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Abstract: Permafrost and alpine vegetation are widely distributed in Tibet, which is a sensitive area
for global climate change. In this study, we inverted the surface deformation from 22 May 2018 to
9 October 2021 in a rectangular area within the city of Linzhi, Tibet, using the Sentinel1-A data and
two time-series interferometric system aperture radar (InSAR) techniques. Then, the significant
features of surface deformation were analyzed separately according to different vegetation types.
Finally, multiple machine learning methods were used to predict future surface deformation, and
the results were compared to obtain the model with the highest prediction accuracy. This study
aims to provide a scientific reference and decision basis for global ecological security and sustainable
development. The results showed that the surface deformation rate in the study area was basically
between ±10 mm/a, and the cumulative surface deformation was basically between ±35 mm.
The surface deformation of grassland, meadow, coniferous forest, and alpine vegetation were all
significantly correlated with NDVI, and the effect of alpine vegetation, coniferous forest, and grassland
on permafrost was stronger than that of the meadow. The prediction accuracy of the Holt–Winters
model was higher than that of Holt′s model and the ARIMA model; it was expected that the ground
surface would keep rising in the next two months, and the ground surface deformation of alpine
vegetation and the coniferous forest was relatively small. The above studies indicated that the surface
deformation in the Tibetan permafrost region was relatively stable under the conditions of alpine
vegetation and coniferous forest. Future-related ecological construction needs to pay more attention
to permafrost areas under grassland and meadow conditions, which are prone to surface deformation
and affect the stability of ecosystems.

Keywords: InSAR; surface deformation; permafrost; vegetation; machine learning; Tibet

1. Introduction

With global warming, the influence of climate change on the future global ecolog-
ical environment and the mechanism of the responses of ecosystems to climate change
have been extensively raised and studied [1–5]. Tibet has a large area of high-altitude
permafrost and is one of the plateau ecosystems with the highest sensitivity to global
climate change [6–8]. The type of permafrost in northwest Tibet is dominated by perennial
permafrost, while southeast Tibet is influenced by the warm and humid flow of the Indian
Ocean and dominated by seasonal permafrost, i.e., the freezing of soil has seasonal changes,
freezing in winter and melting in summer [9]. The freezing and thawing of permafrost
significantly affect the hydrology, climate, and ecosystems of the regions in which it is
located, by participating in the global cycle of energy and water. Over recent years, under
climate change impact, not only has the perennial permafrost begun to degrade into sea-
sonal permafrost extensively in Tibetan areas, but the thickness of the active layer of the
existing seasonal permafrost is also increasing substantially, along with the problems of
increasing the mean ground temperature of the permafrost and the advancement of the
thawing date [6,10,11]. The current series of changes in the permafrost can disrupt these
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cyclic processes to some extent, causing soil moisture loss, land desertification, and reduced
vegetation cover [12,13], thus causing far-reaching effects on the hydrological and climatic
systems, and making the ecological security of alpine regions challenging.

Vegetation is not only an important medium in the global material and energy cycle
but also the most intuitive indicator of global climate change, especially as the vegetation
on permafrost is vulnerable to climate change. The existence and degradation of permafrost
have a significant impact on the composition and structure of vegetation, and the stability
of ecosystems in alpine regions [14,15]. On the other hand, different vegetation types will
have corresponding feedback on the freezing and melting of permafrost, which in turn
will counteract the formation and development of permafrost [16,17]. Permafrost and
vegetation can slow or accelerate climate change by influencing the exchange of energy and
water between the surface and the atmosphere, which in turn regulates the regional climate.
Studies have shown that ecosystems located at high latitudes or high altitudes have a higher
sensitivity to climate change [18–20]. Tibet, as a region with both a highland environment
and permafrost environment, will respond more rapidly to global climate change. For
example, Zhang et al. [21] found that the area of alpine wetlands in the Tibetan region
decreased by about 23.35% from 1991 to 2020, the temperature was one of the main drivers
of wetland changes, and the correlation between the wetland area and the rising season
temperature was the largest. Liu et al. [22] explored the temporal changes in vegetation
phenology on the Tibetan Plateau from 1982–2015 and found that there was an extended
growing season length (GSL) in the northeast, revealing that temperature was one of the
main factors determining the delayed end of the growing season (EOS). Therefore, the
analysis of surface deformation under different vegetation cover types in the permafrost
zone of Tibet is of great importance to research in the field of global climate.

In recent years, remote sensing has become an important tool to reveal the response
and feedback mechanisms of ecosystems to global climate change because of its wide
coverage, spatial continuity, and long time series. Interferometric system aperture radar
(InSAR) technology, which has been rapidly developed in recent decades, is an active
microwave remote sensing technology with features such as all-weather, high accuracy, and
high resolution, and it has a high potential for application in conducting earth observation
over large areas [23], which can accurately monitor small deformations on the surface with
centimeter-level or even millimeter-level accuracy [24,25]. InSAR provides a very effective
solution for monitoring small surface deformation caused by the freezing and thawing of
permafrost. Later developed time-series InSAR techniques are represented by Persistent
Scattering InSAR (PS-InSAR), which can remove most of the atmospheric factors; and Small
Baseline Subset InSAR (SBAS-InSAR), which can remove most of the decorrelation and
elevation error effects. These technologies further improve the detection accuracy due to
the spatial–temporal irrelevance, vegetation occlusion, etc. [26–28]. Presently, time-series
InSAR technology has been well applied in the field of high-accuracy monitoring and
analysis of surface deformation in permafrost areas. Chen et al. [29] observed the surface
deformation in the permafrost area of the Qinghai-Tibet Plateau from 2014 to 2019 based
on the time-series InSAR technique, and the results showed that the seasonal deformation
was as high as 80 mm and the average settlement value was about 10 mm. Zhao et al. [30]
constructed a deformation model that took into account factors such as climate and tectonic
activity and combined it with SBAS-InSAR to monitor and revise surface deformation
in the southern permafrost zone of the Tibetan Plateau. Rouyet et al. [31] used InSAR
technology to monitor the permafrost area of the Svalbard Islands, which was also at high
latitude and altitude, and found that surface subsidence and uplift could match the thawing
and freezing dates of the permafrost, and analyzed the correspondence between surface
deformation and seasonal changes in surface temperature. However, most of the current
studies only focus on the topics of surface deformation, active layer thickness, and thawing
dates in the permafrost area, while the monitoring results have rarely been applied to reveal
the surface deformation characteristics under different vegetation conditions. Given this,
this paper took the permafrost area under different vegetation cover types in the Tibetan
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region as the research object, combined the time-series InSAR technique and a machine
learning algorithm based on the Sentinel1-A data, established a regional-scale permafrost
deformation monitoring and prediction method system, analyzed the relationship between
surface deformation and vegetation cover types, and quantified the influence of vegetation
conditions and permafrost freeze-thaw in the Tibetan region. The research results are
expected to provide an important scientific basis and technical reference for ecological
protection and construction in alpine regions.

2. Materials and Methods
2.1. Study Area

Located in Linzhi City, Tibet, Sedgera Mountain is a typical mountain system in south-
eastern Tibet, located at the intersection of the Himalayan tectonic belt, the eastern end of
the Nian Tanggula tectonic belt, and the tectonic belt of the Hengduan Mountains, with
intense tectonic movements and active surface deformation; in addition, the Sedgera Moun-
tain has unique climatic conditions belonging to a relatively typical subalpine temperate
semi-humid climate, and under the influence of the southwest monsoon, the vegetation in
the region grows luxuriantly and of many types. Therefore, in this paper, a rectangular area
was selected as the study area to the south of Sedgera Mountain in Linzhi City, as shown in
Figure 1. The study area is located between 29◦11′ and 29◦90′N latitude and 93◦56′ and
94◦54′E longitude, with an area of about 5796.7 km2. It is a typical seasonal permafrost area,
with 99% of the whole area being seasonal permafrost and 1% being perennial permafrost.
The vegetation coverage is very high, and the vegetation-free area only accounts for 0.2%.
The vegetation types include alpine vegetation, arable vegetation, coniferous forest, and
grassland and meadow, of which alpine vegetation and meadow are the main categories.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 21 
 

 

of the current studies only focus on the topics of surface deformation, active layer thick-
ness, and thawing dates in the permafrost area, while the monitoring results have rarely 
been applied to reveal the surface deformation characteristics under different vegetation 
conditions. Given this, this paper took the permafrost area under different vegetation 
cover types in the Tibetan region as the research object, combined the time-series InSAR 
technique and a machine learning algorithm based on the Sentinel1-A data, established a 
regional-scale permafrost deformation monitoring and prediction method system, ana-
lyzed the relationship between surface deformation and vegetation cover types, and quan-
tified the influence of vegetation conditions and permafrost freeze-thaw in the Tibetan 
region. The research results are expected to provide an important scientific basis and tech-
nical reference for ecological protection and construction in alpine regions. 

2. Materials and Methods 
2.1. Study Area 

Located in Linzhi City, Tibet, Sedgera Mountain is a typical mountain system in 
southeastern Tibet, located at the intersection of the Himalayan tectonic belt, the eastern 
end of the Nian Tanggula tectonic belt, and the tectonic belt of the Hengduan Mountains, 
with intense tectonic movements and active surface deformation; in addition, the Sedgera 
Mountain has unique climatic conditions belonging to a relatively typical subalpine tem-
perate semi-humid climate, and under the influence of the southwest monsoon, the vege-
tation in the region grows luxuriantly and of many types. Therefore, in this paper, a rec-
tangular area was selected as the study area to the south of Sedgera Mountain in Linzhi 
City, as shown in Figure 1. The study area is located between 29°11′ and 29°90′ N latitude 
and 93°56′ and 94°54′ E longitude, with an area of about 5796.7 km². It is a typical seasonal 
permafrost area, with 99% of the whole area being seasonal permafrost and 1% being per-
ennial permafrost. The vegetation coverage is very high, and the vegetation-free area only 
accounts for 0.2%. The vegetation types include alpine vegetation, arable vegetation, co-
niferous forest, and grassland and meadow, of which alpine vegetation and meadow are 
the main categories. 

  
(a) (b) 

Figure 1. (a) Location and the distribution of permafrost in the study area; (b) Distribution of vege-
tation types in the study area. 

2.2. Data Sources 
In this paper, a total of 20 views of the Sentinel1-A TOPSAR data from 22 May 2018 

to 9 October 2021 (https://search.asf.alaska.edu/, accessed on 14 April 2022) were used as 
the data source, with a spatial resolution of 5 m × 20 m, image acquisition by downlink, 

Figure 1. (a) Location and the distribution of permafrost in the study area; (b) Distribution of
vegetation types in the study area.

2.2. Data Sources

In this paper, a total of 20 views of the Sentinel1-A TOPSAR data from 22 May 2018 to
9 October 2021 (https://search.asf.alaska.edu/, accessed on 14 April 2022) were used as
the data source, with a spatial resolution of 5 m × 20 m, image acquisition by downlink, in-
terferometric wide swath (IW) imaging mode, and a polarization mode of VV. Meanwhile,
the POD Precise Orbit Ephemerides high-precision orbital data (https://qc.sentinel1.eo.
esa.int/, accessed on 14 April 2022) with a positioning accuracy of >5 cm and 12.5 m resolu-
tion DEM data (https://qc.sentinel1.eo.esa.int/, accessed on 14 April 2022) were used as
auxiliary data to further improve the accuracy and reliability of the results. In addition,
NDVI data of the study area were obtained from the Landsat8 dataset of the Google Earth
Engine platform (https://developers.google.cn/earth-engine, accessed on 14 April 2022),

https://search.asf.alaska.edu/
https://qc.sentinel1.eo.esa.int/
https://qc.sentinel1.eo.esa.int/
https://qc.sentinel1.eo.esa.int/
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permafrost type distribution data were extracted from the China permafrost distribution
map [32], and the vegetation type was taken from the 1:1,000,000 scale vegetation distribu-
tion map of China (http://westdc.westgis.ac.cn, accessed on 14 April 2022).

2.3. Principle of PS-InSAR

The principle of the PS-InSAR technique is to select one image among all the images
as the main image by considering factors such as temporal and spatial baseline distribution,
then perform differential interference processing on the images to extract PS candidate
points, and finally obtain the average deformation rate and cumulative deformation value
of each PS control point in the research region [33]. The interference phase composition
Φps of every PS point is shown in Equation (1) [34]:

Φps = Φ f la + Φtop + Φde f + Φatm + Φnoi (1)

where Φ f la is the phase component caused by the flat earth effect, Φtop is the phase compo-
nent caused by the ground elevation, Φde f is the phase component caused by the surface
deformation, Φatm is the phase component caused by the atmospheric delay effect, and
Φnoi is the phase component caused by noise. The expressions of the flat earth phase Φ f la,
topographic phase Φtop, and the deformation phase Φde f are as follows:

Φ f la =
4ΠBcos(θ − α)

λRtan(θ)
∆R (2)

Φtop =
4ΠBcos(θ − α)

λRsin(θ)
∆h (3)

Φde f =
4ΠB

λ
∆d (4)

The differential interference phase Φdi f f of the PS point can be expressed as:

Φdi f f = Φ f la_error + Φtop_error + Φde f + Φatm + Φnoi (5)

where Φdi f f is the differential phase after removing the flat-ground phase component as
well as the topographic phase, Φ f la_error is the residual error when removing the flat-ground
phase, and Φtop_error is the residual error when removing the topographic phase, whose
expressions can be expressed as:

Φtop_error =
4ΠBcos(θ − α)

λRsin(θ)
∆herror (6)

Φde f = −
4Π

λ
∆d (7)

Φdi f f =
4ΠBcos(θ − α)

λRsin(θ)
∆herror +

4Π

λ
∆d + Φres (8)

Φres = Φ f la_error + Φatm + Φnoi (9)

where 4ΠBcos(θ−α)
λRsin(θ) ∆herror is the topographic error, 4Π

λ ∆d is the deformation phase, and Φres

is the residual error.
The processing flow of PS-InSAR is shown in Figure 2.

2.4. Principle of SBAS-InSAR

The basic principle of SBAS-InSAR is to sort all SAR images in temporal order
(t1, t2, . . . , tk), and to pair them. Next, the temporal baseline and spatial vertical baseline
thresholds are set independently and the interferometric pairs smaller than the threshold
are divided into one group, and so on. Finally, L sets of image pairs could be obtained [35].

http://westdc.westgis.ac.cn
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For the ith differential interferogram, assuming t2 > t1, the expression of the differential
interference phase is shown in Equation (2) [36]:

Φi = Φt2 −Φt1 ≈
4Π

λ
[dt2 − dt1] +

4Π

λ
× B⊥iξ

Rsinθ
+ [Φatm2 −Φatm1] + ∆Φ (10)

where Φt1 and Φt2 are the phases at moments t1 and t2, respectively, dt1 and dt2 are the
deformation relative to the reference image at moments t1 and t2 in the Line of Sight (LOS)
direction of the satellite, B⊥i is the vertical baseline, R is the distance from the satellite
to the feature target, θ is the satellite incidence angle, λ is the radar wavelength, B⊥iξ

Rsinθ
is the residual terrain phase due to the inaccuracy of DEM, (Φatm2 −Φatm1) is the phase
introduced by the atmospheric delay effect, and ∆Φ is the phase introduced by noise.
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The linear model of linear deformation and DEM residual phase error in the study
area can be expressed as:

[T, M]P′ = δΦ (11)

where T is the time-dependent sparse matrix and M is the coefficient matrix associated
with the spatial baseline. The linear deformation phase P′ can be expressed as:

P′ = [v ξ]T (12)

where v is the linear deformation rate and ξ is the DEM error. The linear deformation rate
can be obtained by solving the model, and the topographic error can be estimated.

The processing flow of SBAS-InSAR is shown in Figure 3.

2.5. Principles of Statistics–Time Series Prediction Models

Time series prediction models are mostly used in fields such as surface deformation,
mainly by building models to predict future trends based on past data to provide guidance
for future decisions. Holt′s exponential smoothing model is a classical forecasting model.
Its advantage is that it can be used to smooth the factors of the original series with different
parameters, which has a lot of flexibility and is especially suitable for data that vary
continuously with time [37]. The Holt–Winters model can identify seasonality in time-
series data. This model is applicable to non-stationary series containing linear trends and
cyclical fluctuations, is widely used for short-term forecasting of future trends, and has
provided excellent results [38]. ARIMA models are considered to be the most commonly
used regression models for time-series forecasting in the last four decades [39] and are
remarkable for fitting linearity without sacrificing trend predictions for long-term horizons.
All of the three prediction models above have been proven to be effective for time-series
prediction, and are applicable to the data in this paper; therefore, Holt′s exponential
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smoothing model, the Holt–Winters smoothing model, and the ARIMA model are selected
for surface deformation prediction, and the prediction results are compared to obtain the
model with the highest accuracy.
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2.5.1. Holt′s Exponential Smoothing Model

Holt′s method retains both smoothing and trend information and can predict time-
series data with trends. Its formulas at time t are as follows [40]:

Lt = αYt + (1 + α)(Lt−1 + Tt−1) (13)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (14)

Ŷt+m = Lt + mTt (15)

where, Lt is the smoothed value, Tt is the trend estimate, Yt is the observation value, Ŷt+m
is the forecast for m periods into the future; α and β are the smoothing constants for data
and estimate, and m represents periods to be forecast in the future.

2.5.2. The Holt–Winters Smoothing Model

A series is said to have seasonal characteristics when a certain repeating pattern occurs
at each fixed time interval, and this time interval is called a season. The Holt–Winters
smoothing model predicts time series with trend and seasonality, and in this model, both
the trend component and the seasonal component need to be smoothed exponentially. Its
formulas at time t are as follows [41]:

Lt = α
xt

st − s
+ (1− α)(Lt−1 + Tt−1) (16)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (17)

St = γ
xt

Lt
+ (1− γ)St−s (18)

X̂t+p = (Lt + pTt)St−s+p (19)

where, Lt is the smoothed value or the current level estimate, Tt is the trend estimate, St
is the seasonal estimate, xt is the observation value, X̂t+p is forecast for p periods into the
future; α,β, and γ are the smoothing constants for the level, trend, and seasonality estimate;
p is the set time period to be predicted, and s is the length of the season, i.e., the length of
a cycle.
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2.5.3. ARIMA Model

The ARIMA model is established based on a smooth time series, which can effectively
represent the linearity of the data and has a better short-term forecasting effect. Its formulas
are as follows [42]:

Ŷt = µ + Φ1 × yt−1 + · · ·+ Φp × yt−p + θ1 × et−1 + · · ·+ θq × et−q (20)

where p is the lags of the time-series data itself in the model, also known as the AR/Auto-
Regressive term; d is the order that needs to be differenced, also known as the integrated
term; q is the lags of the prediction error, also known as the MA/Moving Average term; Φ
is the coefficient of AR, and θ is the coefficient of MA.

2.6. Performance Indicators

In this paper, we use three common metrics, Mean Absolute Scaled Error (MASE) [43],
Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) to reflect the predictive
power of the model, which can be expressed by the following equations [44]:

MASE =

1
j ∑

j
0

∣∣ej
∣∣

1
T−1 ∑T

t=2|yi − yi−1|
(21)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (22)

MAE =
1
n ∑n

i=1|yi − ŷi| (23)

where y, yi, and ŷi represent the measured, predicted, and averaged values, respectively, ej
is the error at the j-th iteration, and the training set is considered for time t (t = 1, 2, . . . T).

3. Results and Analysis
3.1. Cross-Validation of Monitoring Results

The surface deformation rate diagrams obtained by the two InSAR techniques are
shown in Figures 4 and 5, respectively. In order to verify the accuracy of the monitoring
results, the results of PS-InSAR and SBAS-InSAR are cross-validated by a series of compar-
isons. Comparing the two figures, it can be seen that the distributions of the deformation
rates of the two results are roughly the same, and both show the following salient features:
the surface deformation motion in most of the study area shows subsidence, while a small
part of the northeast area shows uplift; the distribution of the surface deformation rates in
the study area is uneven, with the western and southeastern areas showing relatively low
deformation rates and stable surface movement, and slow subsidence, while the regions in
the northwestern and southwestern areas show slightly higher subsidence rates.

For a more accurate analysis, 26 randomly selected deformation monitoring points in
the study area were randomly selected as sample points in this paper, and the PS-InSAR
and SBAS-InSAR deformation rate monitoring values of these points were compared. The
comparison results are shown in Table 1, below. In addition, a Pearson correlation analysis
and linear regression analysis were performed on the sample points, and the results are
shown in Figure 6. From the statistical results in Table 1, the relative errors of PS-InSAR and
SBAS-InSAR results are within 3 mm/a, mostly within 0.5 mm/a, and the absolute mean
value is 0.65 mm/a. Figure 6 shows that the correlation coefficient of the sample points is
0.995 and R2 = 0.9901. It indicates that the results obtained by PS-InSAR and SBAS-InSAR
are relatively consistent, and the monitoring results are relatively reliable.

3.2. Analysis of Surface Deformation Monitoring Results

The comparison of the two time-series InSAR results shows that the density of de-
formation points extracted based on PS-InSAR is higher than that of SBAS-InSAR, so the
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PS-InSAR results are analyzed in this paper as the main results, and SBAS-InSAR as the
auxiliary results.
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Table 1. Comparison of PS-InSAR and SBAS-InSAR sample points deformation rate values.

ID PS
(mm/a)

SBAS
(mm/a)

Difference
(mm/a) ID PS

(mm/a)
SBAS

(mm/a)
Difference

(mm/a)

1 6.14 5.68 0.46 15 −3.28 −4.61 1.33
2 −5.74 −6.02 0.28 16 −3.27 −4.11 0.84
3 −1.61 −2.07 0.46 17 −4.56 −4.73 0.17
4 5.21 5.11 0.1 18 1.43 2.74 −1.31
5 −0.94 −0.59 −0.35 19 −4.56 −3.12 −1.44
6 −5.74 −6.02 0.28 20 0.93 0.42 0.51
7 −23.5 −23.9 0.4 21 1.19 0.97 0.22
8 −24.01 −24.65 0.64 22 1.17 0.96 0.21
9 −17.03 −19.09 2.06 23 0.35 0.21 0.14

10 4.23 4.36 −0.13 24 0.44 0.53 −0.09
11 0.98 1.62 −0.64 25 1.14 0.77 0.37
12 1.21 2.68 −1.47 26 2.17 3.85 −1.68
13 −1.99 −2.93 0.94 Absolute

mean value
None None 0.1114 −3.27 −3.88 0.61
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Statistically, there are 13,483 monitoring points in the study area, and the distribution
of the deformation rate is shown in Figures 5 and 7. It can be observed that the areas
with severe deformation are mainly centered in a small part of the northwest, northeast,
and central parts, with the maximum subsidence rate at 29.42 mm/a and the maximum
uplift rate at 58.27 mm/a. The values of the deformation rate are mostly distributed in the
range (−20, 20), and the deformation rate of most of the monitoring points in this range is
close to 0.
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Figure 8 displays the bar chart for the deformation rate. From the histogram, the
deformation rate is mainly distributed in the ranges (−10, 0) and (0, 10), with 5801 and
7599 control points distributed, respectively, accounting for about 43% and 56% of the total
number of control points. In the rest of the deformation rate ranges, the difference between
the number and proportion of control points is small, and the numbers are all lower than
1000, accounting for less than 10% of the control points. The above results indicate that the
surface deformation in the research region is dominated by slow deformation.

Figure 9 shows the distribution of the cumulative deformation value of the ground
points, and Figure 10 statistically shows the distribution ranges of the cumulative deforma-
tion of the ground points. As can be seen from the figures in the study area, the maximum
cumulative subsidence reaches 96.27 mm, and the maximum cumulative uplift reaches
199.64 mm; the cumulative deformation in most of the areas shows subsidence, and only
some areas in the north and central parts show uplift. The cumulative deformation range
with the largest number of ground points is (−30, 5), and the number of ground points
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accounts for about 76% of the total; the second is the range (5, 35), and the number of
ground points accounts for about 24% of the total.
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3.3. Results of Surface Deformation under Different Vegetation Types

Figure 11 shows the average cumulative surface deformation results for monitoring
sites located within different vegetation types at 20 time points during the monitoring
period. The results show that the surface deformation of each vegetation type exhibits a
certain periodicity, which is generally consistent with the pattern of seasonal permafrost
melting in summer and freezing in winter. Among them, the deformation trends of the
meadow and alpine vegetation are similar and remain stable overall, without showing
obvious uplifting or subsidence trends; the deformation trends of the cultivated vegetation,
grassland, and coniferous forest are similar, with more drastic deformation and an overall
uplifting trend.
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3.4. Correlation between Permafrost Deformation and Normalized Vegetation Index

It has been confirmed that the vegetation cover of an ecosystem can be expressed
by the normalized vegetation index (NDVI) [45–47]. This paper correlates and regresses
surface deformation measurements with the NDVI of the monitoring sites to quantify the
link between permafrost deformation and vegetation. The monitoring sites are divided into
five categories according to the vegetation cover types, because there are differences in per-
mafrost deformation among the various vegetation cover types in the study area, and these
differences significantly affect the correlation relationships and regression relationships
between permafrost deformation and NDVI. Firstly, the Pearson correlation coefficient and
significance level between surface deformation and NDVI at the monitoring sites were
calculated using SPSS software. It is generally accepted that a less than 0.05 significance
test result indicates that the results are statistically significant and are not the consequence
of sampling error. The calculated results are shown in Table 2.

Table 2. Correlation analysis between NDVI and surface deformation for different vegetation types.

Vegetation Cover Type Correlation Coefficient Significance Test p-Value

Grassland −0.269 <0.01
Meadow 0.06 <0.01

Cultivated vegetation −0.022 0.313
Alpine vegetation −0.116 <0.01
Coniferous forest 0.06 <0.01

From the results, NDVI and permafrost deformation are significantly correlated
(p < 0.01) in areas with the vegetation cover types of grassland, meadow, alpine vege-
tation, and coniferous forest. For the types with significant correlation, we further ap-
plied regression analysis to explore the role between NDVI and surface deformation,
and the NDVI distribution and regression analysis results for these areas are shown in
Figures 12 and 13, respectively.

3.5. Comparative Analysis of Machine Learning Prediction Models

In this paper, based on the surface deformation monitoring results obtained from
PS-InSAR, five PS points were randomly selected as sample points and the Holt′s expo-
nential smoothing model, the Holt–Winters smoothing model, and the ARIMA model in
the statistical time-series model were used to predict surface deformation for these five
points, and by comparing the relevant indexes and prediction effects, the most applicable
model in this study was obtained. In this paper, three accuracy indicators are used to assess
the reliability of the model, all three of which are widely used to reflect the error in the
predicted values [48–51]. In our evaluation of the test data with MASE, a value of lower
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than one implicates a better mean average error [52,53]. When MASE is less than one, the
smaller the MASE, RMSE, and MAE, the smaller the error of the model and the higher the
accuracy of the prediction.
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The prediction is set for the next six months, and since the time interval of the time-
series data in this paper is one month, predicting six months will result in three sets of data.
The results are shown in Figures 14–16. The prediction lines in the figure have an 80 percent
confidence interval shaded in blue and a 95 percent confidence interval shaded in gray.

From Figures 14–16, and Table 3, it can be seen that the average MASE of all three
models is much less than 1. The average RMSE of the Holt′s smoothing model prediction
results is 3.2092, the average MAE is 2.5376, and the average MASE is 0.0702; the average
RMSE of the Holt–Winters smoothing model prediction results is 2.9938, the average
MAE is 2.1039, and the average MASE is 0.0644; the average RMSE of the ARIMA model
prediction results is 3.0938, the average MAE is 2.378, and the average MASE is 0.065. After
comparison, all three indicators of the Holt–Winters smoothing model prediction results
are better than the Holt′s model and the ARIMA model, so it can be concluded that this
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model has the highest prediction accuracy and is most suitable for the prediction of future
surface deformation in the study area.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

data. The results are shown in Figures 14–16. The prediction lines in the figure have an 80 
percent confidence interval shaded in blue and a 95 percent confidence interval shaded in 
gray. 

 
Figure 14. Holt′s smoothing model prediction results (Unit: mm). 

 
Figure 15. Holt–Winters smoothing model prediction results (Unit: mm). 

Figure 14. Holt′s smoothing model prediction results (Unit: mm).

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

data. The results are shown in Figures 14–16. The prediction lines in the figure have an 80 
percent confidence interval shaded in blue and a 95 percent confidence interval shaded in 
gray. 

 
Figure 14. Holt′s smoothing model prediction results (Unit: mm). 

 
Figure 15. Holt–Winters smoothing model prediction results (Unit: mm). Figure 15. Holt–Winters smoothing model prediction results (Unit: mm).



Remote Sens. 2022, 14, 4684 14 of 20
Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 16. ARIMA model prediction results (Unit: mm). 

From Figures 14–16, and Table 3, it can be seen that the average MASE of all three 
models is much less than 1. The average RMSE of the Holt′s smoothing model prediction 
results is 3.2092, the average MAE is 2.5376, and the average MASE is 0.0702; the average 
RMSE of the Holt–Winters smoothing model prediction results is 2.9938, the average MAE 
is 2.1039, and the average MASE is 0.0644; the average RMSE of the ARIMA model pre-
diction results is 3.0938, the average MAE is 2.378, and the average MASE is 0.065. After 
comparison, all three indicators of the Holt–Winters smoothing model prediction results 
are better than the Holt′s model and the ARIMA model, so it can be concluded that this 
model has the highest prediction accuracy and is most suitable for the prediction of future 
surface deformation in the study area. 

Table 3. Comparison of predictive model performance indicators. 

Model Indicator Point 1 Point 2 Point 3 Point 4 Point 5 Average 

Holt’s 
RMSE 2.582 2.179 3.970 2.609 4.706 3.2092 
MAE 2.068 1.734 3.203 2.066 3.617 2.5376 

MASE 0.070 0.059 0.076 0.067 0.079 0.0702 

Holt–Win-
ters 

RMSE 2.489 2.144 3.797 2.012 4.527 2.9938 
MAE 2.004 1.753 3.167 1.524 3.542 2.1039 

MASE 0.067 0.059 0.076 0.050 0.070 0.0644 

ARIMA 
RMSE 2.415 1.864 2.721 2.611 5.858 3.0938 
MAE 1.873 1.366 2.111 2.061 4.479 2.3780 

MASE 0.063 0.046 0.050 0.068 0.098 0.0650 

4. Discussion 
4.1. Correlation Analysis of Vegetation Type and Surface Deformation 

As shown in Figure 11, the surface deformation patterns under cultivated vegetation, 
grassland, and coniferous forest conditions showed some similarity during the monitor-
ing period, and showed a small uplift trend on the whole, unlike the surface deformation 
under meadow and alpine vegetation conditions, which remained at a relatively stable 
level. The distribution of cultivated vegetation, grassland, and coniferous forest overlaps 
with residential areas, as can be observed from the examination of the actual situation in 
the research region; therefore, the surface deformation in these types of vegetation-cov-
ered areas is not only related to permafrost, but various human activities are also one of 

Figure 16. ARIMA model prediction results (Unit: mm).

Table 3. Comparison of predictive model performance indicators.

Model Indicator Point 1 Point 2 Point 3 Point 4 Point 5 Average

Holt’s
RMSE 2.582 2.179 3.970 2.609 4.706 3.2092
MAE 2.068 1.734 3.203 2.066 3.617 2.5376

MASE 0.070 0.059 0.076 0.067 0.079 0.0702

Holt–Winters
RMSE 2.489 2.144 3.797 2.012 4.527 2.9938
MAE 2.004 1.753 3.167 1.524 3.542 2.1039

MASE 0.067 0.059 0.076 0.050 0.070 0.0644

ARIMA
RMSE 2.415 1.864 2.721 2.611 5.858 3.0938
MAE 1.873 1.366 2.111 2.061 4.479 2.3780

MASE 0.063 0.046 0.050 0.068 0.098 0.0650

4. Discussion
4.1. Correlation Analysis of Vegetation Type and Surface Deformation

As shown in Figure 11, the surface deformation patterns under cultivated vegetation,
grassland, and coniferous forest conditions showed some similarity during the monitoring
period, and showed a small uplift trend on the whole, unlike the surface deformation
under meadow and alpine vegetation conditions, which remained at a relatively stable
level. The distribution of cultivated vegetation, grassland, and coniferous forest overlaps
with residential areas, as can be observed from the examination of the actual situation in
the research region; therefore, the surface deformation in these types of vegetation-covered
areas is not only related to permafrost, but various human activities are also one of the
influencing factors [54–59], such as road construction and housing renovation, etc. It can
be assumed that the surface uplift may be related to these anthropogenic influences based
on the findings of monitoring surface deformation in places with active human activity,
such as cities.

Vegetation has two important functions for permafrost, namely the insulation function
and the cooling function. In summer, vegetation partially blocks solar radiation and cools
the soil, while in winter, vegetation can block soil heat dissipation and play an insulating
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role for the soil. Different vegetation covers have different degrees of influence on water and
heat transport, and the freeze-thaw processes, and have different functions on permafrost.
Among the five vegetation cover types included in the study area, there are significant
correlations between the surface deformation phenomena of grassland, meadow, coniferous
forest, and alpine vegetation, and NDVI, among which the surface deformation of grassland
and alpine vegetation is negatively correlated with NDVI, and the surface deformation
of meadow and the coniferous forest is positively correlated with NDVI. This finding
can support the idea that permafrost and plants are closely related and interact with one
another through changes in soil heat and moisture conditions [60–62]. With the increase in
grassland and alpine vegetation cover, the surface deformation shows a subsiding trend,
and it can be seen that grassland and alpine vegetation are dominated by heat preservation.
With the increase in the meadow and coniferous forest cover, the surface deformation tends
to rise, and it can be seen that meadow and coniferous forest mainly play a cooling role.
In addition, alpine vegetation, coniferous forest, and grassland have a stronger effect on
surface deformation, while meadows are weaker.

4.2. Spatial Distribution of Surface Deformation Predictions

According to the conclusion obtained above, the Holt–Winters smoothing model is the
most accurate model. Therefore, the Holt–Winters smoothing model was used to estimate
the surface deformation in the study region over the following two months based on the
deformation findings acquired using the PS-InSAR technique, and the results are given in
Figure 17. The findings indicate that the study area′s maximum cumulative subsidence
and uplift are predicted to reach 90.52 mm and 183.1 mm, both of which are slightly lower
than the actual monitored values; in addition, the area of the uplifted zone increases, while
the area of the severely subsided zone and the degree of subsidence decreases.
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In general, the surface deformation trend in the study area did not change drastically,
and the surface deformation activity in most areas showed a continuous uplift. The possible
reason for this prediction result is that, according to the existing studies on the seasonal
permafrost depth changes in Tibetan areas, October to December is the period of the year
when the active layer of permafrost gradually starts to freeze, and when the permafrost
begins to thaw in the April of the following year [63–65]. In this paper, the prediction
period is from October to December 2021, which is in the period of permafrost freezing by
the law of seasonal permafrost freezing and thawing, so the surface deformation in the
prediction results shows extensive uplift.

The surface deformation will exhibit various trends depending on the vegetation cover.
In this paper, the average values of the predicted and actual values of cumulative surface
deformation for each of the five vegetation types were calculated and compared, and the
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results are shown in Figure 18. In the next two months, the surface deformation of the
five vegetation types will show an uplift, among which the uplift of alpine vegetation and
coniferous forest is small, at less than 0.1 mm, while the surface deformation of the meadow,
grassland, and cultivated vegetation will show a relatively large uplift. The prediction of
surface deformation in the permafrost area can provide a data reference for the rational
arrangement of agricultural production, engineering construction, and other activities, and
help in the prevention and mitigation of surface deformation disasters; meanwhile, the
prediction technique can also provide technical support for future ecological construction
planning in the Tibetan permafrost area. For example, the predicted results can be used as
one of the influence factors to support the prediction of the area evolution of each vegetation
type in the permafrost area. After obtaining the subsurface soil organic carbon contents for
different vegetation type conditions, the predicted results of vegetation distribution can
further support the prediction of soil organic carbon storage in the permafrost area [66].
This result can help in taking timely ecological restoration measures for areas with a low
soil carbon content and help to promote the enhancement of the carbon sink capacity
of ecosystems.
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4.3. Research Limitations and Future Directions

Due to the complexity of the topographic environment in the study area and the
limitations of the radar remote sensing technology, there are still some shortcomings in
this study, mainly that the interferometric phase accuracy in the vegetation area needs
to be improved. Environmental factors determine the observation conditions of SAR
satellites. The study area of this paper is in a high-altitude mountainous area with dense
vegetation cover and is covered with snow and ice all year round, which easily leads to
such phenomena as low coherence and out-of-coherence, affecting the effect and accuracy
of InSAR deformation inversion. In future studies, we will try to use data sets with
higher spatial resolution, extend monitoring periods, shorten monitoring intervals, or try
to develop new interferometric methods to improve the applicability of InSAR in areas
with high vegetation cover.

5. Conclusions

(1) Surface deformation in the study area was mainly slow subsidence, with 98% of
the ground control points having a deformation rate within the interval (−10, 10), with a
maximum subsidence rate of 29.42 mm/a and a maximum uplift rate of 58.27 mm/a over
the monitoring time period; 76% of the ground control points had a cumulative deformation
within the interval (−30, 5), with a maximum cumulative subsidence of 96.27 mm and a
maximum cumulative uplift of 199.64 mm over the monitoring time period. This indicates
that the magnitude of surface deformation is relatively small in most of the study area, and
the active layer of permafrost exhibits seasonal freezing and thawing.
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(2) The analysis of permafrost deformation in different vegetation cover areas of the
study area showed that the surface deformation of each vegetation type showed a certain
periodicity, among which the surface deformation of grassland and alpine vegetation was
negatively correlated with NDVI, while the surface deformation of meadow and coniferous
forest was positively correlated with NDVI. In addition, the regression analysis showed that
the influence of grassland, coniferous forest, and alpine vegetation on surface deformation
was stronger than that of meadow. The above results show that the higher vegetation cover
of grassland and alpine vegetation has a stronger insulating effect on permafrost, leading
to ground subsidence, while the higher vegetation cover of meadow and coniferous forest
has a stronger cooling effect on permafrost, leading to surface uplift. Meanwhile, alpine
vegetation, coniferous forests, and grasslands have stronger insulation and cooling effects
on permafrost, and the meadows are weaker.

(3) Among the three machine learning prediction models selected, the Holt–Winters
smoothing model was the model with the highest prediction accuracy. The surface defor-
mation activity showed an uplift in most areas, according to the prediction results of this
model, while the area and degree of subsidence decreased. Among the five vegetation
types, the difference between the predicted and actual values of surface deformation under
alpine vegetation and coniferous forest conditions was smaller than those of grassland,
meadow, and cultivated vegetation, with the smallest difference being for alpine vegetation
and the largest difference being for cultivated vegetation. The above results reflect that in
the Tibetan tundra, the better the vegetation growth, the more stable the permafrost will be,
and the higher the stability of the ecosystem.
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