based light energy utilization model. The
MODIS GPP algorithm can be expressed as:

GPP = εmax × f(Tmin) × f(VPD) × APAR (1)

APAR = PAR×f PAR (2)

where εmax is the maximum LUE; PAR is the incident photosynthetically active radiation;
f PAR is the fraction of PAR absorbed by vegetation; f(Tmin) and f(VPD) are the scalars of
the minimum air temperature and VPD, respectively. The values of f(Tmin) and f(VPD)
vary from in the range of [0, 1]. The expressions of f(Tmin) and f(VPD) are as follows:
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f(Tmin) =


0, Tmin<Tminmin

Tmin−Tminmin
Tminmax−Tminmin

, Tminmin<Tmin<Tminmax

1, Tmin>Tminmax

(3)

f(VPD) =


0, VPD>VPDmax

VPDmax−VPD
VPDmax−VPDmin

, VPDmin<VPD<VPDmax

1, VPD<VPDmin

(4)

where VPD and Tmin are 8-day averaged values, and Tminmin, Tminmax, VPDmax, and VPDmin
are parameters derived from Biome Properties Look-Up Table, and their values vary with
vegetation types.

In this study, we first collected εmax for the test site according to the literature studied
at similar study areas with similar latitudes consistent with the cold-temperate vegetation
of the Greater Khingan Range (Table S1). Then, we used the processed meteorological
data to optimize f(Tmin) and f(VPD). Finally, the GLASS LAI/f PAR products were used to
simulate the different forest-type GPP values from 2012 to 2015 and the values were used
to calibrate the Biome-BGCMuSo model.

2.3.2. Biome-BGCMuSo Model

The Biome-BGCMuSo model was developed from the Biome-BGC model series [38],
and we use the latest version of the model, Biome-BGCMuSo 6.2. Compared with Biome-
BGC, Biome BGCMuSo improves the model’s ability to simulate carbon and water cycles in
managed ecosystems and provides options for managing cropland, grassland, and forest,
among which the most important modules of the model are the carbon flux module, phenol-
ogy module and soil flux module. The GPP of vegetation is calculated by Farquhar’s [39]
photosynthetic reaction mechanism model in the carbon flux module, and maintenance
respiration is a function of reactive nitrogen content. Leaf development affects the accu-
mulation of carbon and nitrogen in leaves, stems, roots, and litter, and is calculated by
the phenology module. The soil flux module describes the decomposition of dead plant
material and soil carbon pools [40].

The time scale of the Biome-BGCMuSo model is daily, and at least four input files
are used for each execution: they are initialization file (INI file), meteorological data file
(MET file), soil property file (SOIL file), and physiological ecological parameter file (EPC
file). The simulation process of the model is divided into two stages: the first phase is the
spinup simulation, where the model runs from a lower soil carbon and nitrogen level and it
stops until a steady state is reached; the second phase is the normal simulation stage, which
uses the initial values obtained in the initialization stage to simulate NPP of GPP [38]. To
bring the model to an equilibrium state, daily meteorological data from 1992 to 2018 were
selected and used in this study; in the procedure, the first 20 years were used for the spinup
simulation phase and the last 7 years for the normal simulation phase.

2.3.3. Sensitivity Analysis

The EFAST method is a global sensitivity analysis method of model variance analysis
proposed by Sailteli et al. [41], which combines the advantages of the Sobel method and
the Fourier amplitude sensitivity test method. It has the advantages both of stability and
fast calculation. Considering the complexity of the physiological and ecological parameters
of the Biome-BGCMuSo model and the close interaction between the parameters, the
influence of each physiological and ecological parameter on the output of the model is
mainly represented by the first-order sensitivity index and the total sensitivity index. The
first-order sensitivity index mainly reflects how much the variance of the model output can
be reduced when a certain parameter value is fixed as the true value. The total sensitivity
index refers to the sum of the first-order sensitivity index and the interaction sensitivity
index between this parameter and other parameters. The total sensitivity index is suitable
for global, quantitative, and model-independent sensitivity analysis.
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The EFAST method often uses a search function to search in the multidimensional
space of parameters, and obtains the sensitivity index by estimating the contribution rate
of each data input Xi to the variance of the result Y, which can be expressed as:

Y = f (X) = f (X1, X2, · · · , Xn) (5)

where Xi (n = i) indicates that each input parameter has its own value range to indicate its
uncertainty. The total variance of the model output can be expressed as:

VY = ∑
i

Vi + ∑
i

∑
j>i

∑
k>j

Vijk+. . . + V1,2,. . . .n (6)

where Vi= V
(
E
(
Y/Xi= x∗i

))
, Vij= V

(
E
(

Y
Xi
= x∗i , Xi= x∗j

))
−Vi−Vj, and other variance

calculation methods can be deduced in turn. E
(
Y/XI= x∗i

)
represents the expected value of

Y when Xi takes a fixed value xi. The first-order sensitivity index of the parameter Si= Vi/V
has a value range between 0 and 1, and the sensitivity index quantifies the influence of
the parameter Xi on the results. The total sensitivity index STi is the sum of the first-order
sensitivity index of this parameter and the interaction sensitivity index of this parameter
with other parameters: STi= Si+Sij+Sijk+Sijk+Sijk. . . m [42].

Sensitivity analysis of the Biome-BGCMuSo model was carried out in SimLab2.2. A total
of 51 parameters were selected in the EPC input file (Table 1), and the variation range of each
parameter was fluctuated around 20% [43]. To evaluate the selected 51 input parameters, we
first sampled each parameter uniformly by the Monte Carlo method according to its range
(Tables S2, S3 and S4), with a sampling frequency of 3315 (51 × 65) for each forest type. The
total sampling frequency was 9945 (3315 × 3). Next, the Biome-BGCMuSo model was run
in batches with the generated multiple sets of input parameters, and the statistical annual
GPP averages of different forest types from 2012 to 2018 were input into SimLab2.2 for
sensitivity analysis. Finally, the sensitivity indices (Si and STi) were divided into 3 groups:
the indices with values greater than 0.2 were set as high sensitivity indices; the values
between 0.1 and 0.2 were set as medium sensitivity indices; and the indices with values
less than 0.1 were set as low sensitivity indices.

Table 1. Selected input parameters of Biome-BGCMuSo used in the sensitivity analysis.

Number Parameter Description Unit

1 TGP transfer growth period as fraction of growing season prop.
2 LGS litterfall as fraction of growing season prop.
3 LFRT annual leaf and fine root turnover fraction 1/yr
4 LWT annual live wood turnover fraction 1/yr
5 FM annual fire mortality fraction 1/yr
6 WPM whole-plant mortality fraction in vegetation period 1/yr
7 C:Nleaf C:N of leaves kgC/kg N
8 C:Nlit C:N of leaf litter, after retranslocation kgC/kg N
9 C:Nfr C:N of fine roots kgC/kg N

10 C:Nlw C:N of live wood kgC/kg N
11 C:Ndw C:N of dead wood kgC/kg N
12 DMCleaf dry matter carbon content of leaves (kgC/kgDM)
13 DMClit dry matter carbon content of leaf litter (kgC/kgDM)
14 DMCfr dry matter carbon content of fine roots (kgC/kgDM)
15 DMCf dry matter carbon content of fruit (kgC/kgDM)
16 DMCs dry matter carbon content of soft stem (kgC/kgDM)
17 DMClw dry matter carbon content of live wood (kgC/kgDM)
18 DMCdw dry matter carbon content of dead wood (kgC/kgDM)
19 Llab leaf litter labile proportion DIM
20 Lcel leaf litter cellulose proportion DIM
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Table 1. Cont.

Number Parameter Description Unit

21 FRlab P fine root labile proportion DIM
22 FRcel fine root cellulose proportion DIM
23 Flab fruit litter labile proportion DIM
24 Fcel fruit litter cellulose proportion DIM
25 DWcel dead wood cellulose proportion DIM
26 Wint canopy water interception coefficient 1/LAI/d
27 k canopy light extinction coefficient DIM
28 SPLR all-sided to projected leaf area ratio DIM
29 LAIall:pro ratio of shaded SLA:sunlit SLA DIM
30 FLNR fraction of leaf N in Rubisco DIM
31 gsmax maximum stomatal conductance (projected area basis) m/s
32 gcl conductance (projected area basis) m/s
33 gbl boundary layer conductance (projected area basis) m/s
34 SW stem weight corresponding to maximum height (kgC)
35 Rdmax maximum depth of rooting zone (m)
36 GR growth resp per unit of C grown (prop.)
37 MRpern maintenance respiration in kg C/day per kg of tissue N (kgC/kgN/d)
38 NSC:Scmax theoretical maximum prop. of non-structural and structural carbohydrates (DIM)
39 NSCMR of non-structural carbohydrates available for maintenance respiration (DIM)
40 SWClim2 minimum of soil moisture limit2 multiplicator (full anoxic stress value) prop
41 VPDs vapor pressure deficit: start of conductance reduction Pa
42 VPDc vapor pressure deficit: complete conductance reduction Pa
43 TRwsl turnover rate of wilted standing biomass to litter prop
44 TRcwl turnover rate of non-woody cut-down biomass to litter prop
45 SLA1 canopy average specific leaf area in phenological phase 1 m2/kg
46 SLA2 canopy average specific leaf area in phenological phase 2 m2/kg
47 SLA3 canopy average specific leaf area in phenological phase 3 m2/kg
48 SLA4 canopy average specific leaf area in phenological phase 4 m2/kg
49 SLA5 canopy average specific leaf area in phenological phase 5 m2/kg
50 SLA6 canopy average specific leaf area in phenological phase 6 m2/kg
51 SLA7 canopy average specific leaf area in phenological phase 7 m2/kg

2.3.4. Incorporation of the MOD_17 and Biome-BGCMuSo

After sensitivity analysis by the EFAST method, the sensitive parameters of the Biome-
BGCMuSo model (sensitivity index greater than 0.1) were retained, the sensitivity param-
eters were sorted according to the level of the parameter sensitivity, and the sensitivity
parameters were calibrated for each forest type with respect to specific environmental
factors. First, we selected sample points (30 for each type) of each forest type and its
different ecological gradients (site conditions, meteorological conditions, stand struc-
ture, productivity, etc.) to simulate GPP from 2012 to 2015 (the number of samples is:
30 × 4 years × 23 layers × 3 = 8280). Then, the optimized MOD_17 model was used to fit
the GPP simulation values of the Biome-BGCMuSo model corresponding to the spatiotem-
poral scale. During the fitting process, the parameters were adjusted according to the order
of the sensitivity index. The globally representative calibration parameters in the process
model are obtained when the fitting results are stable.

3. Results
3.1. Optimization of the MOD_17 Model

The optimized MOD_17 model was used to estimate the forest GPP in the Greater
Khingan Mountains forest area of Inner Mongolia. Figure 3 shows the distribution of GPP
in different forest types in 2012, 2013, 2014, and 2015. The highest GPP values was acquired
by deciduous coniferous forest (DNF), next was deciduous broad-leaved forest (DBF), then
the third was mixed coniferous (MF).
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The highest value for DBF GPP was in 2013 and the highest value for DNF and MF
GPP was in 2014. Table 2 shows the descriptive statistical results of the annual mean value
of GPP for different forest types, including year, forest type, number of pixels (Count),
mean (Mean), maximum value (Max), minimum value (Min), standard deviation (STD),
and coefficient of variation (CV).

Table 2. GPP statistical results of the MOD_17 model simulation after optimization.

Year Forest Type Count Mean STD Min Max CV (%)

2012 DBF 41,583 635.48 130.39 176.43 1269.95 20.52
DNF 7651 977.62 160.46 378.92 1585.82 16.41
MF 22,631 641.17 114.07 160.94 1067.52 17.79

2013 DBF 41,580 737.82 118.83 108.4 1242.4 16.1
DNF 7651 1008.21 144.6 357.08 1571.69 14.34
MF 22,630 657.27 102.53 167.75 989.16 15.6

2014 DBF 41,575 646.63 139.75 138.71 1312.03 21.61
DNF 7650 1000.89 158.98 388.92 1643.15 15.88
MF 22,628 665.82 114.89 175.5 1055.16 17.25

2015 DBF 41,578 561.34 125.7 139.76 1160.08 22.39
DNF 7649 927.53 157.95 353.94 1509.93 17.03
MF 22,628 611.4 110.91 163.67 1012.6 18.14

The uncertainty (CV) fluctuation of DBF had the largest range, spanning from 16.1%
to 22.39%, and the range of GPP value was 108.4–1312.03 g/C/m2/year. The smallest
uncertainty fluctuation range of DNF ranged from 14.34% to 17.03%, and the GPP value
range was from 353.94 to 1643.15 g/C/m2/year. In general, the uncertainty fluctuation
range of GPP was [14.34%, 22.39%], the annual average value of GPP ranged from 561.34 to
1008.21 g/C/m2/year, and the range of GPP value was [108.4, 1643.15] g/C/m2/year.
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3.2. Sensitivity Analysis of Biome-BGCMuSo

The mean annual GPP of different forest types in the study area and the first-order
sensitivity index (Si) and total sensitivity index (STi) of the selected 51 parameters are shown
in Figure 4, and the sensitive parameters are on the right side of the red solid line. The
total sensitivity index was greater than the first-order sensitivity index, indicating that the
interaction among the 51 parameters was much larger than the influence of a single parameter.
The most sensitive first-order sensitivity and total sensitivity index of the annual GPP mean of
DNF, DBF and MF were C:Nleaf and SLA1. The first-order sensitivity index was 0.3, 0.43 and
0.25, respectively, and the second-order sensitivity was 0.81, 0.68 and 0.69, respectively.
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The mean annual GPPs of the different forest types are all sensitive to five parameters,
namely C:Nleaf, SLA1, k, FLNR and LWT. It is worth noting that the sensitivity parameters
were also different between the forest types, where MF and DBF were both sensitive to
TRwsl and VPDc, while DNF was not sensitive to these two parameters.
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3.3. Calibration of Biome-BGCMuSo Mode

After the EFAST method was used to analyze the sensitivity of the physiological and
ecological parameters of the Biome-BGCMuSo model, the results of calibrating the sensi-
tive parameters of the model for different forest types were shown in Figure 5. The GPP
values simulated by the optimized MOD_17 model are in agreement with the GPP values
simulated by the calibrated Biome-BGCMuSo model. The best effect is DNF, R2 = 0.84,
RMSE = 24.16 g/C/m2/16d; followed by MF, with R2 = 0.81 and RMSE = 17.25 g/C/m2/16d;
the last one is DBF, with R2 = 0.76 and RMSE = 15.39 g/C/m2/16d.
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Through the dendrochronological measurements of 46 sample plots collected in the
Greater Khingan Mountains area of Inner Mongolia in 2013 and 2016, some samples with
serious interference and large measurement errors were screened. After conversion to
forest NPP, they were verified with the calibrated Biome-BGCMuSo model. The results are
as follows (Figure 6). The verification results showed that the calibrated Biome-BGCMuSo
model simulates the forest NPP better, with R2 = 0.64 and RMSE = 26.55 g/C/m2/year.
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3.4. The Spatial and Temporal Dynamics Analysis of Forest NPP

To analyze the temporal and spatial trends of forest NPP in the study area, the cali-
brated Biome-BGCMuSo simulated forest NPP in the study area and calculated the average
forest NPP from 2012 to 2018. The results are shown in Figure 7a. The annual mean value
of forest NPP ranged from 26.83 to 718.27 g/C/m2/year, which was low in the middle
and high in the east and west in terms of spatial distribution. Figure 7b shows the forest
NPP variation trend from 2012 to 2018. It revealed that the temporal variation trend of
forest NPP was not obvious. The variation range of most areas was between −42.25 and
2.5 g/C/m2/year, while the regional change trend was obvious and showed a negative
growth trend. Figure 8 shows the time distribution trend of NPP in different forest types
in the growing season from 2012 to 2018. The highest NPP value in the growing season is
coming from deciduous coniferous forest (DNF), next was coniferous and broad-leaved
mixed forest (MF), the third was deciduous broad-leaved forest (DBF). During the seven-
year period, the NPP in the growing season did not change significantly and showed a
slow growth trend.

Figure 9 shows the correlation analysis results of the annual mean value of NPP and
climatic factors in the forest growing season in the Greater Khingan Mountains forest area
of Inner Mongolia. The correlation coefficient matrix (Figure 9) shows that the annual
mean NPP of the forest growing season from 2012 to 2018 has an upward trend with a
correlation coefficient of 0.54. The annual mean value of NPP in the forest growing season
was positively and strongly correlated with VPD and Tmean, which were 0.82 and 0.81,
respectively. The weak correlation with Sard was 0.11 and the negative correlation with
PRE was −0.66.

Figure 10 shows the statistical results of the annual average forest NPP dynamics and
climatic factors in the Greater Khingan Mountains forest area of Inner Mongolia. The statistical
data were only calculated for the forest growing season. From 2012 to 2018, the average
temperature of the growing season in the study area was between 10.1~12.3 (◦C), the annual
precipitation was between 230~770 (mm), the average saturated vapor pressure was between
660~830 (Pa), and the annual shortwave radiation was 1.14~1.95 (106 W/m2). Among them,
the change trend of forest NPP was basically consistent with the change trend of average
vapor pressure and average temperature, which was opposite to the change trend of annual
precipitation and the change trend of annual shortwave radiation was not obvious.
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4. Discussion

This study showed that the incorporation strategy of the MOD_17 model and the
Biome-BGCMuSo model can effectively reduce the uncertainty during the simulation of
carbon fluxes in different forest types at the Greater Khingan Mountains, Inner Mongolia,
in the cold temperate zone. By calibrating the MOD_17 model with the optimized Biome-
BGCMuSo model, the correlation coefficient between the simulated forest NPP and the
measured forest NPP was 0.64. Although the model was not validated with observational
data such as flux sites in the study area, the simulation results were validated with two
sample plot data points and tree dendrochronological measurements. Compared with
the observation data such as flux sites, the sample plot data and dendrochronological
measurement data had the characteristics of various disturbance scenarios and multihabitat
conditions, strong spatial continuity, long-term scales, and many samples; the phenomenon
revealed the effectiveness of the simulation through the incorporation model strategy and
confirmed the reliability and global representation of forest carbon fluxes simulation.

The MOD_17 model has strong practicability and has been widely used at regional,
national and even global scales, but the parameters of the Biome Properties Look-Up Table
have significant uncertainties, which depend on the quality of remote sensing data, model
parameterization schemes and empirical knowledge [44,45]. Therefore, we optimized each
parameter. Among them, εmax had not been recalibrated but the εmax consistent with the cold
temperate forest type had been collected through the literature data. The f (Tmin), f (VPD),
and PAR were calculated from CMFD data with a time-resolve of 3 h [31], providing a basis
for obtaining carbon fluxes with temporal and spatial continuity. The f PAR was derived
from the GLASS LAI/f PAR product, which had been proven to be reliable [35].

Biome-BGCMuSo is a newly developed process model of Biome-BGC that is widely
used to simulate forest NPP, but the sensitivity analysis of many parameters and model
calibration are the key steps in forest carbon flux simulation. The results of our sensitivity
analysis of the Biome-BGCMuSo model showed that there were five sensitive parameters
that had important effects on different forest types. However, many parameters in the
Biome-BGCMuSo model were extremely insensitive to GPP, such as TGP (transfer growth
period as a fraction of growing season), LGS (litterfall as a fraction of growing season),
DMCleaf (dry matter carbon content of leaves), DMCf (dry matter carbon content of fine
roots), etc. The parameters that controlled the carboxylation rate of photosynthesis, such
as C:Nleaf, SLA1 and FLNR, had the greatest impact on the GPP of different forest types,
and the results were consistent with White et al. [43] and Ren et al. [46]. These three
parameters determined the size of the maximum carboxylation rate, and the Rubisco
enzyme directly affected the carboxylation of vegetation to fix atmospheric CO2. If the
nitrogen content of Rubisco enzyme increased its activity would be promoted, thereby
enhancing photosynthesis and promoting organic substance accumulation [47,48].

A strategy based on the incorporation of parametric models and ecological process
models to simulate carbon fluxes with temporal and spatial continuity had been proven
to be reliable and effective for Mediterranean forests and single dominant tree species
in cold temperate zones [23–26], but feasibility experiments had not been carried out on
different forest types in the cold temperate zone. Due to the heterogeneity of the growth
environment, different forest types and the same forest type under different habitats
had different physiological and ecological adaptation mechanisms, so it was difficult to
calibrate the parameters of the Biome-BGCMuSo model on a regional basis, and it would
result in the model distortion simulation [23]. Therefore, by incorporating the optimized
MOD_17 model and the calibrated Biome-BGCMuSo model, it was effective to suppress
the simulation of different forest types and it was possible to simulate carbon flux with
spatial and temporal continuity.

Although we have reduced the uncertainty of the carbon flux simulation of different
forest types in the Greater Khingan Mountains forest area of Inner Mongolia through the
model–model coupling strategy, the simulation scale of the Biome-BGCMuSo model is
1 km, so the problem of pixel mixing cannot be avoided. The key to solving this problem
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is to use high-resolution remote sensing products. Although the classification products
used in this study are fine classification products with a resolution of 30 m, the problem of
pixel mixing cannot be avoided after resampling to 1 km. In addition, due to differences in
model structure, parameter values, and driving data among different models, even if the
coupling between models can improve the global representation of sensitivity parameter
calibration, there are still errors in the simulation of forest ecological processes in large-area
time series. In the model simulation, state parameters (such as LAI, soil moisture, freeze-
thaw state, etc.) have large uncertainties, which will cause error transmission during the
simulation process. Data assimilation is an objective and quantitative analysis method that
integrates observations with heterogeneous, irregular distributions and different precisions
on various types of spatiotemporal scales into the model, and obtains the best guesses for
model parameters and state variables as much as possible [49].

The response of forest NPP to climate change is complex, and different forest types
vary greatly. Climate controls the formation of forest NPP by changing environmental
conditions to affect the physiological structure and process of forests, so changes in NPP
can reflect the response of forest ecosystems to the environmental climate [50]. Generally,
forest NPP has a positive response to precipitation changes, and has both positive and
negative responses to temperature changes, but the response to temperature is stronger
than that to precipitation. This study found that from 2012 to 2018, the forest NPP in
the Greater Khingan Mountains, Inner Mongolia, had a positive response to the average
temperature and average saturated vapor pressure, which was consistent with the results
of He et al. [51] and Li et al. [52]. However, the difference is that we found a negative
response between forest NPP and precipitation, which may have the following two reasons:
First, the response of temperature to climate in the study area is much stronger than that of
precipitation, especially in cold places. The annual average temperature in our selected
study area is −3.5 ◦C and the extreme temperature reaches −50.2 ◦C, so the forest NPP
may be more sensitive to temperature. Second, it may be due to the mutual interference of
different climatic factors and the joint action of multiple factors. As shown in Figure 10, the
minimum value of forest NPP in the study area was in 2013, and the average temperature,
average saturated vapor pressure and annual shortwave radiation were the minimum
values in 7 years, while the annual precipitation was the highest value in 7 years. Through
the joint action of multiple factors, the stomatal conductance of plants is reduced or even
closed, and both plant transpiration and photosynthesis are significantly reduced, thereby
reducing the accumulation of dry matter.

From 2012 to 2018, the annual mean value of forest NPP ranged from 26.83 g to
718.27 g/C/m2/year, which was positively and strongly correlated with VPD and Tmean:
0.82 and 0.81, respectively. The weak correlation with Sard was 0.18, and the correlation
with Pre was negatively correlated at −0.66. In terms of spatial distribution, it is low in
the middle and high on the four sides; in terms of temporal trend, the change trend is
not obvious, although it shows slow growth. The results showed that the GPP values of
different forest types were highly sensitive to C:Nleaf (C:N of leaf), SLA1 (canopy average
specific leaf area in phenological phase 1), and FLNR (fraction of leaf N in Rubisco).

In summary, this study also has some shortcomings, which can reduce the uncertainty
sources of model simulation from the following aspects: (1) For the Biome-BGCMuSo
model, site-specific input parameter values can achieve the best simulation of forest carbon
flux, but some input parameters cannot be observed (such as Lcel, Llab, etc.), and it is
difficult to obtain the variation range of parameters. How to collect and determine the range
of these parameters needs to be further considered and explored; (2) The Biome BGCMuSo
model improves the ability to simulate the carbon and water cycles in managed ecosystems.
The simulation process is based on grids and does not consider the flow of matter and
energy between grids; (3) We only used the sample plot data and dendrochronological
measurement data to verify the results of forest carbon flux simulation in the study area,
with low time resolution; (4) Although we simulated forest carbon flux with satisfactory
spatial and temporal resolution through the strategy of model–model coupling, we did
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not consider disturbances such as forest diseases and insect pests, forest land changes, and
forest fires.

5. Conclusions

Based on the strategy of incorporating the optimized remote sensing model and the
ecological process model, this study simulated the carbon flux of different forest types in
the Greater Khingan Mountains forest region of Inner Mongolia from 2012 to 2018, and
then analyzed the spatial and temporal dynamic changes in forest carbon flux over the
past 7 years. The results showed that C:Nleaf, SLA1 and FLNR were the most sensitive
parameters of DNF, DBF and MF. Using the incorporation of optimized MOD_17 model and
Biome-BGCMuSo, the simulated forest carbon flux can effectively suppress the distortion
simulation of different forest types, which is verified by dendrochronological measurements
data, and the effect is good.
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//www.mdpi.com/article/10.3390/rs14194766/s1. Table S1. The values of maximum light use
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parameters descriptions of DBF; Table S4. Input parameters descriptions of MF.
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