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Abstract: This study assessed the impact of assimilating the Fengyun-4A (FY-4A) Advanced Geosyn-
chronous Radiation Imager (AGRI) observations on the Super Typhoon “In-Fa” event based on the
Weather Research and Forecasting Data Assimilation (WRFDA) system of the three-dimensional vari-
ational data assimilation (3DVAR) method. It was found that the two water vapor channels 9–10 from
the full-disk AGRI datasets yield relatively stable results in terms of the track forecast of In-Fa. A new
cloud-detection method using a Particle Filter (PF) was firstly employed to remove the cloud-affected
observations by identifying the channel’s weighting function. Compared to the other cloud-detection
schemes based on the AGRI “Cloud_Binary_Mask” (CLM) products, the PF method is conducive to
reducing the track error of typhoon prediction after improving the utilization of observations under
clear-sky conditions. Furthermore, the proposed cycling assimilation scheme has a potential positive
effect on the intensity forecast of In-Fa. It seems that assimilating the FY-4A AGRI radiance data
improves the predictability of Typhoon In-Fa by adjusting the atmospheric environment.

Keywords: data assimilation schemes; cloud detection; Super Typhoon In-Fa; FY-4A AGRI

1. Introduction

In recent years, the improvement in numerical weather prediction (NWP) has been
closely related to the development of both advanced satellite detection equipment and
the technology of data assimilation systems [1–3]. A considerable number of studies
have focused more on polar-orbiting satellite data assimilation, which has been proven
to be an effective means of weather forecasting [4–6]. However, some crucial stages in
the mesoscale system evolution cannot be continuously monitored by the polar-orbiting
satellites. Unlike polar-orbiting satellites, geosynchronous equatorial orbit (GEO) satellites
are able to effectively supplement the sparse observations in time and space, which appears
especially important for predicting mesoscale weather systems [7].

The assimilation of geostationary satellite radiances has been shown to make a valuable
contribution to atmospheric analysis and weather forecasts [8,9]. For instance, the accuracy
of precipitation and tropical storm forecasts has been improved with the assimilation of
Geostationary Operational Environmental Satellite (GOES)-11/12 and GOES-13/15 radi-
ances, respectively [10,11]. Qin et al. (2018) [12] proved that the Advanced Baseline Imager
(ABI) on the GOES-R satellite plays a pivotal role in better estimating both temperature
and specific humidity analyses. Following the launch of the new-generation geostationary
meteorological satellites, Himawari-8/9, by the Japan Meteorological Agency [13], their
series of high-performance instruments have attracted many researchers. An Advanced
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Himawari Imager (AHI) experiment with 10 infrared channels generated larger improve-
ments in quantitative precipitation forecasts over the ocean of the southeast coast of China
than either an AHI experiment with four GOES-like infrared channels or the control ex-
periments [14]. This was due to additional moisture information in the middle and low
troposphere. Similarly, Sawada et al. (2019) [15] showed great progress in the convective
predictability of severe rainfall by assimilating the Himawari-8 infrared radiances every
10 min. Advances in the prediction of severe storms could also be traced back to the
assimilation of Himawari-8 all-sky infrared radiances [16]. In addition, the impacts of
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on Meteosat Second Generation
(MSG) was emphasized by comparison with the polar-orbiting satellite radiances in the
Aladin/France numerical weather prediction [17]. The SEVIRI radiances are conducive
to the forecast skills of a fast-evolving system based on the different data assimilation
schemes [18–20]. Benefits of geostationary satellite radiance assimilation are also of great
significance to the prediction of typhoon or hurricane systems. Wang et al. (2017) [21]
assimilated the Cross-track Infrared Sounder (CrIS) cloud-cleared radiances from Suomi-
NPP for the forecasts of Hurricanes Joaquin (2015) and Matthew (2016). The assimilation
of all-sky infrared radiances from Himawari-8 had a positive impact on the two cases of
Typhoon Soudelor (2015) and Typhoon Malakas (2016) [22,23]. Simulated radiances of the
183 GHz water vapor absorption band from the future geostationary microwave sounder
(GEOMAS) were evaluated for Typhoon Lekima (2019) forecasting in the Weather Research
and Forecasting (WRF) model’s data assimilation (WRFDA) system [24].

Following the Chinese launch of new-generation geostationary meteorological satel-
lites, the various technical indicators of Fengyun-4A (FY-4A) have achieved the international
advanced standard. Considering the demands of atmospheric information, FY-4A was
loaded with the advanced technologies of the Advanced Geosynchronous Radiation Im-
ager (AGRI), Geostationary Interferometric Infrared Sounder (GIIRS), Lightning Mapping
Imager (LMI), and Space Environment Package (SEP) [25]. Chen et al. (2020) [26] proved
the added value of Atmospheric Motion Vectors (AMVs) derived from FY-4A for the analy-
ses and wind forecasts. The capability of monitoring the typhoon core areas by the LMI
detector has been confirmed via a comparison with the World Wide Lightning Location
Network (WWLLN) [27]. The assimilation of FY-4A GIIRS data was explored by Yin et al.
(2021) [28], which demonstrated the efficient performance of higher spectral-temporal
resolution radiances in Typhoon Maria (2018) prediction. Furthermore, more research work
has been undertaken on the characteristics of FY-4A AGRI datasets. Geng et al. (2020) [29]
and Zhu et al. (2020) [30] evaluated the bias characteristics of the AGRI’s fourteen channels.
They proved that AGRI channels 9–10 have relatively smaller deviations than the AGRI
window channels. The atmospheric temperature and humidity could be adjusted by AGRI
two water vapor (WV) channels 9–10 [31]. Based on these findings, it is believed that assim-
ilating the high spatial and temporal resolution radiance data of AGRI has the potential to
improve the prediction accuracy in NWP models.

The infrared signals affected by clouds are not able to radiate the Earth’s surface.
Considering the complex cloud-related processes, only infrared radiance data under clear-
sky conditions can be assimilated. To be specific, “clear-sky radiance” refers to the part
of the observed radiance after discarding a large number of cloud-affected observations.
Regarding clear-sky radiance assimilation, cloud detection, as one of the essential proce-
dures, is designed to effectively remove cloud-affected radiance data [32–34]. English et al.
(1999) [35] adopted a likelihood method to determine the probability of cloudless condi-
tions given the observations. A channel-dependent cloud-detection algorithm proposed
by McNally et al. [36] seeks to identify clear channels by ranking the Infrared channels.
For the identification of multi-layer clouds, the Multivariate Minimum Residual (MMR)
method minimizes a cost function at each field of view (FOV) [37,38]. A new ensemble-
based method for retrieving clouds is proposed in Xu et al. (2016) [39], which applies the
Particle Filter (PF) algorithm based on Bayesian theory. The study was the first attempt
to apply the new cloud-detection method of PF for infrared radiance assimilation under
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clear-sky conditions. The unique capability of the proposed PF method is to remove the
cloud-affected pixels by identifying the channel’s weighting function.

The Super Typhoon In-Fa was one of the most powerful tropical cyclones on record,
and caused extensive damages in China. In this study, the impact of FY-4A AGRI satel-
lite data assimilation on the prediction of Typhoon In-Fa was assessed with the three-
dimensional variational (3DVAR) method in the WRFDA system. Two cloud-detection
schemes were compared for the proposed PF method and the AGRI L2-level products
of Cloud_Binary_Mask (CLM). Furtherly, cycling assimilation schemes were designed to
enhance the role of AGRI radiance data assimilation in typhoon predictability.

The remainder of this study is structured as follows. A brief introduction to FY-4A
AGRI radiances, and the data pre-processing steps, is provided in Section 2. An overview
of the typhoon case along with the experimental design is described in Section 3. Section 4
presents the main results, before conclusions and discussions are presented in the last section.

2. Observation, Methodology and Experiments
2.1. AGRI Radiance Data and Pre-process

The FY-4A AGRI enabled great progress to be made in terms of both advanced ra-
diometric accuracy and higher scanning frequency [40]. With 14 spectral bands ranging
from visible (VIS) (0.45 µm) to long-wave infrared (IR) (13.8 µm), AGRI is capable of detect-
ing short-term atmospheric circulation changes with respect to the evolution of extreme
weather systems. The high spatial resolution of 4000M AGRI L1 Full Disk and 4000M AGRI
L1 GEO datasets were considered for data assimilation. The study mainly focused on the
AGRI infrared channels 7–14 with the details listed in Table 1. The mid-wave IR channels
7–8 have the capabilities of observing the cloud and surface features. Channels 11–13 are IR
window bands with large sensitivities to the topographic conditions. Two IR spectral bands
of channels 9–10 and channel 14 are characterized with low atmospheric transmittance and
high atmospheric absorbability.

Table 1. Characteristics of FY-4A AGRI for each channel.

Channel Channel Type
Central

Wavelength
/µm

Spectral Band
/µm

Spatial
Resolution

/km
Main Application

1
VIS/NIR

0.47 0.45–0.49 1 Aerosol, visibility
2 0.65 0.55–0.75 0.5–1 Fog, clouds
3 0.825 0.75–0.90 1 Aerosol, vegetation
4

Shortwave IR
1.375 1.36–1.39 2 Cirrus

5 1.61 1.58–1.64 2 Cloud, snow
6 2.25 2.10–2.35 2–4 Cloud phase, aerosol, vegetation
7

Midwave IR
3.75 3.50–4.00 2 Clouds, fire, moisture, snow

8 3.75 3.50–4.00 4 Land surface
9 Water vapor 6.25 5.8–6.7 4 Upper-level WV
10 7.1 6.9–7.3 4 Midlevel WV
11

Longwave IR

8.5 8.0–9.0 4 Volcanic ash, cloud-top phase
12 10.7 10.3–11.3 4 SST, LST
13 12.0 11.5–12.5 4 Clouds, low-level WV
14 13.5 13.2–13.8 4 Clouds, air temperature

Figure 1 shows the averaged weighting functions of the AGRI channels 8–14 calculated
by the Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) model based on
the atmospheric profiles of the background. For clear-sky radiance assimilation, the cloud
inputs are set to zero in the RTTOV calculation. The 12 h spin-up forecast is provided as the
background based on the NCEP operational 0.25◦ × 0.25◦ GFS analysis datasets as inputs
to the RTTOV. Generally, channel 9 (5.8–6.7 m) and channel 10 (6.9–7.3 m) have peaks
of the weighting function around 250 and 400 hPa, respectively, representing the water
vapor information in the upper and middle troposphere. The carbon dioxide absorption of
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channel 14 peaks at roughly 600 hPa, detecting the low-level temperature. In this study, the
weighting functions calculated by the background atmosphere are reasonable, although
slightly different from the U.S. standard atmosphere results [26].
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Figure 1. The distributions of weighting function of AGRI infrared channels 8–14 calculated using
the background atmospheric profiles as the input for the RTTOV radiative transfer model.

2.1.1. Quality Control and Bias Correction

Prior to the data assimilation, the QC procedure is conducted. The reasonable process
of QC is able to remove large differences between the expected values and the observations
(Geer et al., 2011) [41]. In this study, the AGRI observations were pre-processed, including
the following steps:

(1) Rejecting all channels with mixed surface types of observation data.
(2) Rejecting the observations of channel 8 and channels 11–13 that are greatly affected

by uncertain surface parameters [30].
(3) Rejecting the observation pixels where satellite zenith angels are larger than 60◦.
(4) Rejecting the observations if the absolute innovation (bias-corrected observation

minus simulated background) exceeds 3 times the observation error under clear-sky
conditions, and if it exceeds 15 K.

(5) Rejecting cloudy pixels with the PF cloud-detection method, which is described in
Section 2.3.

The quality of radiance assimilation is also degraded by the inter-correlation between
channels and by systematic bias. Thereby, additional steps for spatial thinning and varia-
tional bias correction (VarBC) were carried out before the assimilation. A thinning mesh
of 45 km for all the experiments was used to lessen the potential error correlations among
adjacent observations [42]. The applied predictors for VarBC are the constant 1000–300 hPa
and 200–50 hPa layer thicknesses, surface skin temperature, and total column precip-
itable vapor, without considering the satellite zenith angle [29]. The correction coefficients
were firstly achieved from offline statistics, which were then updated frequently with
each analysis.
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2.1.2. Cloud Detection

The fast radiation transfer model of RTTOV was designed to calculate the radiance
as an observation operator under clear-sky or all-sky conditions [43]. While in a complex
environment having clouds, scattering and refraction of aerosol particles are severely
intensified, causing a large FG departure (the observation minus the first guess) from the
Gaussian distribution. Thus, cloud detection is crucial as a part of the QC procedures to
assimilate clear-sky radiances. The PF cloud-detection technique is incorporated here into
the WRFDA system.

In this study, C = c0, c1, c2, . . . , cK is used to denote the array of vertical effective cloud
fractions for K model levels (c1 for the surface and cK for the model top) and c0 is the
fraction of clear sky. The constraint for the cloud fraction is as follows:

K

∑
k=0

ck = 1, 0 ≤ ck ≤ 1, ∀k ∈ [0, K]. (1)

The construction of the cloud fractions is based on the idea that the radiative effect of
the cloud is modeled by a stack of thin black clouds for K vertical model levels. At each
level k, the cloud fraction ck seen by the satellite is assumed to be independent of frequency
v. Every fractional cloud at level k completely blocks the radiation at lower levels. In
this case, the concept of cloud overlap can be ignored. The radiation originating from the
lower levels is assumed to contribute to the top of atmosphere radiance transmitted to the
satellites only with the residual fractions. Thus, the simulated radiance Rcloud

v with the
different frequencies v in full-weather conditions is defined as:

Rcloud
v

(
c0, c1, c2, · · · , cK

)
= c0R0

v +
K

∑
k=1

ckRk
v , (2)

where Rk
v means the calculated radiance assuming an overcast black cloud at the model

level k and R0
v denotes the radiance calculated in the clear sky. Both Rk

v and R0
v are calculated

using a forward radiative transfer model with model profiles of temperature and moisture
as inputs. The cloud profiles are firstly initialized as particles and the retrieved cloud profile
is obtained by averaging those particles with their weights, as follows:

ωi = e
−∑

v
(

Robs
v −Rcloud

v,i
σv )

2

(3)

Each particle’s weight ωi is computed as Equation (3) through the specified obser-
vation error of σv, the difference-value between the simulated cloudy radiance from the
particle Rcloud

v,i , and the observed radiance Robs
v . The final retrieved cloud fraction Ca is de-

termined based on the weight averaged particles of the cloud fraction using Ca =
p
∑

i=1
ωiCi.

Here, p is the total number of particles and Ci is the ith particle. The cloud-detection process
was undertaken for every pixel in the AGRI scene. A detailed description of the PF method
can be found in Xu et al. (2016) [39].

Furthermore, some channels are determined to be cloud-contaminated when the
difference between the calculated radiance R0

v under the clear-sky and the simulated
cloudy radiance Rcloud

v based on the determined cloud fraction profile Ca is larger than a
predetermined threshold 0.01, as: ∣∣∣R0

v − Rcloud
v

∣∣∣
R0

v
> 0.01 . (4)

In addition, another cloud-detection scheme was designed based on the FY-4A AGRI
CLM products. The high quality of AGRI CLM datasets was confirmed in the research of
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Wang et al. (2019) [44], by comparing with them with cloud products from Himawari-8
and MODIS. The value for the CLM is identified as 0 for cloud, 1 for probably cloud, 2 for
probably clear, and 3 for clear on one pixel. In this study, data assimilation experiments
based on the CLM products were provided as a benchmark against those based on the
PF scheme.

2.2. The Data Assimilation System

The WRFDA system was developed by the National Center for Atmospheric Research
(NCAR), and consists of 3DVAR, four-dimensional variational DA (4DVAR), and Hybrid
DA techniques. The new version 4.3 of WRF-3DVAR (WRF three-dimensional variational
data assimilation) system was applied to obtain an optimal variance estimate of the real
atmospheric state called “the analysis field” by iteratively minimizing the cost function as
follows [45]:

J(x) = Jb + Jo =
1
2
(x− xb)

TB−1(x− xb) +
1
2
[H(x)− yo]

TO−1[H(x)− yo] (5)

where xb is the background state vector with the background error covariance matrices
B, and yo is the observation vector with the observation error covariance matrix O. The
background error statistics were computed using the National Meteorological Center
(NMC) method based on the NCEP background error covariance of CV5 [46]. In this study,
the RTTOV was used as the nonlinear observation operator H(x), which converts the model
variables into the simulated radiance for the AGRI radiance assimilation.

2.3. Overview of Typhoon In-Fa

According to the China Meteorological Administration (CMA) record (Figure 2),
a tropical depression formed at 1800 UTC 17 July 2021 over the Pacific Northwest Ocean.
By the extraction of heat energy from the powerful Kuroshio warm current, it rapidly
developed as Super Typhoon In-Fa with a maximum wind speed (MWS) of 45 m/s and
a minimum sea level pressure (MSLP) of 955 hPa at 0300 UTC 21 July. After 0600 UTC
23 July, In-Fa abruptly twisted from the north-west to the north-north-west due to the weak
steering flow and the joint Typhoon Cempaka. When closer to the south-west side of the
subtropical high, In-Fa propagated north-westward and then entered Zhejiang Province
around at 0430 UTC 25 July. The warm moist flow carried by In-Fa was continuously
delivered from the ocean to the central and eastern coastal areas of China, leading to serious
rainstorm disasters. However, it was difficult to make an accurate forecast of the Typhoon
In-Fa due to the higher intensity and anomalously slow speed of the movement.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 2. The best-track and intensity evolution for Super Typhoon In-Fa every 24 h from 18 July 

2021 to 30 July 2021. 

2.4. Experiment Setup 

All the experiments employed version 4.3 of the WRF model. For the forecasts of 

Typhoon In-Fa, the model domain covers the western Pacific Ocean and the southeast 

coast of China, having a 9 km grid spacing on 721 × 541 horizontal grids and 43 vertical 

levels up to 50 hPa. The parameter setting of physical schemes was set as following: the 

WRF Single-Moment 6-Class scheme [47]; the RRTMG shortwave and longwave schemes 

[48]; the Yonsei University (YSU) boundary layer scheme [49]; the Revised MM5 scheme 

for near-surface layer process [50]; and the Unified Noah land surface model for land sur-

face [51]. The experiments differed in several aspects, as detailed in Table 2. 

Firstly, the sensitivity experiments on channel selection here only account for the per-

formance of AGRI channels 9–10 and channel 14 by adding the Cyc, Cyc_Ch9/10/14, and 

Cyc_Ch10 experiments. To assess the ability of the new PF method, the experiment Cyc 

with the PF method was compared with the experiments of Cyc_CLM0 and Cyc_CLM2 

based on the AGRI CLM products for the cloud detection. The Cyc_CLM0 experiment 

only rejected the data flagged as being cloudy, with more observations being assimilated. 

The experiment of Cyc_CLM2 rejected all the data flagged as cloudy, probably cloudy, 

and probably clear. 

In addition, the cycling experiment of Cyc was further designed to assimilate the full-

disk FY-4A AGRI data using inter-3 h data assimilation cycling (DA cycling) schemes, 

while the experiments of SingleDA_06 and SingleDA_12 without DA cycling only con-

ducted one-time data assimilation. To be specific, in the experiments of SingleDA_06 and 

SingleDA_12, the data assimilation was only valid at 0600 UTC 23 July and 1200 UTC 23 

July, respectively. Deterministic forecasts at 48 and 42 h were further launched for Sin-

gleDA_06 and SingleDA_12. Note that the first assimilation cycle started at 0600 UTC 23 

July in all the experiments, except for the SingleDA_12 experiment, which initialized its 

first assimilation at 1200 UTC 23 July. The flowchart of all the experiments is illustrated in 

Figure 3. 

Table 2. The setting of all the assimilation experiments. 

Experiment 
Cloud-Detection 

Scheme 

DA Cycling 

Scheme 

Channel Selec-

tion 

Purpose of Experi-

ments 

SingleDA_06 PF No DA cycling, Channel 9/10 

Figure 2. The best-track and intensity evolution for Super Typhoon In-Fa every 24 h from 18 July
2021 to 30 July 2021.



Remote Sens. 2022, 14, 4718 7 of 18

2.4. Experiment Setup

All the experiments employed version 4.3 of the WRF model. For the forecasts of
Typhoon In-Fa, the model domain covers the western Pacific Ocean and the southeast coast
of China, having a 9 km grid spacing on 721 × 541 horizontal grids and 43 vertical levels
up to 50 hPa. The parameter setting of physical schemes was set as following: the WRF
Single-Moment 6-Class scheme [47]; the RRTMG shortwave and longwave schemes [48];
the Yonsei University (YSU) boundary layer scheme [49]; the Revised MM5 scheme for near-
surface layer process [50]; and the Unified Noah land surface model for land surface [51].
The experiments differed in several aspects, as detailed in Table 2.

Firstly, the sensitivity experiments on channel selection here only account for the
performance of AGRI channels 9–10 and channel 14 by adding the Cyc, Cyc_Ch9/10/14,
and Cyc_Ch10 experiments. To assess the ability of the new PF method, the experiment Cyc
with the PF method was compared with the experiments of Cyc_CLM0 and Cyc_CLM2
based on the AGRI CLM products for the cloud detection. The Cyc_CLM0 experiment
only rejected the data flagged as being cloudy, with more observations being assimilated.
The experiment of Cyc_CLM2 rejected all the data flagged as cloudy, probably cloudy, and
probably clear.

In addition, the cycling experiment of Cyc was further designed to assimilate the
full-disk FY-4A AGRI data using inter-3 h data assimilation cycling (DA cycling) schemes,
while the experiments of SingleDA_06 and SingleDA_12 without DA cycling only con-
ducted one-time data assimilation. To be specific, in the experiments of SingleDA_06 and
SingleDA_12, the data assimilation was only valid at 0600 UTC 23 July and 1200 UTC
23 July, respectively. Deterministic forecasts at 48 and 42 h were further launched for
SingleDA_06 and SingleDA_12. Note that the first assimilation cycle started at 0600 UTC
23 July in all the experiments, except for the SingleDA_12 experiment, which initialized its
first assimilation at 1200 UTC 23 July. The flowchart of all the experiments is illustrated in
Figure 3.

Table 2. The setting of all the assimilation experiments.

Experiment
Cloud-

Detection
Scheme

DA Cycling
Scheme

Channel
Selection

Purpose of
Experiments

SingleDA_06

PF

No DA cycling,
valid at

0600 UTC
Channel 9/10

Sensitivity of
data assimilation
design strategies

SingleDA_12
No DA cycling,

valid at
1200 UTC

Cyc_CLM0 CLM_0: reject
cloudy pixels

Inter-3 h DA
cycling,

valid at 0600,
0900, 1200 UTC

Sensitivity of
cloud-detection

schemesCyc_CLM2

CLM_2: reject
cloudy pixels,

probably cloudy,
and probably
clear pixels

Cyc

PF

Benchmark for
sensitivity

experiments

Cyc_Ch9/10/14 Channel
9/10/14 Sensitivity of

channel selection
Cyc_Ch10 Channel 10
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Figure 3. The flow charts of all the experiments listed in Table 2.

3. Results and Discussion

In this section, evaluations of initialization and subsequent forecasts for Typhoon
In-Fa are conducted based on the sensitivity experiments of the channel selection, cloud
detection, and design strategies of data assimilation. Diagnostics are shown to reveal how
the difference in the analysis contributed to the difference in the forecasts. The best track,
MWS, and MSLP for Typhoon In-Fa are from the CMA records.

3.1. Channel Sensitivity

The sensitivity experiments on channel selection were conducted in terms of two water
vapor channels (channels 9 and 10) and one carbon-dioxide-sensitive channel (channel 14)
for Typhoon In-Fa prediction. In Figure 4a,b, it is found that the capability of the Cyc
experiment with the AGRI channels 9–10 is the best in terms of the track prediction. To be
specific, the mean track error in the Cyc experiment was roughly 8 km lower than that in
the Cyc_Ch9/10/14 experiment and 10 km less than that of the Cyc_Ch10 experiment. The
assimilation of channels 9–10 and channel 14 in the Cyc_Ch9/10/14 experiment shows an
overall smaller error in the typhoon track compared to the Cyc_Ch10 experiment with the
single channel 10, as shown in Figure 4b. The mean range error of the Cyc_Ch10 experiment
increased clearly after 24 h, up to roughly 127.9 km. In terms of the typhoon intensity, all
the experiments tend to show lower MSLP and MWS versus the best track (Figure 4c,d).
It is noted that the MLSP and MWS prediction are comparable across different channels,
which is likely due to the fact that the ability to depict the inner-core structures of In-Fa is
limited with the clear-sky AGRI radiance data assimilation. On the whole, it seems that
the additional channel 14 did not contribute to the improvements in the typhoon track or
intensity forecasts.
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Figure 4. The predicted (a) tracks, (b) track errors, (c) minimum surface level pressure (hPa), and
(d) max wind speed (m/s) in the Cyc (blue lines), Cyc_Ch9/10/14 (green lines), and Cyc_Ch10 (red
lines) experiments are compared to the CMA best-track estimates (black lines) from 1200 UTC 23 July
2021 to 0600 UTC 25 July 2021.

3.2. Cloud Detection

Figure 5 shows the observed cloudiness denoted by the brightness temperature of
wind channel 12 and the distributions of the brightness temperature in the Cyc, Cyc_CLM0,
and Cyc_CLM2 experiments with different cloud-detection schemes for AGRI channels
9 and 10 respectively. The counts of observations for both channel 9 and channel 10 are
the same as without QC; for example, the count is marked on the top right in Figure 5b as
10,841. As shown in Figure 5a,c, the rejected radiances after QC are generally distributed
out of the typhoon vortex. The brightness temperature distributions from the channel 9
observations (without QC) are consistent with the observed cloudiness.

Figure 5c,d show the pixels after the cloud detection in Cyc experiments with the same
PF method for AGRI channels 9 and 10, respectively. It is noticeable that the brightness
temperature of channel 9 is colder than that of channel 10 due to its higher weighting
function peak. Furthermore, the retained observation data for the higher levels of chan-
nel 9 are greater than those for the lower levels of channel 10. It is expected that the
improved utilization of AGRI radiance data may be favorable for the initial conditions in
typhoon forecasts.

Figure 5e,f show the cloud-detection results for the same channel 10 but in the different
experiments of Cyc_CLM0 and Cyc_CLM2. Cyc_CLM0 retains clear, probably clear, and
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probably cloudy data, while Cyc_CLM2 only utilizes clear data. It can be found that the
rough distribution of cloud pixels observed by Cyc with the PF method (Figure 5d) has a
good spatial correspondence with the other experiments using CLM products (Figure 5e,f).
As expected, some observations in the cloudless area can be effectively retained through
the PF method, while these observations are mistakenly classified as “cloudy”, and thus
rejected in the experiments with CLM products. From Figure 5, it is possible to conclude
that the PF cloud-detection scheme is capable of efficiently detecting radiances that are free
of clouds.
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Figure 5. (a) The brightness temperature of the AGRI window band 12 (with central wavelength
of 10.8 µm) with the location of Typhoon In-Fa (denoted by a red mark). The observed brightness
temperature (unit: K) distributions from (b) the observation without QC for channel 9, (c) the Cyc
experiment with the PF method for channel 9, (d) the Cyc experiment with the PF method for
channel 10, (e) the Cyc_CLM0 experiment for channel 10, and (f) the Cyc_CLM2 experiment for
channel 10 valid at 0600 UTC 23 July 2021. The numbers on the top right represent the used-data
counts versus the total-data counts in each assimilation experiment.
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Figure 6 illustrates the used-data counts in the experiments of Cyc, Cyc_CLM0, and
Cyc_CLM2 with different cloud-detection schemes valid at the first and the last analysis
cycle. It can be seen that the counts of observations in the Cyc experiment with the PF
method are obviously higher compared to the other experiments with the CLM schemes
after the cloud detection, which is consistent with the results illustrated in Figure 5. In
addition, the significant differences in data counts between channels 9 and 10 range from
847 to 1077 in the Cyc experiments, whereas the counts of channels 9 and 10 are comparable
overall in the CLM-based experiments. This suggests that more observations could be as-
similated for channel 9, having higher peaks of the weighting function, than for channel 10,
having lower peaks, due to the unique abilities of the PF method. Overall, the counts
of used data in all the experiments increased with the analysis-forecast cycles after the
model spin-up.
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Figure 6. The counts of observations for AGRI channels 9–10 from the Cyc, Cyc_CLM0, and
Cyc_CLM2 experiments, valid at 0600 UTC 23 July 2021 and 1200 UTC 23 July 2021.

Figure 7 shows the 42 h track forecasting results in the experiments with different
cloud-detection schemes from 1200 UTC 23 July 2021 to 0600 UTC 25 July 2021. It can be
seen that the Cyc experiment with the PF method yields the typhoon track prediction with
enhanced accuracy after 18 h forecasts versus the other experiments based on the CLM
schemes (Figure 7b). By comparison, the typhoon movement speed in the Cyc experiment
is relatively faster and closer to the best track (Figure 7a). The results imply that the
period validity in the PF-based experiments is more durable and stable for the typhoon
track forecasting.
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Figure 7. The 42 h predicted (a) tracks and (b) mean track errors (units: km) in the different
experiments of Cyc (blue lines), Cyc_CLM0 (green lines), and Cyc_CLM2 (red lines) are compared to
the CMA best-track data (black lines) from 1200 UTC 23 July 2021 to 0600 UTC 25 July 2021.

3.3. Data Assimilation Design Strategies

In this section, the three experiments Cyc, SingleDA_06, and SingleDA_12, having
different design strategies of data assimilation, are further assessed based on the PF method
using the radiances of FY-4A AGRI channels 9–10. The sensitivity experiments included
the comparison of single and multiple DA cycling schemes, and different initial times for
the data assimilation.

3.3.1. Impact on the Analysis

The impacts of different assimilation schemes are evaluated by analyzing the 500 hPa
geopotential height related to the typhoon track evolution. The forecasts are compared with
the ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecast
(ECMWF) as the reference [52]. The main factors affecting Typhoon In-Fa’s track are the
subtropical high and the continental high, located on the north-west and north-east sides
of In-Fa, respectively (Figure 8). In Figure 8a,d, it seems that the SingleDA_06 experiment
valid at 0600 UTC 23 July describes a stronger subtropical high and the continental high
pressure was located further north, which is more consistent with the ERA-Interim reanal-
ysis indicated by the red arrows. The SingleDA_06 experiment may have the potential
to produce improved typhoon tracks. Regarding the SingleDA_12 experiment valid at
1200 UTC 23 July, the strong continental high pressure is located to the south (Figure 8c),
thereby squeezing the Typhoon In-Fa moving north-eastward. In the Cyc experiment with
the DA cycling scheme, the subtropical high center of the maximum pressure is closer to
the powerful low-pressure system In-Fa and the wind speed is high, as marked with a
black rectangle in Figure 8b. Thus, the pressure gradient between these two systems tends
to be sharp, resulting in the accelerated typhoon track speed.
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Figure 8. The 500 hPa geopotential height (shaded, units: gpm) and wind field (wind shaft, units:
m/s) from the (a) SingleDA_06, (b) Cyc, (c) SingleDA_12 experiments, and (d) corresponding ERA-
Interim reanalysis fields valid at 1200 UTC 23 July 2021.

The evolution of the geopotential height analysis increments (the analysis from the
data assimilation minus the background for the data assimilation that is the 12 h spin-up
forecast) at 500 hPa are illustrated at different assimilation cycles from the Cyc experiment.
The typhoon positions from CMA (black dot) are plotted in Figure 9. After each verifying
time, the positive increments are amplified over most of the domain as marked with the
numbers, especially near the typhoon center, which can weaken the strength of Typhoon
In-Fa. In the Cyc experiment with DA cycling schemes, In-Fa has decreased in strength,
which is consistent with a significant improvement in the MSLP, as shown in Figure 10c.
In Figure 9c, valid at the last cycle analysis, a notable dipole structure is observed with an
increase and a decrease in the north-east and south-west of the typhoon center, respectively.
It can also be noticed that the Cyc experiment generates a large area of high geopotential
height extending from Korea to Japan near the location of the subtropical high. The
atmospheric circulation after DA cycling tends to move In-Fa south-westward, as shown
by the forecast tracks in Figure 10a.
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Figure 9. The 500 hPa geopotential height increments (the analysis from the data assimilation minus
the background for the data assimilation that is the 12 h spin-up forecast) (shading, units: gpm) in the
Cyc experiment valid at (a) 0600 UTC 23 July 2021, (b) 0900 UTC 23 July 2021, and (c) 1200 UTC 23
July 2021. The typhoon center is denoted as the black dot. The numbers show the positive increments
of geopotential height.

3.3.2. Impacts on the Typhoon Forecasts

After evaluating the impacts of assimilation schemes on the analysis, the consequent
forecasts of Typhoon In-Fa are exhibited in Figure 10 during the same period from 1200 UTC
23 July to 0600 UTC 25 July 2021, when the intensity level of In-Fa changes. Figure 10a
shows that the SingleDA_06 experiment started at 0600 UTC 23 July matches best with the
best track, while the SingleDA_12 experiment with a different initial time and the control
experiment (Ctrl) without data assimilation both yield a north-east track bias after 18 h.
In the first 12 h, the mean absolute track error from Ctrl is lower than that of the other
experiments (Figure 10b). It is noted that the AGRI data assimilation experiments do not
outperform the control experiment, especially at the beginning of the forecast, which is
likely caused by the incompatible thermodynamic field after the data assimilation. This
imbalance will be alleviated after the integration of the NWP models. Although there is an
increasing south-westward bias in the Cyc experiment after 24 h, a slight improvement in
the movement speed forecast was achieved based on the DA cycling scheme. The average
track error in Cyc appears to be effectively reduced after 12 h.
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The 42 h evolutions of the typhoon intensity for the MSLP and MSW are shown in
Figure 10c,d. According to the results, the MSLP in all the experiments is generally stronger
than the best track and the forecast tracks lag behind the observed track. It is shown
that the MSLP in the Cyc experiment with the DA cycling scheme is the most consistent
with the best-track data. The limited intensity improvement from other experiments may
have been constrained by the lack of a DA cycling procedure with the AGRI radiances.
In terms of MWS, deterministic forecasts from the data assimilation experiments are in
better agreement with the best records than the Ctrl experiment. From Figure 10c,d, the
largest intensity errors are observed in the Ctrl experiment, reaching 22.4 hPa in MSLP and
8.3 m/s in MWP forecasts. It seems that assimilating the AGRI radiances, especially with
the cycling schemes, more directly adjusted the pressure field and wind field, leading to a
more rapid impact on the typhoon intensity.

It is also interesting to note that the analysis initialized at 0600 UTC 23 July yields
better track and intensity forecasts than the analysis initialized at 1200 UTC 23 July. This
may be because a more balanced typhoon environment is created at the earlier stage of
Typhoon In-Fa than that at a later period. Different initial times of data assimilation may
lead to the diverse forecast accuracy.
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Figure 10. The 42 h predicted (a) tracks, (b) track errors, (c) minimum surface level pressure (hPa),
and (d) maximum surface wind speed (m/s) of Typhoon In-Fa in the SingleDA_06 (orange lines),
SingleDA_12 (red lines), Cyc (green lines), and control (blue lines) experiments, compared to the
CMA best data (black lines) from 1200 UTC 23 July 2021 to 0600 UTC 25 July 2021.
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4. Summary and Future Perspective

The impact of assimilating the FY-4A AGRI radiances was assessed with the WRF-
3DVAR system for the analysis and forecasts of Super Typhoon In-fa. The AGRI satellite
data processing was conducted in three types of sensitivity experiments, namely, the chan-
nel selection, cloud detection, and data assimilation design strategies. It was found that the
two water vapor channels 9–10 from the full-disk AGRI data yield relatively stable results
in terms of the track forecast for In-Fa according to the channel sensitivity experiments.
Due to the capability of identifying the channel’s weighting function, more observations
could be efficiently assimilated in the experiments with the PF method compared to those
based on the AGRI CLM products for cloud detection. Furthermore, the experiments with
the PF method yield a reduction in the error of the typhoon track forecasts. Other data
assimilation design strategies were further investigated, including cycling assimilation
schemes and different assimilation times, by comparing the forecast results of Typhoon
In-Fa. The proposed DA cycling schemes were demonstrated to be an efficient approach
to improve the intensity forecast of Typhoon In-Fa. Based on the rational scheme, the
assimilation of the FY-4A AGRI satellite data has a relatively positive impact on the forecast
of Typhoon In-Fa by adjusting the atmospheric environment.

The above conclusions can be instructive in assimilating the FY-4A AGRI observations
for prediction of super typhoons. Future studies are needed with more typhoon cases
over extended periods. Despite the above encouraging results, forecast biases in terms
of typhoon movement speed were observed. Future work will likely address using more
advanced data assimilation, such as four-dimensional variation assimilation (Xiao et al.,
2020), hybrid-variation assimilation (Sun et al., 2021), or all-sky assimilation, to better
utilize FY-4A AGRI data in a flow-dependent manner at appropriate times (Xu et al., 2021).
The refinement of the bias correction and observation errors will also be explored to further
improve the performance of FY-4A AGRI radiance data.
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(accessed on 1 August 2022). Figures were made with NCL version 6.6.2 from https://ncl.ucar.edu
and Python version 3.3.8 from https://www.python.org.
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