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Abstract: This paper considers problems associated with the large size of the hyperspectral pan-
sharpening network and difficulties associated with learning its spatial-spectral features. We propose
a deep mutual-learning-based framework (SSML) for spectral-spatial information mining and hy-
perspectral pansharpening. In this framework, a deep mutual-learning mechanism is introduced to
learn spatial and spectral features from each other through information transmission, which achieves
better fusion results without entering too many parameters. The proposed SSML framework consists
of two separate networks for learning spectral and spatial features of HSIs and panchromatic images
(PANs). A hybrid loss function containing constrained spectral and spatial information is designed
to enforce mutual learning between the two networks. In addition, a mutual-learning strategy is
used to balance the spectral and spatial feature learning to improve the performance of the SSML
path compared to the original. Extensive experimental results demonstrated the effectiveness of the
mutual-learning mechanism and the proposed hybrid loss function for hyperspectral pan-sharpening.
Furthermore, a typical deep-learning method was used to confirm the proposed framework’s capacity
for generalization. Ideal performance was observed in all cases. Moreover, multiple experiments
analysing the parameters used showed that the proposed method achieved better fusion results
without adding too many parameters. Thus, the proposed SSML represents a promising framework
for hyperspectral pansharpening.

Keywords: deep learning; image fusion; hyperspectral pansharpening; deep mutual learning

1. Introduction

HSIs usually contain information on tens to hundreds of continuous spectral bands in
the target area. Therefore, HSIs have a high spectral resolution but lower spatial resolution
due to hardware limitations. In contrast, PANs are usually single-band images in the visible
range, having high spatial resolution but low spectral resolution. Pansharpening involves
the reconstruction of low-resolution (LR) HSIs and high-resolution (HR) PANs to generate
HR-HSIs, and has been widely used in image classification [1], target detection [2], and
road recognition [3].

Traditional HSI pansharpening technologies can be broadly divided into four cate-
gories: component substitution-based methods [4,5], model-based methods [6,7], multi-
resolution analysis [8], and hybrid methods [9]. Each of these categories has certain
limitations. Component substitution-based methods can cause certain types of spectral
distortion; multi-resolution analysis-based methods require complex calculations; hybrid
methods combine component substitution and multi-resolution analysis, thus providing
good spectral retention but fewer spatial details; and, finally, model-based methods are
limited by network parameter number and computational complexity.

In recent years, deep learning has been widely used in the field of image processing [10–16],
while pansharpening has been at the primary stage of exploration [17]. Yang et al. [18]
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proposed a convolutional neural network (CNN) for pansharpening (PanNet), which
was performed via ResNet [19] in the high-pass filter domain. Zhu et al. [20] designed a
spectral attention module (SeAM) to extract the spectral features of HSIs. Zhang et al. [21]
designed a residual channel attention module (RCAM) to solve the spectral reconstruction
problem. However, as is well-known, CNNs can learn one feature more easily than
multiple features, and have fewer parameters. Moreover, in the feature extraction process,
simultaneous learning of multiple features is affected by the features’ effects on each other.
To reduce the influence of these effects, Zhang et al. [22] improved classification results
by measuring the difference in the probabilistic behavior between the spectral features of
two pixels. Xie et al. [23] used the mean square error (MSE) loss and spectral angle mapper
(SAM) loss to constrain spatial and spectral feature losses, respectively. Qu et al. [15]
proposed a residual hyper-dense network and a CNN with cascade residual hyper-dense
blocks. The former network extends Denset to solve the problem of spatial spectrum fusion.
The latter network allows direct connections between pairs of layers within the same stream
and those across different streams, which means that it learns more complex combinations
between the HS and PAN images.

The above studies show that the better the spatial and spectral feature learning,
the better the fusion result for deep-learning-based hyperspectral pansharpening methods.
However, it is well known that hyperspectral images contain a large amount of data because
of many bands. Thus, it is a challenge for the hyperspectral pansharpening method to
fully learn and utilize the spatial and spectral features without increasing computation
excessively. Commonly, single feature learning is easier than multiple feature learning,
while multiple collaborative learning is more effective than single feature learning. Inspired
by mutual learning, in this paper, we explore a novel pansharpening method that learns
the spatial and spectral characteristics separately and establishes the relationship between
them to learn from each other to achieve desirable results.

In recent years, a deep mutual-learning strategy (DML) [24] has been proposed for
image classification, and includes multiple original networks that mutually learn from each
other. This unique training strategy has great potential for multi-feature learning of a single
task using few parameters. It therefore has research value in the field of HSI pansharpening.
To the authors’ knowledge, there has been no application of DML to HSI pansharpening.

This paper proposes a deep mutual-learning framework integrating spectral-spatial
information-mining (SSML) for HSI pansharpening. In the SSML framework, two simple
networks, a spectral and a spatial network, are designed for mutual learning. The two
networks learn different features independently; for instance, the spectral network captures
only spectral features, while the spatial network focuses only on spatial details. Then,
the DML strategy enables them to learn each other’s features. In addition, a hybrid loss
function is derived by constraining spectral and spatial information between the two
networks. The main contributions of this paper are summarized below:

• This paper proposes an SSML framework which introduces a DML strategy into HSI
pansharpening for the first time; four cross experiments are performed to verify the
proposed SSML framework’s effectiveness, and the network’s generalization ability is
confirmed by the latest research results in the field of HSI generalization sharpening.

• A hybrid loss function, which considers the HSI characteristics, is designed to enable
each network in the SSML framework to learn a certain feature independently, thus
improving its overall performance so that the SSML framework can successfully
generate a high-quality HR-HSI.

The rest of the paper is organized as follows. Section 2 presents related work, while
Section 3 introduces the proposed SSML. Section 4 describes and analyzes the experimental
results. Finally, Section 5 concludes the paper with a short overview of its contributions
to research.
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2. Related Work

The DML strategy [24] was initially proposed for image classification, but, after several
years of development, it has been applied in many fields [25–27]. The DML strategy uses a
mutual-loss learning function, which allows multiple small networks to learn the same task
together under different initial conditions, thereby improving the performance of each of
the networks [24]. For classification problems, Kullback–Leibler (KL) divergence [28] has
often been used as a mutual learning loss function in the DML because it can calculate the
asymmetric measure of the probability distribution between two networks; it is defined by:

DKL(pi||pj) =
N

∑
i=1

M

∑
m=1

pm
i (xi)log

pm
j (xi)

pm
i (xi)

(1)

where DKL(pi||pj) calculates the distance from pj to pi
However, in the field of HSI pansharpening, it is usually necessary to evaluate the

image quality rather than the probability distribution of pixels. HSIs have a high correlation
between pixels in each band. Therefore, it is necessary to consider other loss functions
as the mutual learning loss function instead of the KL divergence. Traditionally, MSE
and SAM [29] have been used to evaluate the spatial quality and spectral distortion of
HSIs. Therefore, the effects of the MSE and SAM on the proposed SSML framework’s
performance are examined in this paper.

3. Method

This section describes the proposed SSML framework and introduces the hybrid
loss function.

In general, the HSI pansharpening problem can be considered a process in which a
network generates an HR-HSI HHR by inputting an LR-HSI HLR and an HR-PAN PHR,
and using the loss function constraint to network learning, which can be expressed as:

`(θ) = ‖M(HLR, PHR; θ)− HHR‖ (2)

whereM(·) represents the mapping function between a CNN’s input and output data, θ
denotes the parameters to be optimized, and `(θ) is the loss function.

3.1. Image Preprocessing

As shown in Figure 1, the proposed framework first performs bicubic interpolation
on an LR-HSI H to obtain the Hup, which has the same size as HR-PAN P [30]. Then a
contrast-limited adaptive histogram equalization is applied to the image P to obtain Pg
with richer edge details [31,32]. Finally, Hini is obtained by injecting Pg into Hup through
guided filtering, that is Hini = G(Pg, Hup), for enhancing the spatial details of HSIs.

Spectral network 
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Spatial network

(S2)

o
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Figure 1. The structure of the proposed SSML framework.
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3.2. SSML Framework

As previously mentioned, the proposed SSML framework includes two networks,
a spectral network, and a spatial network. They use specific structures to extract specific
features—for instance, residual blocks for extracting spatial features and channel attention
blocks for extracting spectral features. In addition, they constrain each other to learn other
features by minimizing the hybrid loss function. Without loss of generality, their structures
are designed to be universal and simple, as shown in Figure 2. The spectral network uses
a spectral attention structure to extract spectral information, while the spatial network
adopts residual learning and a spatial attention structure to capture spatial information.

gP upH

Convolutional Layer

Spectral structure



Spectral structure

Convolutional Layer

upH

Convolutional Layer

Spatial  structure



Spatial structure

Convolutional Layer



(a) (b)

gP

iniH iniH

H
H

Figure 2. (a) The structure of the spectral network (S1), (b) the structure of the spatial network (S2).

Two popular structures of the spectral network are illustrated in Figure 3a,b. The
specific settings of the network are shown in Table 1. RCAM uses four convolutional layers,
the size of the convolution kernel of the first two layers is 3 × 3, and the size of the last
two layers is 1 × 1. The sigmoid function is used to process the feature map of the four
convolutional layers, which is multiplied by the convolution result of the second layer.
Then the results and input are processed in element-wise addition. The SeAM is divided
into two branches after the convolution of the first two layers, which are the same as RCAM.
The structure of the first branch is the same as that of the third and fourth layers of RCAM.
The second branch replaces AvgPooling in the first branch with MaxPooling. The results
of the two branches are processed in element-wise addition, and the subsequent steps are
similar to RCAM.

Table 1. The specific parameter settings of the spatial network.

Spatial Network Layer Number Layer Type Kernel Size

RCAM 1–2 Convolution, Relu 3× 3× 64
3–4 AvgPooling, Convolution, Relu 1× 1× 64

SeAM
1–2 Convolution, Relu 3× 3× 64

Branch 1: 3–4 AvgPooling, Convolution, Relu 1× 1× 64
Branch 2: 3–4 MaxPooling, Convolution, Relu 1× 1× 64
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Figure 3. The structures of the candidate networks. (a) RCAM; (b) SeAM; (c) traditional ResNet;
(d) MSRNet.

As for the spectral structure, most of them have been designed using the pooling
operation and then stimulated. The equation is:

s = f (P(F)) (3)

where f represents the stimulated process, P(·) indicates the pooling operation. Then,
by multiplying si by F, a new feature map F̂ can be obtained as follows:

F̂i = si ⊗ Fi (4)

where si and Fi represent the weight and feature map of the ith feature.
Two popular spatial network structures are presented in Figure 3c,d. The specific

settings of the network are shown in Table 2. ResNet uses two convolutional layers of
equal size. The convolution kernel size is 3 × 3, and the convolution result and input
are processed by element-wise addition. The first layer of MSRNet uses a size of 1 × 1
convolution kernels. The convolution results are chunked into four feature maps of equal
size, which are sent to four corresponding branches for convolution operations. The first
branch uses a convolution layer size of 1 × 1. Branches 2, 3, and 4 added a Relu layer and
convolution compared with the previous branch. Finally, the results of the four branches
are concatenated and a 1 × 1 convolution is used in the last layer.

Table 2. The specific parameter settings of the spectral network.

Spectral Network Layer Number Layer Type Kernel Size

ResNet 1–2 Convolution, Relu 3× 3× 64

MSRNet

1 Convolution 1× 1× 64
Branch 1: 2 Convolution, Relu 3× 3× 64

Branch 2: 2–3 Convolution, Relu 3× 3× 64
Branch 3: 2–4 Convolution, Relu 3× 3× 64
Branch 4: 2–5 Convolution, Relu 3× 3× 64

end Convolution 1× 1× 64

Assume H denotes an HR-HSI and H′ denotes an LR-HSI and suppose there is a
residual rescnn in H and H′, which is expressed as :

H − H′ = rescnn (5)
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A CNN can be used to learn rescnn between H and H′, and H can be obtained from
rescnn and H′ as follows:

H = H′ + rescnn (6)

The typical structure of the ResNet, which usually learns the residuals between the
target and input data, is presented in Figure 3c. In contrast, Figure 3d shows a multi-scale
ResNet (MSRNet), which learns feature maps with larger receptive fields by combining
different convolution kernels.

3.3. Hybrid Loss Function

Inspired by KL divergence, this paper defines a hybrid loss function for the SSML
framework according to the characteristics of the two networks in the proposed framework,
forcing them to learn from each other. The hybrid loss function is defined by:

LS1 = LM(y, ŷ1) + λ1Lspa(ŷ1, ŷ2) (7)

LS2 = LM(y, ŷ2) + λ2Lspe(ŷ2, ŷ1) (8)

where ŷ1 is the prediction of S1, ŷ2 is the prediction of S2, y is the ground truth, λ1 and λ2
are the weights of the hybrid loss function, Lspa and Lspe are additional loss functions that
constrain spatial information and spectral information, respectively, and LM is the main
loss function to constrain the whole network.

In the two networks in the SSML framework, the L1-norm is used as the main loss
function (LM) due to its good convergence [33], and is defined by:

LM(y, ŷ) = ‖y, ŷ‖1 (9)

For spectral feature learning in the S1 network, Lspa chooses the MSE to constrain the
spatial information loss between y and ŷ as follows:

Lspa(y, ŷ) =
n

∑
i=1

(yi − ŷi)
2 (10)

Similarly, for spatial feature learning in the S2 network, Lspe chooses the SAM to
constrain the spectral information loss between y and ŷ.

Lspe(y, ŷ) =
1
n

n

∑
i=1

arccos(
〈yv

i , ŷv
i 〉

‖yv
i ‖, ‖ŷv

i ‖
) (11)

Finally, the SSML framework alternately updates the weights of θS1 and θS2 using the
SGD as follows:

θS1 ← θS1 + r
∂(L1(y, ŷ1) + λ1Lspa(ŷ1, ŷ2))

∂θS1

(12)

θS2 ← θS2 + r
∂(L1(y, ŷ2) + λ2Lspe(ŷ2, ŷ1))

∂θS2

(13)

4. Results
4.1. Datasets and Metrics

The proposed method was evaluated on two public datasets, CAVE [34] and Pavia
Center [35]. In CAVE, the wavelength range was 400 nm–700 nm, the resolution was
512× 512, and there were 31 bands for a total of 32 HSIs. In Pavia Center, the range was
430 nm–860 nm, the resolution was 1096× 708, and 102 bands were used for one HSI. In
training, 60% of the overall data was selected as a training set, and the remaining data
were used as a test set. Before training, the Wald protocol [30] was adopted to obtain
LR-HSIs through down-sampling. In the training set, the data size was 32× 32 bands,
and the batch size was 32. In testing, the original image size was the same as the input
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size. All networks were developed using the PyTorch framework, and the experiments
were performed on NVIDIA GeForce GTX 2080ti GPU. In training, SGD’s weight decay
was 10−5, the momentum was 0.9, the learning rate was 0.1, the number of iterations was
2× 104, and the learning rate was reduced by half every 1000 iterations. The proposed
method was implemented in Python 3.7.3.

The performance of the proposed method was analyzed both quantitatively and visu-
ally. The evaluation indicators used in the performance analysis included the SAM [29],
peak signal-to-noise ratio (PSNR) [36], correlation coefficient (CC) [37], erreur relative glob-
ale adimensionnelle de synthèse (ERGAS) [38] and root mean squared error (RMSE) [39].
These metrics reflect the image similarity, image distortion, spectral similarity, spectral dis-
tortion, and the difference between the fused image and the reference image, respectively,
which are described below.

Peak signal-to-noise ratio (PSNR): The peak SNR (PSNR) is used to evaluate the
spatial quality of the fused image in the unit of the band. The PSNR of the kth band is
defined as

PSNR = 10 log10

(
max(Rk)

2

1
HW ‖Rk − Zk‖2

2

)
(14)

where H and W represent the height and width dimensions with the reference image,
respectively. Rk and Zk represent the reference image and the fused image of the kth
band. ‖ · ‖2 refers to the two-norm. The final PSNR is the average of the PSNRs of all
bands. The higher the PSNR, the better the performance.

Correlation coefficient (CC): This is mainly used to score the similarity of the content
between two images, which is defined as

CC =
∑M

i=1 ∑N
j=1(Z(i, j)− Z)(R(i, j)− R̄)√(

∑M
i=1 ∑N

j=1(Z(i, j)− Z)2
)(

∑M
i=1 ∑N

j=1(R(i, j)− R̄)2
) (15)

where R(i, j) and Z(i, j) denote the spectral vector of the reference image and the fused
image, respectively, at the pixel position of (i, j). The CC in HSI fusion is calculated as the
average over all bands. The larger the CC is, the better the fusion image can be. Spectral
angle mapper (SAM): The SAM is generally utilized to evaluate the degree of spectral
information preservation at each pixel, which is defined as

SAM = arccos
(
〈R(i, j), Z(i, j)〉
‖R(i, j)‖2‖Z(i, j)‖2

)
(16)

where 〈R(i, j), Z(i, j)〉 refers to the inner product of R(i, j) and Z(i, j); the overall SAM is
the average of the SAMs of all pixels. The lower the SAM, the better the performance.

Erreur relative globale adimensionnelle de synthèse (ERGAS): The ERGAS is specially
designed to assess the quality of high-resolution synthesized images, and measures the
global statistical quality of the fused image. It is defined as

ERGAS =
100

r

√√√√ 1
L

L

∑
k=1

‖Rk − Zk‖2
2

µ2(Rk)
(17)

where r refers to the ratio of the spatial downsampling ratio from HR-HSI to LR-HSI. u(Rk)
denotes the mean value of the reference image of the kth band. The smaller the ERGAS,
the better the performance.

Root mean squared error (RMSE): RMSE can be used to measure the difference between
R and Z, which is defined as

RMSE =

√
∑L

k=1 ∑H
i=1 ∑W

j=1(Rk(i, j)− Zk(i, j))2

HWL
(18)
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where L represents the number of spectral bands. Rk(i, j) and Zk(i, j) denote the element
value at spatial location (i, j) in band k of the reference image and the fused image.The
smaller the root mean squared error (RMSE), the better the performance.

4.2. DML Strategy Validation for Different Cases

The comparison results of the SSML framework for different deep networks are
presented in Tables 3 and 4. Four cases were analyzed: The S1 network uses RCAM or
SeAM, and the S2 network uses MSRNet or ResNet. Depending on the experience, it was
set that λ1 = 50 and λ2 = 0.8.

Table 3. Comparison results of the SSML for different deep networks on the CAVE dataset.

Network PSNR↑ SAM↓
Original SSML Improve Original SSML Improve

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
RCAM MSRNet 36.639 36.508 36.654 36.701 0.015 0.193 3.506 3.836 3.472 3.511 0.034 0.325
RCAM ResNet 36.639 36.148 36.694 36.392 0.055 0.244 3.506 4.191 3.497 4.113 0.009 0.078
SeAM MSRNet 36.177 36.508 36.330 36.683 0.153 0.175 3.674 3.836 3.667 3.765 0.007 0.071
SeAM ResNet 36.177 36.148 36.420 36.469 0.243 0.321 3.674 4.191 3.545 4.140 0.129 0.051

Bold indicate the SSML results are better than the original.

Table 4. Comparison results of the SSML for different deep networks on the Pavia Center dataset.

Network PSNR↑ SAM↓
Original SSML Improve Original SSML Improve

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
RCAM MSRNet 30.940 30.887 33.793 32.384 2.853 1.497 5.473 5.551 5.424 5.540 0.049 0.011
RCAM ResNet 30.940 31.742 35.179 33.716 4.239 1.974 5.473 5.227 5.707 5.222 −0.234 0.005
SeAM MSRNet 28.319 30.887 28.359 33.904 0.040 3.017 6.998 5.551 7.206 5.434 −0.208 0.007
SeAM ResNet 28.319 31.742 28.529 34.235 0.210 2.493 6.998 5.227 6.909 5.220 0.089 0.007

Bold indicate the SSML results are better than the original.

As shown in Tables 3 and 4, the performance of S1 and S2 networks in the SSML
exceeded that of the original network in most cases. Without loss of generality, the loss value
curve of the SSML, having S1 with the SeAM and S2 with the ResNet, was analyzed at the
Pavia Center to determine the reasons for the advantage of the DML strategy. A comparison
of the loss value curves of S1 in the SSML and original S1 during 5000 training iterations
on the Pavia Center is presented in Figure 4a, and their difference curve is presented
in Figure 4b. As shown in Figure 4b, the loss values of S1 in the SSML were slightly
higher than those of the original S1 before 1000 iterations; however, after 1000 iterations,
the loss values of S1 in the SSML were lower than those of the original S1. Thus, it can
be concluded that the SSML had a slow convergence speed in the early training stage
because of the alternate optimization. Nonetheless, it exhibited advantages of minimum
loss value and convergence speed with increase in the training iteration number. This
indicates that introducing the DML strategy in the SSML can help to achieve better results
in HSI pansharpening.

4.3. Effect of the Number of Training Samples

This experiment investigated the effect of the proportion of the training set on the
fusion effect. Usually, deep-learning-based hyperspectral image sharpening training sets
and test sets select 60% and 40% content, respectively. In the experiment, 50% and 50%,
60% and 40%, and 70% and 30% were selected for the training and testing sets, respectively.
The number of iterations, learning rate, and other parameters was the same. Each group of
experiments was repeated 10 times; the experimental results are shown in Table 5. It can
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be seen that when 60% of the training samples were selected, the training samples were
moderated, and the fusion results were improved. Therefore, 60% and 40% of the training
and testing sets were selected for subsequent experiments.

(a)

(b)

Figure 4. (a) Loss function curves of the SeAM (S1) of the SSML framework and the original SeAM
during 5000 iterations of training; (b) the difference curve between the loss values of the original
SeAM and the SeAM (S1) in the SSML framework during 5000 training iterations.

Table 5. Experimental results of different proportions of training samples.

Training Set:Test Set PSNR↑ CC↑ SAM↓ ERGAS↓ RMSE↓

50%:50% S1 34.3861 ± 0.3176 0.9922 ± 0.0004 5.5889 ± 0.2019 3.3808 ± 0.1424 0.0199 ± 0.0009
S2 35.3559 ± 0.3928 0.9968 ± 0.0006 4.7093 ± 0.2541 2.7475 ± 0.1562 0.0158 ± 0.0011

60%:40% S1 36.7423 ± 0.3694 0.9956 ± 0.0002 3.4023 ± 0.1965 2.6823 ± 0.1253 0.0154 ± 0.0002
S2 36.7125 ± 0.4265 0.9956 ± 0.0002 3.5632 ± 0.2305 2.5883 ± 0.1425 0.0150 ± 0.0004

70%:30% S1 35.9981 ± 0.3862 0.9951 ± 0.0006 3.8964 ± 0.1863 2.7958 ± 0.1321 0.0160 ± 0.0008
S2 36.3145 ± 0.4312 0.9969 ± 0.0005 3.9567 ± 0.2131 2.9658 ± 0.1513 0.0158 ± 0.0007

Bold and underlined indicate the best results for S1 and S2, respectively.

4.4. Comparisons with Advanced Methods

The proposed SSML was compared with five state-of-the-art methods, including three
traditional methods, namely, CNMF [6], Bayesian naive [7], GFPCA [9], and two deep-
learning-based methods, namely, PanNet [18] and DDLPS [40]. The two deep-learning
methods and our method were repeated 10 times for each group of experiments. The
experiments were performed on the CAVE and Pavia Center datasets.

4.4.1. Results on CAVE Data Set

The results of different methods on the CAVE dataset are presented in Figures 5–7. The
result in Figure 5b denotes a fuzzy visualization result; Figure 5d is too sharp, and Figure 5e
has a color difference. In colormap, Figure 5a includes a large area of spectral distortion on
the surface of the balloon; Figure 5b,c,e have significant spectral distortions at the edges.
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(b) (d) (e)

(i)(f) (g) (h)

(c)(a)

(j)

Figure 5. The visual results of different methods on the CAVE dataset. (a) CNMF; (b) Bayesian naive;
(c) GFPCA; (d) PanNet; (e) DDLPS; (f) Original RCAM; (g) Original MSRNet; (h) S1 (RCAM) in the
SSML framework; (i) S2 (MSRNet) in the SSML framework; (j) Ground truth. Note that the false color
image is selected for clear visualization (red: 30, green: 20, and blue: 10). The even rows show the
difference maps of the corresponding methods.

The results of the SSML framework with the (SeAM and ResNet) hybrid function
and the other methods are presented in Figure 6. There is a certain spectral distortion in
Figures 6h,i, which was generated by S1 (SeAM) and S2 (ResNet) in the SSML framework,
but was lower than that of the other methods. The results of the SSML framework with
the (RCAM and ResNet) hybrid function and the other methods are presented in Figure 6.
The results in Figure 6h,i had higher visual image quality than the other results.

Tables 6 and 7 show the evaluation indicators for the proposed method and several
state-of-the-art methods. As shown in Table 6, CNMF, Bayesian naive, and GFPCA are not
deep-learning methods. The results were stable, and the time was short, but the methods
were found to be not as effective as the deep-learning methods. The SSML framework with
S1 (RCAM) had slightly lower values of the ERGAS and RMSE than the original RCAM; in
most cases, the SSML framework with S1 (RCAM) and SSML S2 (MSRNet) achieved better
results than the other methods for all evaluation indicators. Regarding time consumption,
the proposed method framework was much shorter in duration than DDLP and slightly
higher than PanNet, but fusion performance was improved.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The visual results of different methods on the CAVE dataset. (a) CNMF; (b) Bayesian naive;
(c) GFPCA; (d) PanNet; (e) DDLPS; (f) Original RCAM; (g) Original ResNet; (h) S1 (SeAM) in the
SSML framework; (i) S2 (ResNet) in the SSML framework; (j) Ground truth. Note that the false color
image is selected for clear visualization (red: 30, green: 20, and blue: 10). The even rows show the
difference maps of the corresponding methods.

Table 6. The quality indicator results of different methods on the CAVE data set.

Method PSNR↑ CC↑ SAM↓ ERGAS↓ RMSE↓ Test Time(s)

CNMF 35.9016 0.9871 7.4917 3.9066 0.0254 6.5246
Bayesian naive 34.1978 0.9921 3.5855 3.4395 0.0201 1.2290

GFPCA 35.5430 0.9946 4.1396 2.9139 0.0171 2.0399
PanNet 35.1069 ± 1.0236 0.9931 ± 0.0028 3.4659 ± 0.5623 2.9707 ± 0.3185 0.0172 ± 0.0023 8.0399
DDLPS 35.9246 ± 0.8962 0.9931 ± 0.0023 3.6725 ± 0.6543 2.7236 ± 0.4362 0.0158 ± 0.0019 68.2050

Original RCAM 36.5925 ± 0.7369 0.9953 ± 0.0008 3.4926 ± 0.1255 2.5501 ± 0.2003 0.0149 ± 0.0008 11.5247
Original MSRNet 36.5729 ± 0.5235 0.9954 ± 0.0003 3.7962 ± 0.1644 2.6032 ± 0.1456 0.0152 ± 0.0003 10.9655

S1 (RCAM) in SSML 36.7423 ± 0.3694 0.9956 ± 0.0002 3.4023 ± 0.1965 2.6823 ± 0.1253 0.0154 ± 0.0002 11.8631
S2 (MSRNet) in SSML 36.7125 ± 0.4265 0.9956 ± 0.0002 3.5632 ± 0.2305 2.5883 ± 0.1425 0.0150 ± 0.0004 11.1993

Bold and underlined indicate the best results for S1 and S2, respectively.

4.4.2. Results on Pavia Center Dataset

The results of different methods on the Pavia Center dataset are presented in Figure 8.
The SSML framework used the (RCAM and MSRNet) hybrid function. The colormaps
in Figure 8a,c,d indicate that the corresponding methods performed relatively poorly in
dealing with the shadow part; in Figure 8e, certain details, such as the river surface, are
missing. In Figure 8h,i, it can be seen that the proposed framework improved image details
on the image compared to the original network. This also demonstrates the effectiveness of
the proposed hybrid loss function in the mutual learning strategy.
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Figure 7. The visual results of different methods on the CAVE dataset. (a) CNMF; (b) Bayesian naive;
(c) GFPCA; (d) PanNet; (e) DDLPS; (f) Original SeAM; (g) Original ResNet; (h) S1 (RCAM) in the
SSML framework; (i) S2 (ResNet) in the SSML framework; (j) Ground truth. Note that the false color
image is selected for clear visualization (red: 30, green: 20, and blue: 10). The even rows show the
difference maps of the corresponding methods.

Table 7. The quality indicator results of different methods on the Pavia Center data set.

Method PSNR↑ CC↑ SAM↓ ERGAS↓ RMSE↓ Test Time(s)

CNMF 28.5311 0.9201 8.1422 7.2041 0.0390 23.5246
Bayesian naive 24.5955 0.9043 6.5851 7.5300 0.0411 14.1390

GFPCA 28.2160 0.9069 6.5825 7.4378 0.0405 11.3717
PanNet 23.8625 ± 1.3205 0.9286 ± 0.0195 15.1135 ± 1.9656 20.032 ± 2.3641 0.0678 ± 0.0095 23.0399
DDLPS 28.9523 ± 0.6854 0.9120 ± 0.0126 6.6524 ± 0.6528 8.2153 ± 0.6529 0.0501 ± 0.0125 732.4960

Original RCAM 31.0258 ± 1.0265 0.9452 ± 0.0121 5.4468 ± 0.3254 5.4021 ± 0.1965 0.0297 ± 0.0007 27.1002
Original MSRNet 30.8825 ± 0.5214 0.9465 ± 0.0120 5.4729 ± 0.2145 5.5025 ± 0.1524 0.0295 ± 0.0006 26.0266

S1 (RCAM) in SSML 33.6399 ± 0.6523 0.9501 ± 0.0251 5.3911 ± 0.2545 4.5658 ± 0.3211 0.0294 ± 0.0006 26.7003
S2 (MSRNet) in SSML 32.4521 ± 0.4512 0.9481 ± 0.0144 5.4054 ± 0.1451 4.6251 ± 0.2254 0.0294 ± 0.0003 27.0465

Bold and underlined indicate the best results for S1 and S2, respectively.

As presented in Table 7, the indicator results of the proposed SSML framework were
better than those of the comparison methods. Compared with the original networks,
the SSML achieved obvious improvements for all indicators, which demonstrated the
effectiveness of the proposed hybrid loss function in the mutual learning strategy.
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Figure 8. The visual results of different methods on the Pavia Center dataset. (a) CNMF; (b) Bayesian
naive; (c) GFPCA; (d) PanNet; (e) DDLPS; (f) Original RCAM; (g) Original MSRNet; (h) S1 (RCAM)
in the SSML framework; (i) S2 (MSRNet) in the SSML framework; (j) Ground truth. Note that the
false color image is selected for clear visualization (red: 70, green: 53, and blue: 19). The even rows
show the difference maps of the corresponding methods.

4.5. Hybrid Loss Function Analysis

In this section, the reason for using a hybrid loss function consisting of two different
loss functions (e.g., Equations (12) and (13)) instead of a single mutual learning loss function
is explained. We compare the proposed SSML framework with the typical DML model [24].
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Table 8 shows the effect of different mutual learning loss functions on the model
performance. The SSML framework used the combination of the SeAM (S1) and MSRNet
(S2) functions on the CAVE dataset. When S1 and S2 used the (L1 + SAM) loss function,
there was a positive effect on S2 but a negative effect on S1. The reason was that S1 paid
more attention to spectral features and no more spatial features could be learned from S2,
while S2 did the opposite. When S1 and S2 used the (L1 + MSE) loss function, S1 used its
own spectral feature learning advantage and obtained spatial information form S2, which
yielded good results in the PSNR and SAM. Thus, the experimental results demonstrated
the feasibility of the proposed hybrid loss function.

Table 8. Effects of different loss functions

Loss Function L1 L1 + SAM L1 + MSE Our

PSNR S1 36.18 34.553 36.333 36.330
S2 36.51 36.670 36.627 36.683

SAM S1 3.674 6.9264 3.6413 3.6673
S2 3.836 3.9149 3.8121 3.7653

ERGAS S1 2.741 3.2144 2.6957 2.6643
S2 2.651 2.5891 2.5989 2.5910

Bold indicate the best value.

4.6. Generalization Ability of SSML

To verify the generalization ability of the proposed SSML framework, we applied the
SSML framework to the state-of-the-art residual hyper-dense network (RHDN) method [15].
The original fusion results of the RHDN method were used as Hini in the SSML framework,
as shown in Figure 1. Then the spectral S1, spatial S2 networks, and their hybrid loss
functions based on mutual learning strategies, were used to transfer information of different
features to improve the results.

In experiments performed, we used the Pavia Center dataset-added, which was
divided into 160 × 160 image blocks for training the RHDN method. As shown in Figure 9,
four cases were also analyzed: the S1 network used RCAM or SeAM, and the S2 network
used MSRNet or ResNet. The fusion results of the RHDN network were guided by mutual
learning. From five performance indexes, especially SAM, RMSE, and ERGAS, we can see
that the SSML framework was able to effectively improve the fusion effect when selecting
the appropriate spectral and spatial network structure. Furthermore, the SSML framework
only took a short time to upgrade the fusion results. Thus, the proposed SSML framework
demonstrated generalization ability for HSI pansharpening.

4.7. Effect of Deep Network Parameter Number on SSML Performance

SSML aims to learn the same tasks from each other to achieve optimal results. In
Table 9, the parameter number comparison of S1 and S2 in the SSML framework and the
PanNet and DDLPS is given. Compared with the PanNet, the number of parameters of the
SSML networks was greatly reduced; in particular, the parameter number of the SeAM was
only one fifth that of the PanNet. Compared with the DDPLS, the parameter number of
the SeAM was reduced by 24.8%, MSRNet by 28%, ResNet by 31%, and RCAM by 62.2%.
These results indicate that SSML has better feature extraction capability and has fewer
parameters under the same task.

Table 9. The number of parameters of different deep-learning networks.

Other
SSML

S1 S2

PanNet DDLPS RCAM SeAM ResNet MSRNet
3239 k 812 k 307 k 611k 560 k 585 k
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Figure 9. Quality evaluation for the comparison of results before and after mutual learning. (a) PSNR;
(b) CC; (c) SAM; (d) RMSE; (e) ERGAS.

5. Conclusions

This paper proposes an SSML framework integrating spectral-spatial information-
mining for HSI pansharpening. In contrast to the existing CNN-based hyperspectral
pansharpening framework, based on the DML strategy, we designed spectral and spatial
networks for learning the spectral and spatial features. Furthermore, a set of mixed loss
functions, based on a mutual learning strategy, is proposed for transfer of information for
different features, which can extract features without introducing excessive computation
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through mutual learning. In experiments undertaken, several cases were examined to
evaluate the effect of DML on the pansharpening result. The results demonstrated that
introducing the DML strategy into the SSML framework was able to help achieve improved
results in HSI pansharpening. The performance of the SSML framework was compared
with several state-of-the-art methods; the results of the comparisons demonstrated the
effectiveness and advantages of the proposed SSML framework. The latest fusion results
were used to verify the generalization ability of the SSML framework, with improved
results observed. Discussion of the feasibility of the hybrid loss function and the number
of deep network parameters suggested that the proposed SSML framework represents a
promising framework for HSI pansharpening.

In future, HSI pansharpening under the SSML framework will be explored further
to identify improved spectral-spatial features for HSIs. A further research direction will
involve the application of the DML strategy to other image-processing fields.
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Abbreviations

HSIs Hyperspectral images
PAN Panchromatic
HR High resolution
LR Low resolution
CNN Convolutional neural network
PNN Pansharpening neural network
KL Kullback–Leibler
DML deep mutual learning strategy
CC Correlation coefficient
PSNR Peak signal-to-noise ratio
SAM Spectral angle mapper
RMSE Root mean squared error
ERGAS Erreur relative globale adimensionnelle de synthèse
SSIM Structural similarity index measurement
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