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Abstract: The Amazon rainforest spreads across nine countries and covers nearly one-third of South
America, being 69% inside Brazilian borders. It represents more than half of the remaining tropical
forest on Earth and covers the catchment basin of the Amazon river on which 20% of the surface
fresh water on the planet flows. Such an ecosystem produces large quantities of water vapor, helping
regulate rainfall regimes in most of South America, with strong economic implications: for instance,
by irrigating crops and pastures, and supplying water for the main hydroelectric plants in the
continent. Being the natural habitat of one-tenth of the currently known species, the Amazon also
has enormous biotechnological potential. Among the major menaces to the Amazon is the extension
of agricultural and cattle farming, forest fires, illegal mining and logging, all directly associated
with deforestation. Preserving the Amazon is obviously essential, and it is well-known that remote
sensing provides effective tools for environmental monitoring. This work presents a deforestation
detection approach based on the DeepLabv3+, a fully convolutional deep learning model devised for
semantic segmentation. The proposed method extends the original DeepLabv3+ model, aiming at
properly dealing with a strong class imbalanced problem and improving the delineation quality of
deforestation polygons. Experiments were devised to evaluate the proposed method in terms of the
sensitivity to the weighted focal loss hyperparameters—through an extensive grid search—and the
amount of training data, and compared its performance to previous deep learning methods proposed
for deforestation detection. Landsat OLI-8 images of a specific region in the Amazon were used
in such evaluation. The results indicate that the variants of the proposed method outperformed
previous works in terms of the F1-score and Precision metrics. Additionally, more substantial
performance gains were observed in the context of smaller volumes of training data. When the
evaluated methods were trained using four image tiles, the proposed method outperformed its
counterparts by approximately +10% in terms of F1-score (from 63% to 73%); when the methods
were trained with only one image tile, the performance difference in terms of F1-score achieved
approximately +18% (from 49% to 67%).

Keywords: DeepLabv3+; semantic segmentation; Amazon; deforestation detection

1. Introduction

The Amazon rainforest covers an area of approximately 5.5 million km2, which
amounts to approximately one-third the size of the South American continent. It spreads
across nine countries, establishing an arc that begins in Bolivia and extends to French
Guiana, being approximately 69% inside Brazilian borders. Altogether, the Amazon repre-
sents more than half of the remaining tropical forest area on Earth [1] and contains more
than 10% of all the above-ground biomass on the planet [2]. The forest also holds about
20% of the total carbon sequestered by the world’s terrestrial forests [3].

The forest covers the Amazon river catchment basin on which 20% of all free-flowing
fresh water on Earth [4] flows. The dominant conjunction of the Amazon rainforest and
river basin produces large quantities of water vapor reaching out vast extents in South
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America. The so-called “flying rivers”, generated through evapotranspiration by the
Amazon ecosystem, carry out moisture to the north, west, and south. Thus, it helps to
regulate rainfall regimes in most of South America [5]. The portion of moisture that heads
south is also of enormous economic importance for irrigating crops and pastures, and for
supplying water for the main hydroelectric plants on the continent.

Additionally, the biome contains unparalleled biodiversity, being the natural habitat
of one-tenth of the currently known species [6], the largest concentration of plants and
animal species in the world. Such biodiversity forms an extremely complex and large-scale
ecosystem whose evolution naturally produced countless biological solutions. Currently,
the vast majority of those species are still far from being sufficiently studied to ensure the
exploitation of such enormous biotechnological potential.

Unfortunately, for many decades, the Amazon has faced several threats as a result
of unsustainable economic development. Among the main menaces to the biome are the
expansion of agricultural activities at an industrial scale, especially soybean cultivation
and cattle raising, forest fires, and illegal mining and logging [7–9]. All those factors are
directly associated with deforestation. Deforestation in the Brazilian Amazon also has
important social and humanitarian consequences. While trying to fight for the protection
of the forest for future generations, environmentalists [10,11] and members of traditional
indigenous communities [12] are often targets of attacks by loggers [13], land grabbers or
illegal fisherman, hunters, and miners.

The above-mentioned facts indicate the importance of the preservation of the Amazon
forest, and it is well known that Remote Sensing (RS) data provide key capability for large-
scale, low-cost, and risk-free environmental monitoring [14]. According to the Brazilian
National Institute for Space Research (INPE) [15], deforestation accelerated significantly in
the Brazilian Legal Amazon (BLA) area during the 1990s and early 2000s. Unfortunately,
since 2019, it has reemerged with substantial intensity [16,17]. It is an urgent situation; the
World Wildlife Fund [18] estimates that more than a quarter of the rainforest may vanish by
2030 if the current rate of deforestation continues. Important consequences of deforestation
can already be observed; a recent report paper [19] asserts that between 2010 and 2019
Brazil’s Amazon carbon stock had been in deficit, since it gave off 16.6bn tonnes of carbon
dioxide, while was able to draw down only 13.9bn tonnes.

Since the late 1980s, INPE is in charge of monitoring deforestation in the Brazilian
Legal Amazon. Among its main monitoring projects are PRODES [20], DETER-A [21] and
DETER-B [22], which are mainly based on visual interpretation of RS data. The main reason
for such a human-intensive approach is the accuracy requirement necessary for an official,
governmental system. There is, therefore, a high demand for automatic methods that can
reach the desired expectations in terms of accuracy values, lessening human intervention,
while reducing response times.

Deforestation detection can be posed as a change detection problem. By and large, for
identifying changed or unchanged pixels, there must be a pair of coregistered images for the
same geographic location, acquired at different dates. Considering ti as the acquisition date
of an image and ti+d as the date of an image from the same location acquired more recently,
the problem to be tackled basically represents finding differences in pixel positions of both
images associated with a level of forest suppression that can be regarded as deforestation.

Training a classifier for this task is a challenging problem. The first issue to be tackled
is the intraclass variability of the unchanged class (i.e., no-deforestation), which encompasses
forest pixels that remain standing at ti+d, and of the changed class (i.e., deforestation).
The deforestation pixel clusters may differ substantially depending on the deforestation
practices in the region, which may be associated with clear-cutting, selective logging, or
degradation through forest fire. Additionally, the texture in a dense forest may differ
because of the sun position or other seasonal aspects [23]. The other important difficulty of
the target application is the high unbalance between unchanged and changed class samples.
Regardless of the deforestation rates, the occurrence of deforestation pixels is still at least
one order of magnitude lower, in relation to the amount of no-deforestation pixels.
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Despite the success of deep learning methods in many application fields, deep neural
networks (DNNs) are known to require large amounts of labeled data to be properly
trained [23]. That can be a serious problem for operational applications, especially those
based on remote sensing, for which obtaining such reference data is usually costly and time-
consuming. In the case of the deforestation detection application, for example, creating
such reference data involves highly trained specialists, acquainted with the characteristics
of the forest cover through time, and with the different spatial and spectral deforestation
patterns. The selection of a proper DL model for RS applications should, therefore, take
into consideration its demand for training data.

We hypothesize that the problems mentioned in the previous paragraphs, i.e., the
intraclass variability, high class unbalance, and high demand for training data, can be
successfully dealt with by selecting a proper deep learning architecture and a proper
training procedure. Specifically, we believe that a fully convolutional, dense labeling
architecture may lessen the intraclass variability issue, once it can learn not only specific
class representations but also interrelationships among the classes of interest. Additionally,
a proper design of a loss function, i.e., which gives higher importance to hard-to-classify
samples, may help cope with intraclass variability and class unbalance and still lessen the
demand for training data.

In this work, we propose a deep learning method based on a fully convolutional model,
namely, the DeepLabv3+ [24]. In a previous publication [25], we presented preliminary
results of this research. In the present work, we bring a thorough evaluation of the full
set of experiments carried out afterward. In the course of this research, we adapted the
DeepLabv3+ model to deforestation detection, by setting its input as a tensor formed by
stacking the bands of two coregistered images. We also adjusted many of the model’s
hyperparameters, aiming at improving the delineation accuracy of deforestation polygons.
Additionally, we substituted the original DeepLabv3+ cross-entropy loss function by the
weighted focal loss function [26] and fine-tuned its parameters.

We also compared the results obtained with the proposed method with those reported
in a previous work [27] over the same study area. Besides comparing the respective
deforestation detection accuracies, we devised experiments to assess the methods’ demands
for training data. In short, the major contributions in this work are:

• Adaptation of the DeepLabv3+ semantic segmentation model to deforestation detection.
• Thorough grid search on the loss function hyperparameters for assessing their relative

impact on deforestation mapping accuracy.
• Evaluation of the proposed method’s sensitivity to the amount of training data.
• Extensive performance evaluation of the proposed method on an area of the Amazon

forest.
• Comparison of the proposed method with previous deep-learning-based methods for

deforestation detection.

The remainder of our article is organized as follows. We first review related works.
In Section 3, we describe the evolution of the lineage which brought about DeepLabv3+.
In Section 3, we present the adaptations of the original DeepLabv3+ model carried out in
this research. Section 4 is dedicated to the description of the experimental procedure, and,
in Section 6, we present and analyze the experimental results. We end the manuscript by
bringing about the conclusions and briefly discussing directions for further work.

2. Related Works

According to Volpi and Tuia [28], deep learning (DL) approaches for image classifica-
tion on a pixel level can be subdivided into two main approaches: patchwise classification
and semantic segmentation. Broadly speaking, considering an image patch, patchwise clas-
sification produces a single decision for its central pixel. In contrast, semantic segmentation,
given an image patch, produces at once concurrent decisions for each of its pixels.

By and large, remote sensing (RS) change detection (CD) approaches can be compre-
hended as an extension of pixel-level image classification. The main difference resides
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in the fact that conventional image classification takes data from one time instance and
provides a class label for each image pixel. On the other hand, CD relies on two or more
coregistered images taken at distinct time instances, and classifies image pixels into changed
or unchanged areas, sometimes attributing a semantic label to the changed pixels.

Dealing with change detection through deep learning leads to three main approaches.
The first one is postclassification, in which the images from different epochs are classified,
and afterward the classifications are compared to produce the change map. The second ap-
proach involves architectures containing two encoders, the so-called Siamese networks [29],
where each encoder processes an image of the same region acquired at a different time
instance. Finally, in the so-called early fusion approaches, image features acquired at
different dates are combined before being forwarded to a single encoder network. We
briefly describe below notable DL-based studies dedicated to deforestation detection.

Post-classification approaches based on DL are not so common. Zulfiqar et al. [30]
exploited Landsat images for deriving a postclassification, semantic segmentation approach
based on the U-Net architecture. The method was applied for forest estimation and change
detection in Pakistan.

A number of early fusion patchwise classification approaches can be found in the
literature. Khan et al. [31] used a variant of the VGG-16 architecture and a long time series
of Landsat images for forest change detection in Australia. Masolele et al. [32] evaluated
several deep learning approaches for land-use classification following deforestation using
a large-scale dataset of Landsat images from Latin America, Africa, and Asia, where forests
were converted to distinct uses. The approaches evaluated encompass 2D-CNN, LSTM,
3D-CNN, Hybrid CNN-LSTM, ConvLSTM, and CNN-MHSA. In a deforestation mapping
effort in Ukraine, Shumilo et al. [33] compared LSTM and MLP for deforestation detection
using Sentinel-1 and Sentinel-2 images.

Approaches based on semantic segmentation have recently become more prevalent in
the literature. Lee et al. [34] compared semantic segmentation results provided by U-Net
and SegNet for land-use/land-cover classification of high-resolution Kompsat-3 satellite
images in Korean regions affected by deforestation. Isaienkov et al. [35] compared the
performance of different semantic segmentation approaches for deforestation detection in
the Ukrainian Forest Ecosystem. The authors exploited a dataset of Sentinel-2 multispectral
images for the evaluation of both early fusion and dual branch networks, comprising seven
approaches inspired by U-Net, Siamese networks, and LSTM.

Some recent remote sensing image classification methods, although not yet applied
to deforestation detection, are worth mentioning due to their differentiated performance.
Jia et al. [36] proposed a graph-in-graph (GiG) model and a related convolutional network
(GiGCN) dedicated to HSI classification from a superpixel viewpoint. Some of such core
ideas remount to Geobia approaches [37], while GiG representation covers information
inside and outside superpixels, corresponding to the local and global characteristics of
geo-objects. Meanwhile, the external graph is constructed according to the spatial adjacent
relationships among superpixels. The approach extracts hierarchical features and integrates
them into multiple scales, improving the discriminability of GiGCN. In addition, ensemble
learning is incorporated to further boost method robustness. In order to classify hyperspec-
tral images, Ahmad et al. [38] combine 3-D and 2-D inception networks with an attention
mechanism. The resulting attention-fused hybrid network relies on three attention-fused
parallel hybrid subnets with different kernels; and uses high-level features to enhance the
final prediction maps. That approach is able to filter out the critical features for classifica-
tion. Hong et al. [39] proposed a general multimodal deep learning framework aiming at
overcoming the difficulties of DL in finely classifying complex scenes, due to the limitation
of information diversity. The method is additionally able to explore the cross-modality
inherent to a number of RS image classification applications. That framework, besides
being able to perform pixel-wise classification, is also applicable to spatial information
modeling with convolutional neural networks.
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Several DL approaches specifically dedicated to deforestation detection in the Amazon
were recently presented. De Bem et al. [40] evaluated SharpMask, U-Net, and ResU-net
semantic segmentation algorithms for deforestation Detection. The proposed approach
employs early fusion of Landsat images. Maretto et al. [41] adapted the U-Net architecture
for deforestation detection using Landsat images. The authors compared early fusion and
dual branch approaches, and created spatiotemporal variations of the U-Net architecture,
which make it possible to incorporate both spatial and temporal contexts. Tovar et al. [42]
evaluated the use of both spatial and channel attention models for deforestation detection.
Watanabe et al. [43] use FCNs to build an early fusion semantic segmentation approach
for deforestation detection in Brazil and Peru using PALSAR-2/ScanSAR images. Taquary
et al. [44] propose a combination of LSTM and CNN for deforestation detection based on
orbital SAR time series of Sentinel-1 images. The approach consists of an early fusion,
patchwise classification technique. Shumilo et al. [45] exploits Sentinel-2 and Sentinel-1
imagery for deforestation detection. The approach employs U-Net-based variants, and
a semisupervised learning technique. Experiments were carried out on a dataset of the
Kyiv region. Torres et al. [46] evaluated several fully convolutional networks architectures
(U-Net, ResU-Net, SegNet, FC-DenseNet, and DeepLabv3+) for deforestation detection.
The performance of such state-of-the-art models was evaluated using two Brazilian Ama-
zon datasets with different spatial and spectral resolutions (imagery from Landsat-8 and
Sentinel-2). ResU-Net consistently outperformed the other methods, providing F1-scores of
70.7% for the Landsat dataset, and 70.2% for the Sentinel-2 dataset.

Adarme et al. [27,47] presented an evaluation of patchwise classification methods
for automatic deforestation detection in the Amazon and Cerrado biomes. The compared
approaches were both early fusion (SVM, CNN, CSVM) and dual branches networks
(Siamese networks). The evaluated DL-based approaches outperformed the SVM baseline,
both in terms of F1-score and overall accuracy. Among those works, [47] presented the
most thorough experimental evaluation. The herein presented work follows the same
experimental protocol in order to make a thorough comparison with those state-of-the-art
approaches. Among the approaches presented in [47], the Early Fusion (EF) CNN and
Siamese CNN (S-CNN) were used as experimental benchmarks for the evaluation that will
be presented in the next sections.

The importance of [47] for deforestation detection is corroborated by its developments,
as is the case of the present research. Soto et al. [23] represents another unfolding of [47].
That work presents a DL-based approach for domain adaptation in the context of change
detection tasks. Such model adapts DANN [48] as well as the EF approach of [47]. That
domain adaptation approach has shown to be able to improve the accuracy of cross-
domain deforestation detection, considering different sites in the Amazon and Brazilian
Cerrado biomes.

3. Evolution of the DeepLab Family Design

DeepLab is a semantic segmentation CNN family of models, which evolution aggre-
gated several consistent breakthroughs. In this description, we follow its timeline to present
the sequence of main ideas behind its evolution.

The elder DeepLab version was proposed in [49]; and brought among its major con-
tributions a particular implementation of the “hole algorithm” originated to efficiently
compute the undecimated wavelet transform [50]. In its first release, the so-called atrous
convolution came about for preventing the network’s output stride to go beyond the target
value of eight. The DeepLabv1 encoder was built on top of the VGG-16 [51] architecture.
Among the proposed adaptations were: (1) turning fully connected layers into convolu-
tional ones (being the first an atrous convolution with a rate of four), (2) removing the last
two pooling layers, and (3) converting the last three VGG-16 original convolutional layers
into atrous convolutional ones with a dilation rate of two.

It should be stressed atrous convolutions—expressed by a regular, sparse linear trans-
fer function—can considerably expand their receptive fields in relation to traditional convo-
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lutional filters, without enlarging the number of parameters and computational complexity.
They prevent the network’s output stride from impacting the feature maps spatial resolu-
tion as a conventional sequence of convolutional followed by pooling blocks would do. The
authors argue that the bigger the output stride the lesser accurate would be the silhouettes
of the segmented objects.

The second version of DeepLab adopted the Spatial Pyramid Pooling (SPP) concept,
which was introduced in the SPP-net architecture [52]. DeepLabv2 [53] proposed an atrous
convolution-based SPP, the so-called ASPP, which comprises several parallel branches
of atrous convolutions, with different receptive fields, coming together in a single set of
feature maps. Therefore, such set of feature maps is capable of capturing information at
various scales [53]. Thus, in comparison to the first release, DeepLabv2 is more efficient
in segmenting objects at multiple scales. In addition, in its second release, the VGG-16’s
inspired DeepLab comes along with a residual net variant built on top of the ResNet
architecture [54].

Until its second version, DeepLab relied on fully connected Conditional Random
Fields (CRF) [55] to improve semantic segmentation outcomes. By and large, the CRF
processes the outcomes of the deep convolutional neural network to provide the final
output map. The use of CRFs was discontinued in the third DeepLab release [56]. As a
surrogate for CRF, DeepLabv3 uses a naive decoder which performs bilinear interpolation
of the output probability maps. As for the encoder, the authors experimented wit variants
using backbones based on both VGG-16 and ResNet. The resulting features pass through
an updated ASPP version which includes 1× 1 filters, which stand for a degeneration of
the high rate atrous filter that avoids image border effects, and image-level features, also
known as image pooling [57]. Thus, the ASPP models multiple levels of context, gathering
from local to global features.

Finally, the DeepLabv3+ model [24] adopted an encoder–decoder architecture with a
DeepLabv3-like encoder structure. The proposed alternatives were based on ResNet-101
and Xception [58] backbones. Furthermore, a simple decoder module was devised aiming
at enhancing segmentation results, especially alongside object boundaries. On one hand,
the final features produced by the backbone pass through the ASPP to produce multiscale
feature maps, which are then combined by a 1× 1 convolution block. In such a context,
the 1× 1 convolution block reduces the number of channels associated with those features,
so that they do not outweigh the importance of the encoder’s output. On the other hand,
low level backbone features go directly to the decoder to, then, be submitted to a 1× 1
convolution block, whose result is concatenated with an upsampled version of the ASPP
outcome after being submitted to its respective 1× 1 convolution block. Such concatenated
features are then submitted to a 3× 3 convolution block that refines those features. Finally,
to create the network output, such features are submitted to a simple bilinear upsampling
module.

When adapting the Xception model [58] as the backbone of the encoder network for
semantic segmentation, the authors used a deeper model like [59]. Max-pooling operations
were replaced by depthwise separable convolution with striding, and batch normaliza-
tion [60] and ReLU activation were added after each 3 × 3 depthwise convolution, as in the
MobileNet design [61].

4. DeepLab-based Change Detection Method

In this section, we describe the adaptations performed on the DeepLabv3+ model to
create the hereinafter called DeepLab-based Change Detection (DLCD) model. As the first
amendment, it adopts the early fusion approach, taking as input a synthetic image created
through stacking along the spectral dimension two coregistered images from different
epochs. As a consequence of being based on an FCN, DLCD delivers dense labeling of the
input patches.

Still considering the DLCD input layer, its design was also impacted by the current BLA
deforestation circumstances. Indeed, in the dataset exploited for this work, deforestation
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areas (or objects) are small and sparse, leading to large class unbalance, being the vast
majority of the training set pixels either no-deforestation or unchanged. It should be
stressed that such problem contours are dissimilar to the realty of PASCAL VOC 2012 and
Cityscapes, the datasets used in [24]. So, considering such dissimilarities, we experimented
with patches of smaller sizes than in [24]. After a preliminary evaluation, we obtained
better and more consistent results using a patch size of 64 × 64 pixels. In terms of the
DLCD backbone, we opted for the Xception architecture, since it provided the best results
in [24].

As a consequence of such a small input patch, we opted for an encoder output stride
of 8, the smallest evaluated in the original DeepLabV3+ [24]. In order to adjust the network
architecture to the selected input patch size and output stride, we changed the dilation
rates of the atrous convolutions in the ASPP to 3 and 6 (originally, dilation rates of 12 and
24 were employed), and removed the atrous convolution with the highest rate because it
would degenerate into a 1 × 1 convolution. Considering the Xception backbone, to achieve
an output stride of 8, we used only 3 convolutions with stride of 2 in entry flow, and only
convolutions with stride of 1 in the middle and exit flow. Figure 1 shows the architecture of
the proposed DLCD model.

As mentioned before, deforestation detection problems are usually characterized by a
large class unbalance, where, by and large, changed pixels are orders of magnitude less
numerous than unchanged ones. Thus, cross-entropy, − log(pt), normally exploited in
image classification problems, tend to fail in leading to consistent network weights for
detecting changes. The main reason is that in dense labeling problems, it is generally not
possible to force training set class balancing by simply replicating the less common class
examples.

One alternative for dealing with such scenarios is the so-called weighted focal loss
function (WFL) [26]. WFL is presented in Equation (1), where y ∈ {−1, 1} specifies the
ground-truth class label for which y = 1 indicates deforestation, while y = −1 means
unchanged pixel; p ∈ [0, 1] is the deforestation probability estimated by the proposed
model’s for a specific pixel; and α represents the weight associated to the deforestation class.

WFL(pt) = −αt(1− pt)
γ log(pt)

where pt =

{
p if y = 1
1− p otherwise

and αt =

{
α if y = 1
1− α otherwise

(1)

Equation (1) may be subdivided in three parts: (1) cross-entropy (− log(pt)); (2) weight
relative to each class (αt); and (3) the term ((1− pt)γ) that reduces the loss magnitude for
well-classified pixels while enhances the loss of misclassified pixels, whereas a larger γ
intensifies such effect.
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Figure 1. DLCD model diagram. The full model has a total of 40,639,856 parameters to be estimated.
Layer descriptions contain: convolution type (Conv for regular convolution; SConv for depthwise
separable convolution), number of filters, filter size, stride, dilation rate.

5. Experiments

In this section, we describe the dataset and the experimental setup including the
approaches to be compared to DLCD.

5.1. Data Set Description

The reference area is situated in Pará State in Brazil, between the coordinates 3◦17′23′ ′S
and 50◦55′8′ ′W, in the Brazilian Legal Amazon (BLA). The area has faced significant
deforestation since it started to be monitored by PRODES [20]. Following [47], we used
Landsat OLI-8 images acquired on 2 August 2016 (Figure 2a) and 20 July 2017 (Figure 2b).
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(a) 2 August 2016

(b) 20 July 2017

Figure 2. Landsat 8-OLI false-color composite (bands 5,4,3) of the study area.

The reference deforestation change map, shown in Figure 3, disregards areas defor-
ested before 2016. The data employed in this work was derived from the PRODES database,
which is freely available in http://terrabrasilis.dpi.inpe.br/map/deforestation, (accessed
on accessed on 9 May 2022). Reference deforestation polygons represent transitions from
forest in 2016 to no-forest in 2017, so deforestation class pixels in the reference consist of
the intersection between forest in 2016 and no-forest in 2017. As a consequence, remaining
pixels are associated with the no-deforestation class, encompassing both areas where the
forest cover remains unchanged and native forest were removed prior to 2016. In Figure 3,
the areas deforested between 2016 and 2017 are presented in blue while no-deforestation
regions are shown in white.

Figure 3. Image tiles (numbered) and deforestation polygons (source: [47]).

As shown in Figure 3, the region of interest was divided into 15 tiles, in the form of a
3× 5 tiles grid. Tiles 1, 7, 9 and 13 were used for training, while tiles 5 and 12 for validation.
Tiles 2, 3, 4, 6, 8, 10, 11, 14 and 15 were used exclusively for testing.

http://terrabra silis.dpi.inpe.br/map/deforestation
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In order to evaluate the sensitivity of the evaluated methods to the amount of training
data, four different training scenarios were investigated in the experiments: using a single
tile for training (tile 13); using two tiles for training (tiles 1 and 13); using three tiles for
training (tiles 1, 7 and 13); and using four tiles for training (tiles 1, 7, 9 and 13). Table 1
shows the respective areas covered by the pixels labeled as deforestation within the training
tiles used in each training scenario, as well as the proportion of those areas in relation to
the total extent of the training tiles.

Table 1. Deforestation area and tiles present in the distinct training scenarios.

Training Scenario Tiles Deforestation Area (Pixels) Deforestation Proportion

single tile 13 2137 1.1%
two tiles 1 and 13 12,112 3.3%

three tiles 1, 7 and 13 16,376 2.9%
four tiles 1, 7, 9 and 13 24,438 3.3%

The dataset comprises a pair of Landsat 8-OLI images, disregarding panchromatic
band. Such a 30m spatial resolution image data was subjected to atmospheric correc-
tion, and clipped to the target area. The geometric support of the final images was
1100 × 2600 pixels. In addition to the seven original spectral bands (Coastal/Aerosol,
Blue, Green, Red, NIR, SWIR-1, and SWIR-2), following [47], a Normalized Difference
Vegetation Index (NDVI) [62] band was added to each image of the pair.

As mentioned before, the deforestation detection application is characterized by a
high class unbalance. Table 2 summarizes the fraction of deforestation area in relation to
the total study region area. The training, validation and test set rows in Table 2 show the
proportions in relation to the total area covered by the tiles considered in the respective sets.

Table 2. Deforestation area in the study region.

Deforestation Area (Pixels) Proportion (%)

Total 72,298 2.6
Training set 24,438 3.3

Validation set 8807 2.3
Test set 39,053 2.3

5.2. Baseline Methods

As baselines for the evaluation of DLCD the two patchwise semantic segmentation
methods, Early Fusion (EF) and Siamese CNN (S-CNN), presented in [47] were selected.
Both methods take 15× 15 patches as input and produce a single decision for the entire
patch under analysis. The main difference consists in the fact that for EF, seven Landsat
8-OLI bands as well NDVI images for ti and ti+d time instances are concatenated before
been submitted to its input, altogether composing a 3D-tensor with 16 layers. On the hand,
S-CNN network has two inputs, where each one receives an 8-layer tensor, one for ti and
the other for ti+d.

Table 3 presents a detailed description of the EF and S-CNN architectures employed
in this work. In that table, the rows refer to network layers and the columns show the
characteristics of such layers. The first column shows layer numbers and types; column
2 presents the output tensor size; while columns 3 to 5 indicate the number and size of
kernels, the stride and activation function, when applicable. In the specific case of the EF
architecture, there are three convolutional layers interspersed with max-pooling layers.
The convolutional layer kernel description contains four numbers. For instance, in the
first layer, we have a 128 (3× 3× 16) convolutional layers, that means 128 filters with
respectively 3 rows, 3 columns and depth 16. After the last convolutional layer there are
two fully connected layers, the first one with 4608 hidden neurons and the last one with
two output layers with softmax activation functions.
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As it can be noticed in Table 3, S-CNN architecture is quite similar to the EF. The main
difference consists in having two independent convolutional-pooling encoders for each
time instance. However, as usual in Siamese architectures, both encoders share the same
weights’ values. Another difference in relation to EF consists of both encoders outputs being
concatenated before being submitted as the input of the fully connected layers sequence.

We recall that the EF and S-CNN baseline methods adopt a patch-wise classification
approach for dense labeling. Their architectures are, therefore, not fully convolutional, as
that of DLCD, having fully connected layers at the end. They take as input one image patch
and deliver a single class label for that patch. That label is considered as the prediction for
the center pixel position in the output prediction map.

Table 3. Detailed description of EF and S-CNN architectures.

Early Fusion

Layer type Output Kernel Stride Activation

Input Image 15× 15× 16 - - -
1 Convolutional 15× 15× 128 128 (3× 3× 16) 1 ReLU

Max-pooling 7× 7× 128 2× 2 2 -
2 Convolutional 7× 7× 256 256 (3× 3× 128) 1 ReLU

Max-pooling 3× 3× 256 2× 2 2 -
3 Convolutional 3× 3× 512 512 (3× 3× 256) 1 ReLU
4 Fully connected 4608× 1 - - ReLU
5 Fully connected 2× 1 - - Softmax

Total number of parameters 22,741,378

Siamese CNN

Layer type Output Kernel Stride Activation

Input Images (2×) 15× 15× 8 - - -
1 (2×) Convolutional 15× 15× 128 128 (3× 3× 8) 1 ReLU

Max-pooling 7× 7× 128 2× 2 2 -
2 (2×) Convolutional 7× 7× 256 256 (3× 3× 128) 1 ReLU

Max-pooling 3× 3× 256 2× 2 2 -
3 (2×) Convolutional 3× 3× 512 512 (3× 3× 256) 1 ReLU

4 Fully connected 4608× 1 - - ReLU
5 Fully connected 2× 1 - - Softmax

Total number of parameters 43,970,434

5.3. Experimental Setup

The herein employed experimental setup follows the same procedures adopted in [47]
and relies on the imagery as well as on the reference data presented in Section 5.1. Fol-
lowing [47], patch sizes for both the EF and S-CNN are 15 × 15. During the training
cycles, data augmentation was performed only on patches associated with the deforestation
class, being each training patch rotated by 90º, and flipped in the horizontal and vertical
axis. In addition, in order to balance the training patches, the ones associated with the
no-deforestation class were randomly neglected. Thus, in the training scenario with four
tiles, 8118 training patches were obtained for each class. The validation set was composed
of a total of 40,642 patches, 963 of the deforestation class, and 39,679 of the no-deforestation
class. The test set sample numbers also express the natural class distribution, comprising
1,716,000 patches, 40,392 for deforestation class and 1,675,608 for no-deforestation.
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The batch size for training the EF and S-CNN methods was set to 32, and early stopping
was used to halt training after 10 epochs without improvement. For the last fully connected
layer a dropout rate of 0.2 was applied. Training cycles were carried out with the Adam
optimizer, using a learning rate of 0.001 and a weight decay of 0.9. The architectures of
the EF and S-CNN networks, which were described in Section 5.2, are exactly the same
presented in [47].

For the DLCD method image patches of 64 × 64 pixels with an overlap of 48 × 48 pixels
were provided. Training patches were subjected to data augmentation, they were rotated
by 90º, 180º, 270º; being both the original and rotated versions flipped vertically. Patches
without deforestation pixels were disregarded. The batch size was set to 16, and the
maximum number of epochs was set to 100, while early stopping was set to halt the
training procedure after 10 epochs without improvement. Training was performed with
the Adam optimizer with a learning rate of 0.001.

Balancing the training data for the DLCD method is not so simple. For example,
selecting training patches based on any criteria would result in a much smaller training set.
Therefore, we dealt with class unbalance by employing the weighted focal loss function [26]
during the DLCD model training.

6. Results and Discussion

In order to investigate the influence of the weighted focal loss (WFL) function parame-
ters α and γ in the classification performance of the DLCD method, we made a grid search.
Accordingly, in the experiments, we considered the following values of α: 0.9, 0.8, 0.7, 0.6
and 0.5, while, for each different α value, we varied γ values from 0 to 5, which amounts to
a total of 30 combinations of α and γ tuples. The selected α values were intended to cover a
range of values that goes from not weighting the classes, i.e., α = 0.5, to weighting up to
one order of magnitude in favor of the deforestation class, i.e., α = 0.9. We recall that the
proportion of deforestation pixels in the training tiles varies from 1% to 3%, depending on
the training scenario, but as explained in the previous section, only patches with deforesta-
tion pixels were selected for training, so we believe that α = 0.9 was a good upper bound
for that parameter. As for the selected range of γ values, we basically adopted the same
range used by the authors of [26] (that proposed the WFL). It is important to observe that
when γ = 0, the WFL becomes equivalent to the balanced cross entropy loss. Additionally,
with γ = 0 and α = 0.5 the loss degenerates to the ordinary cross entropy loss function,
which was the loss employed in the original implementation of DeepLabv3+.

For each tuple of WFL parameters, the mean results of 10 network initialization–
training cycles using the four tiles training set scenario are presented in Figure 4. At the top
of the figure, the precision average outcomes are presented, below, the bar graph containing
average recall values, while average F1-scores are presented in the third chart. The table
at the bottom of Figure 4 shows the parameters values employed in each experiment. In
addition, the results associated with EF and S-CNN [47], also expressing the mean for
10 initialization–training rounds, were included in that figure after the DLCD results.

Analyzing the precision values in Figure 4, one can notice that the DLCD method
trained using WFL produced consistently smaller amounts of false positives than EF and S-
CNN. The best DLCD variant, DLCD-29, went beyond S-CNN by more than 25%. However,
an analysis of the recall values makes it clear that, on the other hand, EF produced lesser
false negatives than the DLCD variants, a behavior that was not observed with S-CNN.
This fact can be observed on the recall chart in Figure 4, in which EF outperformed the best
among the DLCD evaluated variants, DLCD-3, by approximately 1.5%.

Looking at the results obtained for distinct α values, one can notice that α = 0.5
presented by the magenta shaded bars brought fewer false positives (see the precision
chart). Nonetheless, it provided more false negatives downgrading the respective recall
values. In contrast, α = 0.9 (reddish bars) tended to bring superior recall values, suggesting
that such α value tends to produce fewer false negatives. On the other hand, that α value
produced the poorest precision, providing more false positives.
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The observation of the average F1-scores, which stands for the harmonic mean between
precision and recall, may bring into the conclusion that, in the performed experiments,
F1-scores somehow compensates the conflicting behaviors between precision and recall for
the scope of parameter values under analysis. Among the 30 DLCD variants, only three
were outperformed by EF and S-CNN in terms of F1-Scores. The best mean F1-score was
73.42% obtained for DLCD-14 which used α = 0.7 and γ = 1, outperforming EF in more
than 10%. That outcome suggests a clear superiority of the herein presented method in
terms of F1-scores.

0 10 20 30 40 50 60 70 80 90 100

E F
S-C N N

D L C D -1
D L C D -2
D L C D -3
D L C D -4
D L C D -5
D L C D -6
D L C D -7
D L C D -8
D L C D -9

D L C D -10
D L C D -11
D L C D -12
D L C D -13
D L C D -14
D L C D -15
D L C D -16
D L C D -17
D L C D -18
D L C D -19
D L C D -20
D L C D -21
D L C D -22
D L C D -23
D L C D -24
D L C D -25
D L C D -26
D L C D -27
D L C D -28
D L C D -29
D L C D -30

52.41
55.78

67.79
69.01

63.23
66.51

51.05
61.05

70.48
63.8

69
72.25

58.35
48.74

75.51
74.98

69.49
56.96

75.13
67.32

72.84
77.27
76.61

70.75
67.95

72.2
72.2

79.32
80.61

75.79
81.51
80.83

Precision (%)

0 10 20 30 40 50 60 70 80 90 100

E F
S-C N N

D L C D -1
D L C D -2
D L C D -3
D L C D -4
D L C D -5
D L C D -6
D L C D -7
D L C D -8
D L C D -9

D L C D -10
D L C D -11
D L C D -12
D L C D -13
D L C D -14
D L C D -15
D L C D -16
D L C D -17
D L C D -18
D L C D -19
D L C D -20
D L C D -21
D L C D -22
D L C D -23
D L C D -24
D L C D -25
D L C D -26
D L C D -27
D L C D -28
D L C D -29
D L C D -30

79.86
72.52

76.54
69.42

78.29
75.04
75.31

72.99
72.69
72.58

75.79
70.37

74.54
72.86

70.72
72.15
72.73
72.27

68.37
66.01

72.2
68.82
68.83
69.19

64.44
69.31
69.31

66.4
62.36

65.04
62.69
63.16

Recall (%)

0 10 20 30 40 50 60 70 80 90 100

E F
S-C N N

D L C D -1
D L C D -2
D L C D -3
D L C D -4
D L C D -5
D L C D -6
D L C D -7
D L C D -8
D L C D -9

D L C D -10
D L C D -11
D L C D -12
D L C D -13
D L C D -14
D L C D -15
D L C D -16
D L C D -17
D L C D -18
D L C D -19
D L C D -20
D L C D -21
D L C D -22
D L C D -23
D L C D -24
D L C D -25
D L C D -26
D L C D -27
D L C D -28
D L C D -29
D L C D -30

63.24
62.94

71.84
68.62
69.76
70.04

59.67
65.58

71.4
67.36

71.91
69.95

64.56
54.65

73.03
73.42

70.05
60.49

71.4
64.68

72.46
72.58
72.2

69.42
64.04

70.28
70.28

71.8
69.64
69.35
70.61
70.62

F1-score (%)

Variant α γ Variant α γ Variant α γ

DLCD-1 0.9 0 DLCD-2 0.9 1 DLCD-3 0.9 2
DLCD-4 0.9 3 DLCD-5 0.9 4 DLCD-6 0.9 5
DLCD-7 0.8 0 DLCD-8 0.8 1 DLCD-9 0.8 2
DLCD-10 0.8 3 DLCD-11 0.8 4 DLCD-12 0.8 5
DLCD-13 0.7 0 DLCD-14 0.7 1 DLCD-15 0.7 2
DLCD-16 0.7 3 DLCD-17 0.7 4 DLCD-18 0.7 5
DLCD-19 0.6 0 DLCD-20 0.6 1 DLCD-21 0.6 2
DLCD-22 0.6 3 DLCD-23 0.6 4 DLCD-24 0.6 5
DLCD-25 0.5 0 DLCD-26 0.5 1 DLCD-27 0.5 2
DLCD-28 0.5 3 DLCD-29 0.5 4 DLCD-30 0.5 5

Figure 4. Precision Recall and F1-Scores obtained for distinct Weighted Focal Loss function parameters
while using the four tiles training set scenario.

Table 4 aggregates the results shown in Figure 4. In an attempt of isolating the impact
of the γ parameter, Table 4 presents the average values obtained for distinct γ values
disregarding α. By analyzing the results presented in Table 4, one can notice that the
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highest F1-Score, Recall and Precision were obtained when γ is equal to zero. This result
suggests that it is possible to obtain stable results when WFL is reduced to weighted cross-
entropy (WCE). However, the choice of γ value should take into account that the best
F1-score in Figure 4 was 73.42%, a result obtained with DLCD-14, which employed α = 0.7
and γ = 1. Anyway, in general terms, increasing γ to values beyond two demonstrates a
noticeable impact on F1-Score, Precision and Recall. However, it should be noticed that the
decay on Precision outweighs that on Recall. That result suggests that false positives (false
deforestation alarm) are even more impacted by the increment of γ than false negatives.

Table 4. Mean of F1-Scores, Recall, and Precision disregarding α and grouped by γ.

γ Value F1-Score Recall Precision

0 71.80 72.29 71.76
1 70.76 69.87 72.87
2 70.71 71.60 71.79
3 67.85 70.38 68.45
4 66.05 69.07 66.80
5 65.16 68.87 66.03

In another set of experiments, we sought to evaluate the impact of training set size on
DLCD as well as on EF and S-CNN. For that purpose, Figure 5 presents F1-scores provided
while using distinct numbers of tiles to generate the training data. Hence, the more tiles
employed, the larger is the training set size. For all number of tiles selected DLCD-14
performed better than both EF and S-CNN. Comparing S-CNN to EF, S-CNN presented
better results for 1, 2 and 3 tiles, while EF preformed better for a training set generated
from 4 image tiles. However, the most important fact to be observed is that the smaller the
training set was, the greater the advantage of DLCD in relation to EF and S-CNN. That
may lead to the conclusion that the use of the DLCD method is even more suitable in cases
where the training set is restricted. It should be stressed that this is a very important result,
since, in remote sensing change detection, the limitation of the amount of training data is a
quite common condition. Thus, considering such an advantage, the use of DLCD should
be preferable to EF and S-CNN.
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Figure 5. F1-Scores for distinct volumes of training data.

Figure 6 presents the change maps produced by EF, S-CNN, and DLCD-14 for tiles
6 and 14, between the years of 2016 and 2017. The left column shows the results for tile
6, and the right column shows the outcomes for tile 14. The top row presents results
produced by EF, the middle row shows the ones produced by S-CNN, and the bottom row
show the results obtained with DLCD-14. Comparing those maps, it is possible to notice
that the proposed method produced a slightly larger amount of false no-deforestation
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errors (plotted in blue) than EF and S-CNN. On the other hand, DLCD produced a notably
lower number of false deforestation errors (indicated in red). We observe that such an
outcome is particularly important for operational reasons, considering the effort and costs
involved in the reconnaissance of the actual deforestation by the local authorities, involved
in penalizing the perpetrators or in mitigating the effects of illegal deforestation.

(a) Tile 6 - EF (b) Tile 14 - EF

(c) Tile 6 - S-CNN (d) Tile 14 - S-CNN

(e) Tile 6 - DLCD-14 (f) Tile 14 - DLCD-14

True Deforestation False Deforestation True No-Deforestation False No-Deforestation

Figure 6. Change maps predicted by EF, S-CNN, and DLCD-14 on test tiles 6 and 14 for 2016–2017.

To close this section we observe that, although the results obtained with the proposed
DLCD method for the majority of the α and γ value combinations produced better accu-
racies in terms of F1-scores than the baseline methods, in a few combinations, i.e., 0.7, 3;
0.8, 4; and 0.9, 4, the accuracy values were slightly inferior. Additionally, the differences
in accuracy values between the best and the worst hyperparameter combinations vary
substantially (up to about 19% in F1-score). Therefore, the selection of proper α and γ values
is key to obtain superior results. Additionally, although we designed the experiments in a
way to avoid a high level of spatial correlation between the training and test samples (by
extracting them from different image tiles), we cannot be sure that the optimum α and γ
values found for the target site are also the best for other sites, with dissimilar forest covers.
Such generalization issues open grounds for further investigation.

7. Conclusions

In this work, we proposed and evaluated a deep-learning-based deforestation detec-
tion method. The method was built on top of the DeepLabv3+ architecture. The original
DeepLabv3+ model was adapted in several ways and we adopted the weighted focal loss
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function during training, aiming at improving the accuracy of the detected deforestation
polygons silhouettes, and at dealing with the extreme class unbalance, characteristic of
the deforestation detection application. The proposed method, denoted DeepLab Change
Detection (DLCD), was compared with two baseline methods: Early Fusion (EF), Siamese
Convolutional Neural Network (S-CNN), which belong to the current state-of-the-art
methods for the deforestation detection application.

The experiments addressed the analysis of the impact of the training set size on
the method’s performance. We carried out an extensive grid search on the weighted
focal loss function hyperparameters in the DLCD training procedure. When compared to
the baseline methods, despite presenting smaller Recall values, variants of the proposed
method significantly outperformed the EF and S-CNN methods in terms of Precision and F1-
score. In addition, for smaller amounts of training data, more significant performance gains
were presented by the DLCD method. That was an important result, since limited amounts
of training data is a reality in many change detection problems. Another significant
advantage of the proposed method is that, being a dense labeling model, it provides
considerably lower inference times than patchwise classification methods like S-CNN and
EF. Additionally, DLCD produced a notable lower number of false positive errors, which
is crucial for such an application, considering the effort and costs involved to reinforce
environmental laws in a vast region like the Brazilian Legal Amazon.

The adoption of the weighted focal loss has proven effective in dealing with the
characteristic class unbalance of the target application. Nonetheless, the use of such loss
function introduced some additional parameters when compared with S-CNN and EF. The
herein presented evaluation indicates that γ ∈ {0, 1} and α ∈ [0.6, 0.7] may be good options
in future works in order to fasten the fine-tuning of such parameters.

In regard to directions for future work, we plan to investigate if the performance
of the proposed semantic segmentation approach is transferable to other domains, e.g.,
training the proposed model with samples from a particular site, and testing on images
covering different forest sites. In fact, investigating deep learning based domain adaptation
is planned for the continuation of this research. Another possibility is adapting recent
image classification approaches not yet applied to this problem ([36,38,39] for instance) for
the deforestation detection problem.
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Abbreviations
The following abbreviations are used in this manuscript:

ASPP Atrous-convolutional Spatial Pyramid Pooling
CD Change Detection
CNN Convolutional Neural Networks
Concat Feature Mapas Concatenation
Conv Regular 2D Convolution
CRF Conditional Random Fields
DL Deep Learning
EF Early Fusion
FCN Fully Convolutional Networks
INPE Brazilian National Institute for Space Research
MLP Multi Layer Perceptron
NDVI Normalized Difference Vegetation Index
ReLU Rectified Linear Unit activation function
RS Remote Sensing
SConv Depthwise Separable Convolution
SS Semantic Segmetation
SVM Suport Vector Machine
WFL Weighted Focal Loss
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