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Abstract: We try to assess the validity of assumptions taken when deriving drift velocity. We
give simple formulas for characteristics of the spatiotemporal correlation function of the observed
diffraction pattern for the frozen flow and the more general Briggs model. Using Low-Frequency
Array (LOFAR) Cassiopeia intensity observation, we compare the experimental velocity scaling
factor with a theoretical one to show that both models do not follow observations. We also give
a qualitative comparison of our drift velocity estimates with SuperDARN convection maps. The
article is essentially an extended version of the conference paper: “Determining ionospheric drift and
anisotropy of irregularities from LOFAR core measurements”, Signal Processing Symposium 2021
(SPSympo 2021).
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1. Introduction

LOFAR (Low-Frequency Array) is an international research facility aiming mainly at
interferometry in low frequencies to observe the early stages of the universe’s evolution,
especially the so-called reionization epoch [1]. Astronomical interferometry is a powerful
observation tool that allows reconstructing the radiation intensity angular distribution
based on radio observations taken at many different observation points simultaneously
forming pairwise many interferometers. It can achieve a fantastic angular resolution
determined by the largest baseline and wavelength of the observed radiation by the basic
formula: 2λ/D, where: λ is the wavelength and D is the distance between a pair of receiving
stations forming an interferometer (the baseline) [2]. The distribution of points is crucial—
while long baselines give desired resolution, a subset of stations is needed to be closely
spaced (core stations), reducing the aliasing. The basic idea described above coins the name
for the technique as VLBI (Very Large Baseline Interferometry). The reconstruction of the
sky from such measurements becomes quite challenging but is possible. Nevertheless, the
reconstructed image often contains some distortions caused by the irregular cosmic plasma
through which the radiation propagates [2]—the phenomenon is often described as the
flickering of observed radio sources. The angular deflection of a source image is due to an
ionization gradient across the direction to the source [2,3].

Scintillation is the name of the described phenomenon and, in general, is defined as
fluctuations in signal parameters after passing through a medium with heterogeneous
distribution of the refractive index [4]. In the case of space plasma, the factors that deter-
mine scintillation are electron density distribution and varying magnetic. There are two
scintillation regimes: diffractive and refractive scintillation. In fact, both contribute to the
so-called diffraction pattern in the observation plane. The former is responsible for the
focusing/defocusing effect whilst the latter denotes linear superposition of contributions
from the scattering medium [4].
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Let us briefly present a formal description of scintillation theory in the so-called
diffusion approximation for electromagnetic wave propagation. If the electromagnetic
wave’s frequency is far from any characteristic plasma mode frequency (plasma or gyro
frequency), and the size of plasma irregularities is much larger than the wave’s wavelength
one can apply the scalar equation for the complex wave amplitude u [4]:

− 2ik0
∂u
∂z

+∇2
⊥u + k2

0ε(r)u = 0 (1)

where u is (possibly complex) slowly varying wave amplitude, k0 is the wavenumber of the
incident wave, coordinate z is along wave propagation and perpendicular to irregularities
layer,∇2

⊥ is the Laplace operator in the plane perpendicular to k0 and ε(r) is the fluctuating
part of plasma dielectric permittivity.

If the thickness L of the irregularity layer (Figure 1) satisfies the condition
√

λL� r0,
where λ is the wavelength of incident wave and r0 is the outer scale of irregularities (the
largest size of irregularities), the layer distorts mainly the phase of the incident wave. It is
the so-called phase screen approximation. The wave subsequently propagates in the free
space and generates a complicated interference pattern at a distance from the irregularity
layer [4]. Wave propagation in the phase screen approximation can be expressed using the
Fresnel diffraction formula [4]:

u(r⊥, z) = u0
ik0

2πz

∫
dr′⊥ exp

[
−i

(
k0(r⊥ − r′⊥)

2

2z
+ δφ(r′⊥)

)]
. (2)

where u(r⊥, z) is the complex wave field observed at a distance z from the irregularity
layer, u0 is an amplitude of incident plane wave characterized by the wavenumber k0 and
r⊥ is vector perpendicular to k0. The initial phase fluctuations δφ on a screen are related to
fluctuations of the total electron content ∆Ne by the formula:

δφ(r⊥) = −reλ
∫

dl
∆Ne(r⊥, l)

1−
(

fp
f

)2 , (3)

where re is the classical electron radius, f —the wave’s frequency, and fp—the plasma
frequency of the medium.

Figure 1. Illustration of the scattering by a screen.
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In the situation where the thickness of the irregularity layer does not satisfy the
requirements for the phase screen approximation, it is still possible to use phase screen
approximation. However, to do so, certain conditions must be met. The medium needs to
be divided into multiple layers, each treated as the phase screen, where radiation emerging
from the preceding layer is incident upon the next one [5].

Scintillation of distant cosmic radio emissions can provide interesting information
on the cosmic medium itself, its internal spatial structure (spatial power spectra), basic
evolution characteristics (drift velocity and its dispersion), etc. [6–8] In this paper, we focus
on the drift velocity estimation of a diffraction pattern observed on the ground using scin-
tillation mode observation of LOFAR radio telescope [1,9]. We review the most important
work on the correlation method of drift estimation. A large number of consistent measure-
ments of LOFAR signal amplitude allows the validation of basic model assumptions when
estimating the drift velocity. We discuss possible explanations of our findings concerning
existing work and future research perspectives.

2. Materials and Methods

The evolution model of a diffraction pattern evolution can be composed of two parts:
evolution of the scatter (the medium on which the radiation is scattered) and a model for
radio wave propagation to relate quantities estimated in the experimental reference frame
to interesting quantities describing a medium through which waves propagate. Let us
consider at first the simplest scenario. The so-called frozen-in motion of a scalar field ψ (i.e.,
rigid motion of a medium) can be described by:

ψ(r, t) = ψ(r− vt) (4)

and the phase screen propagation model that results in diffraction pattern drifting with
the same velocity as the scatter [10]. In general, the problem of determining medium
evolution based on scintillation measurements is an example of inverse problems theory
and, to our knowledge, has no general solution. Derivation of medium evolution involves
multipoint measurements analysis [11]. When the stationarity (homogeneity) assumption
is reasonable, the two methods are used to derive evolution characteristics: the cross-
correlation analysis [12], and the dispersive (cross-spectral) analysis [7]. First relates to
the characteristic features of auto- and cross-correlation function, second makes use of the
cross-spectrum phase, giving information about dispersion. By Wiener-Khinchin theorem,
both can be related to one another.

Let us assume the field that is observed undergoes simple rigid motion, which means
its temporal evolution follows Equation (4) with constant velocity vF, where subscript F
stands for “frozen flow” estimate. It means, under the assumption of homogeneity of the
field, that cross-correlation of sampled time series of the field at positions r1, r2 at time
instants t1, t2 will be:

< ψ(r1 − vFt1)ψ(r2 − vFt2) >= C(ζ − vFτ), (5)

where C is the auto-correlation of the random field:

C(ζ) =< ψ(r1)ψ(r2) > (6)

and ζ = r1 − r2, τ = t1 − t2 which we call the displacement coordinates.
From (3) and (4), one can see that if irregularities are in a frozen flow, it is so for

any quantity formed from u since the formulas do not involve temporal changes. In our
analysis, we will use the observed intensity of a radio source, which in our case means:
ψ = uu∗.
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Next simplification considers modelling of anisotropy of the field. We assume that
anisotropy can be described by taking the argument of the correlation function as the
quadratic form q(ζ) = ζTQsζ, whose matrix Qs is symmetric positive-definite [6]. Then the
correlation function can be written as:

C(ζ) = ρ(ζ
T

Qsζ), (7)

where ρ describes desired radial dependence of the correlation function. Having established
relation (7), we are able to assess the drift velocity of the pattern by relating features of
temporal cross-correlations to the features of the field correlation function. One of the most
frequently used is maximum of temporal cross-correlation taken at two positions separated
by vector ζ:

∂

∂τ
C(ζ − vFτ) = ρ̇

∂

∂τ

[
(ζ − vFτ)TQs(ζ − vFτ)

]
=

2ρ̇
[
vT

F QsvFτ − ζTQsvF

]
= 0. (8)

Provided ρ̇ = ∂ρ/∂q is non zero, we obtain the expression for τm, which is the time
delay for maximum of the correlation function, and instantly for its gradient with respect
to the displacement coordinates ζ:

τm =
ζTQsvF

vT
F QsvF

→ ∇ζτm =
QsvF

vT
F QsvF

. (9)

To derive the explicit formula for vF let us observe that:

vT
F∇ζτm = 1 (10)

and:
(∇ζτm)

TQ−1
s ∇ζτm =

1
vT

F QsvF
. (11)

Combining these we arrive at:

vF =
Q−1

s ∇ζτm

(∇ζτm)TQ−1
s ∇ζ τm

. (12)

It means, that knowing the matrix Qs, and ∇ζ τm, which are to be estimated from
data, one can compute the drift velocity v. The presented formulas align with those given
by Briggs [6] when dropped purely temporal decorrelation. A large number of available
measurement positions allows a direct approach, while the small number of positions
of observations motivated numerous works to overcome this limitation by comparing
correlations at many different time lags, see for example [13,14].

We present a simple numerical example illustrating described modelling. A set of
virtual receiving stations (black circles in Figure 2) samples a random field that is drifting
past. An example of received signals is depicted in Figure 3. Some mutual relations
between each other can be observed. In Figure 4a cross-correlations for each pair of signals
for zero time lag have been plotted as a function of the separation vector. To assess matrix
Q we took least square fit of the function q(ζx, ζy) = q11ζ2

x + 2q12ζxζy + q22ζ2
y to estimated

correlations near ζ = (0, 0). Resulting ellipsis has been plotted at the same figure. Clearly,
the correlation captures well basic spatial properties of the sampled field.
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Figure 2. Numerically generated random field and the receiving stations marked as black circles.

Figure 3. The data sets obtained from virtual receiving stations from Figure 2.

Figure 4b,c show time lag for maximum cross-correlation as a function of separation
(it is clearly linear as formula (9) predicts). Now, combining the information on structure
geometry with time delay gradient, we were able to estimate drift velocity (red strip in
Figure 4c). The true drift velocity (black on Figure 4b) is very close to the estimated (red
on Figure 4c). For comparison, we also give an isotropic estimate represented as the blue
strip (the estimate of drift velocity obtained using the assumption of isotropy of random
field—the quadratic form matrix is a scalar multiple of identity matrix in this case).

We will take an important note at this point. The above example shows that we
reconstruct the spatio-temporal correlation for a given random field as:

C(ζ, τ) =
1

2T

∫ T

−T
dt ψ(r, t)ψ(r + ζ, t + τ) (13)
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As pointed out by Briggs in the exposition of his full correlation analysis [6], the
basic frozen flow drift estimation presented above can lead to serious overestimation of
velocity magnitude in the presence of temporal decorrelation. When additional temporal
decorrelation is present the evolution of a field can be described by a spatio-temporal
quadratic form that takes the following form in the rest frame:

Q =

[
Qs 0
0 β

]
. (14)

It also describes an elliptic shape of the isosurfaces of spatio-temporal correlation.
The Qs is the spatial part of the full matrix, while β describes temporal fading. When
the field is moving with the velocity v the matrix of the quadratic form transforms into:
Q′ = TTQT, where T is the Galilean transformation to a new coordinate system moving
with the velocity v:

T =

 1 0 vx
0 1 vy
0 0 1

 =

[
I v

0T 1

]
. (15)

Writing Q’ explicitly, it reads:

Q′ =
[

Qs Qsv
vTQs β + vTQsv

]
. (16)

The important property of the Briggs model is that the correlation function depends
on ζ and τ through the same functional form ρ:

< ψ(r1, t1)ψ(r2, t2) >= C(ζ, τ) = ρ([ζ, τ]TQ′[ζ, τ]). (17)

For this model we obtain the gradient of time lag to the maximum of cross-correlation:

∇ζ τm =
Qsv

β + vTQsv
(18)

For frozen flow and Briggs models, the gradient is linear, so this property cannot be
used to discriminate them. The experimentally assessed quantities: ∇ζ τm and Qs are the
same, thus between the frozen flow velocity estimate vF and v the scalar relation should
hold:

vF = γFv → γF = 1 + β/vTQsv, (19)

where the scaling factor γ gives the measure of overestimation of the drift velocity, when a
pure frozen flow estimator is taken.

The relation (17) provides another way of assessing the drift velocity:

v = Q−1
s Q′[1:2;3]. (20)
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a

b

c
Figure 4. Colour-coded estimate of the correlation function as a function of separation—(a), and
time lag to a maximum of temporal correlation in separation coordinates, black, red and blue lines
give accordingly: true velocity, velocity estimate that takes into account anisotropy of structures and
isotropic velocity estimate—(b,c).
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Briggs model enables differences in functional dependence between spatial and tempo-
ral correlations [6]; however, the simple form of dependence allows for the construction of
relatively simple and practical algorithms for estimating the drift velocity [12,14]. In these
algorithms, the arguments of the temporal cross-correlation functions for different positions
are compared when the function values are equal. This leads to methods that are essentially
similar to the Formula (20). The same form of dependence for spatial and temporal changes
facilitates the analysis and construction of practical algorithms, but lacks a solid physical
foundation. This problem was discussed in the works of Little and Ekers [15], where the
authors considered the dispersion of structures motion, while Wernik et al. [10] studied
the importance of ionospheric propagation effects in the case of the vertical drift gradient
in the scattering layer.

Data used for this analysis come from LOFAR core and remote station observations [1].
The Low-Frequency Array (LOFAR) is an excellent astronomical instrument, and a handy
tool for studying irregularities in the ionosphere [1]. Due to its operational frequency range
(10–270 MHz), LOFAR is very sensitive even to tiny changes in ionospheric electron density.
The instrument’s interferometric nature allows for multi-point observations, thus giving
the possibility for ionospheric scintillation measurements over distances ranging from
tens of meters to hundreds of kilometres. The project for scintillation monitoring over the
LOFAR stations has been carried out for several years, and a large amount of data has
been collected and stored in the Long Term Archive (LTA, https://lta.lofar.eu (accessed on
13 July 2022)). Available data contains signal amplitude for a few strongest radio sources
measured at all core and remote stations in beam forming mode (not as an interferometer).
Based on the LTA data, correlation analysis between stations can be done in order to obtain
information about the characteristics of ionospheric structures.

The Cassiopeia signal amplitude was observed under three various geomagnetic con-
ditions (the key parameter describing geomagnetic conditions—Dst index, is shown in
Figure 5: a for L547449; b for L547785; c for L552177 set respectively). L547449 observations
took place during the calm period, the L547785 is a phase of relaxation of a small geomag-
netic disturbance, and L552177 was measured during the main phase of the magnetic storm
(Table 1 gathers the details concerning the data sets). The amplitude dynamic spectra for
these periods are shown on Figure 6—one can see an increasing density of the structures
observed which may be related to the increasing speed of ionospheric structures. Positions
of ionospheric pierce points (IPPs) are shown as a red line pieces in Figure 7 (IPPs were
calculated at an altitude of 350 km).

Table 1. Datasets selected for the analysis and description of the geomagnetic conditions over the
time of observation.

Data Set Date & Time of
Start

Date & Time of
Stop

Short
Characteristics Frequency

L547449 2016-09-20
17:30:00

2016-09-20
18:40:00 quiet 61.8 MHz

L547785 2016-09-25
03:30:00

2016-09-25
06:55:00

small
disturbance 27.7 MHz

L552177 2016-10-13
15:55:00

2016-10-13
17:30:00

storm
—main phase 61.8 MHz

https://lta.lofar.eu
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a

b

c
Figure 5. Dst index for considered datasets: (a)—L547449; (b)—L547785; (c)—L552177.
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a

b

c
Figure 6. Amplitude dynamic spectra: (a)—L547449 set; (b)—L547785 set; (c)—L552177 set.

a

b

Figure 7. Cont.
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c

Figure 7. Daily positions of IPPs: (a)—L547449 set; (b)— L547785 set; (c)—L552177 set. The red line
segment gives IPPs for observation intervals.

3. Results

The Equation (7) implies that the correlation function should satisfy the basic equation:

∂

∂τ
C− v · ∇ζC = 0, (21)

which describes the homogenous drift of the correlation function in the displacement
coordinates. Figure 8 illustrates such behaviour of the correlation function for the L547785
data set. One can see that the correlation function seems to be in movement (the plots show
correlations for subsequent time instants).

(a) (b) (c)

Figure 8. Correlation for subsequent time delays: (a)—0; (b)—10 s; (c)—20 s.

The observed signals were analysed as described earlier in the numerical example.
Figure 9a,b,c show correlations for zero time shift as a function of stations position difference
(the displacement coordinates) with the estimated quadratic form ellipse overlaid for
different datasets, respectively. Geometry for all three cases seems to be well-defined, and
their sizes do not depend on geomagnetic conditions. Figure 9a1,b1,c1 show the time shift
of the maximum cross-correlation as the function of the separation, the determined velocity
vectors (red stripe) and the isotropic estimate, where Q is a scalar multiple of the identity
matrix, (blue strip). Black strip means vector speed with magnitude successively: 100 m/s,
1000 m/s, 1000 m/s for the reference. The exact results are gathered in Table 2. One can
observe the linear dependence of the time shift as a function of the separation vector.
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Table 2. Drift velocity estimates obtained from selected datasets. Table results correspond to the
graphical presentation in Figure 4.

Data Set vx vy Magnitude vx
Isotropic

vy
Isotropic

Magnitude
Isotropic

[m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

L547449 142 −35 147 86 −90 124

L547785 694 408 804 549 552 778

L552177 −2160 795 2370 −1526 1586 2200

The frozen drift values shown in the table seem to be overestimated, especially for
disturbed conditions. It may result from non-stationarity. The conditions are changing
during the time period or an incorrect model used for the estimation. To check this, we
divided the fragments into shorter segments of 3.4 min (2048 points), overlapping by
half their length. We also estimated Q′ matrix to compute drift velocity according to the
Formula (20). In order to do so, for large correlation values of C(ζ, τ) around 0, we fit the
polynomial of the second degree in three variables (ζx, ζy, τ):

C(ζx, ζy, τ) ≈ q11ζ2
x + q22ζ2

y + q33τ2 + 2q12ζxζy + 2q13ζxτ + 2q23ζyτ. (22)

This allows calculating Q’ and the velocity vT . The Figures 10–12 show the results
for both estimators and the source elevations for considered periods. In green, we marked
the periods where we made the comparison with SuperDARN radar convection pattern
assessments. We limited the plots to values less than 2000 m/s.

Having many pairs with a significant correlation at hand, it is possible to check the
validity of the assumption of frozen drift. According to the Formula (5), cross-correlation in
the frozen flow case should be the intersection of the spatial correlation that goes through
the separation vector for a given pair in the direction of the velocity vector. We constructed
such an intersection by taking computed spatial correlations in a strip distant from the
mentioned straight line no more than d. We introduced spatial coordinates ζ = ζ0 + vFτ
for the temporal cross-correlation to compare the two quantities. Figure 13 shows such
a comparison for the selected data segment. One can see that the red points (spatial
correlations) do not lie on the blue line showing temporal cross-correlation between two
stations. As we pointed out, the frozen drift assumption can lead to overestimating the
drift velocity. We tried to determine the factor by which vF should be multiplied so that the
curves overlap. For this purpose we minimise the following quantity:

∑
k
[Cs(ζk)− Ct((vT/γ)τk)]

2 (23)

with respect to γ, where γ gives the experimental velocity scaling factor. We also have
given the velocity scaling factor for Briggs model (20) γF, which we can get from quadratic
form Q′:

γF =
q33

vTQsv
(24)
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a a1

b b1

c c1

Figure 9. Correlations for zero time lag as a function of separation vector for datasets: (a)—547449,
(b)—L547785, (c)—L552177, with quadratic form ellipsis overlaid; time lag for maximum of cross-
correlation as a function of separation vector for datasets: (a1)—547449, (b1)—L547785, (c1)—L552177,
with velocity estimates: red - taking into account anisotropy of structures; blue - isotropic. Black
vectors indicate velocities with magnitude: 100 m/s, 1000 m/s, 1000 m/s for sets 547449, L547785,
and L552177, respectively.
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a

b

c
Figure 10. The drift velocity magnitude and azimuth as a function of time for the L547449 dataset for
two estimators: (12)—(a) and (20)—(b); panel (c) shows the elevation of the source.
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a b
Figure 11. Collective plot for all considered datasets (blue circles—L547449, red triangles—L547785,
black diamonds—L552177): (a)—experimental scaling factor γ vs the theoretical derived from Briggs
model, (b)—experimental scaling factor γ vs. ratio of estimators magnitude |vF|/|vT |.

Figure 12. Azimuth of the frozen flow drift velocity estimate vF vs. azimuth of vT .

a b c
Figure 13. An example of the procedure for obtaining the experimental velocity scaling factor: (a)—a
bar containing spatial correlations taken for comparison, (b)—spatial correlations superimposed on
temporal cross-correlation between a pair of stations (they do not overlap), (c)—spatial correlations
superimposed on temporal cross-correlation between a pair of stations after the optimal speed
scaling—minimising the expression (23).
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At this point we used the estimate (20) of the drift velocity that - in the Briggs model
- should be consistent with (24). Figure 11a shows experimental velocity scaling factor γ
vs. γF (20) given by Briggs model. The different markers refer to different data sets: black
diamonds—L552177; blue circles—L547785; red triangles—L547449. One can see a quite
large discrepancy between the theoretical scaling and experimental one, moreover, the
markers representing different data sets are distributed nonuniformly. For a comparison
Figure 11a gives experimental velocity scaling factor γ vs. the ratio of velocity estimators
magnitude vF/vT . In the latter case, one can see that the velocity modulus quotient is
much closer to the experimental scaling factor than the theoretical value, and the points
corresponding to the different data sets are evenly distributed. In Figure 12 the relation
between azimuths of vF and vT is shown. They roughly agree, however a minority has large
deviations, which may suggest that the relation between estimates is not scalar. The points
grouping suggests that estimates have mainly zonal component, which is in agreement
with the SuperDARN observations (Figures 14–17).

a b

Figure 14. Qualitative caption. comparison of drift estimation by two methods, according to for-
mula (12)—green—and formula (20)—blue—with ionospheric convection obtained by the Super-
DARN system for moments: marked in Figure 10a,b with green vertical lines, for the quiet time (set
L547449); panel (a) for 17:42 UT, and panel (b) for 18:22 UT of 2016.09.20.

a b

Figure 15. Cont.
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c

Figure 15. Qualitative caption. comparison of drift estimation by two methods, according to for-
mula (12)—green, and formula (20)—blue, with ionospheric convection obtained by the SuperDARN
system for moments: marked in Figure 18a,b with green vertical lines, for the quiet time (set L547785);
panel (a) for 3:54 UT, panel (b) for 5:30 UT, and panel (c) for 6:54 UT of 2016.09.25.

a b

Figure 16. Qualitative caption. comparison of drift estimation by two methods, according to for-
mula (12)—green—and formula (20)—blue—with ionospheric convection obtained by the Super-
DARN system for moments: marked in Figure 19a,b with green vertical lines, for the quiet time (set
L552177); panel (a) for 16:24 UT, and panel (b) for 16:48 UT of 2016.10.13.
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a b

c

Figure 17. Details of the convection pattern change around 16:48 UT for the set L552177; panel
(a) for 16:42 UT just before estimation time 16:48 UT (panel b), and panel (c) for 16:50 (just after
estimation time).

We also present a comparison of the obtained results with the velocity estimates that
use other experimental principles. For comparison, we will use the available plots showing
the convection of the northern polar ionosphere modelled on the basis of measurements
by the SuperDARN system [16]. Figures 14–17 show the velocities overlayed on the iono-
spheric convection maps given by SuperDARN system around the moments of time marked
with green lines in Figures 10–19 respectively. The green colour strip gives the frozen flow
estimate vF while the blue one the vT . We keep exact mutual relation between estimates
while abandoning accurate comparison to the SuperDARN drift velocity magnitudes. The
reason is twofold: we would like to highlight our results that otherwise would be obscured
if given in scale. The second reason is that the location of our estimates is outside of the
validity of SuperDARN modelling yet still close enough to bear some features of large-scale
polar ionosphere convection. Inevitably, the comparison is qualitative for the reasons
we mentioned, but they can be used to trace possible drift at mid-geomagnetic latitudes.
Figure 14 shows that for chosen time instants of the L547449 data set our estimates agree
with distant polar convection at least around 18:22 UT. Similarly, Figure 15 shows an
agreement of our estimates with the polar ionosphere convection for the L547785 data set
and Figure 16 for L552177. Figure 17 shows signatures of reaching a flow stagnation point
around 16:45 UT. Here, additionally, we display SuperDARN convection assessment before
and after the event. A tongue of eastward circulation reaches far west.
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a

b

c
Figure 18. The drift velocity magnitude and azimuth as a function of time for the L547785 dataset for
two estimators: (12)—(a) and (20)—(b); panel (c) shows the elevation of the source.
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a

b

c
Figure 19. The drift velocity magnitude and azimuth as a function of time for the L552177 dataset for
two estimators: (12)—(a) and (20)—(b); panel (c) shows the elevation of the source.
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Although the estimates of the ionospheric drift velocity follow the convection pattern
assessed by SuperDARN system for mid-latitude ionosphere may seem exaggerated for sets
L547785 and L552177. To illustrate, that such values are still possible we present the drift
estimations made by the ionosphere soundings at Pruhonice (49°59′N 14°32′E), Juliusruh
(54°37′N 13°22′E) and Fairford (51°41′N 1°46′W) during the storm of 13.10.2016 which are
respectively: 976 +/− 130 m/s (at 16:49 UT), 405 +/− 18 m/s (at 17:15 UT), 833 +/−146
m/s (at 17:53 UT) (https://giro.uml.edu/driftbase/ (accessed on 13 July 2022)). This
illustrates possible ionospheric variability in space and time during disturbed conditions at
mid-latitudes.

4. Conclusions

This article presents an experimental test of the assumptions of the models used to
determine the ionospheric drift velocity. In our particular case of determining the drift
velocity of the diffraction pattern created at the Earth’s surface by Cassiopeia radiation and
measured by the LOFAR system. We briefly presented the specifics of the observed field.
The basic models and methods for estimation of drift velocity have been described. We
also designed our original algorithm version that uses many measurement points and a
direct correlation function approximation in the vicinity of the origin of the reference frame.
This approach may be a source of some approximation errors, but if only their effect can be
described by the multiplication of the quadratic form by a constant scalar, it should not
affect the drift velocity estimate. We did not perform any detailed analysis of errors and
their sources, nevertheless, the consistency of the results and their similarity to the results
of other experimental methods serve as a vindication of some sort. The algorithm itself is
independent of the hypotheses taken by other methods, and this property allowed us to
test them.

In many cases, we have realised that the assumption about the frozen-in evolution of
ionospheric irregularities is violated. We adopted a model with the diffraction pattern’s
temporal decorrelation, which gave more reliable drift velocity estimates. This was ac-
complished by fitting a three-dimensional polynomial to the spatio-temporal correlations
obtained from LOFAR’s scintillation amplitude measurements. We compared our estimates
with SuperDARN convection maps. The scintillation-based velocity assessment reproduces
quite well ionospheric convection features captured by SuperDARN. Using a comparison
of theoretical scaling relation between frozen and decorrelation estimators to actual scaling,
we have also shown that the Briggs model doesn’t describe spatio-temporal behaviour
of the correlation function correctly. Nevertheless, it gives a method of estimating the
drift velocity that agrees reasonably well with other independent estimates (SuperDARN,
ionosondes) and has been used often for this purpose and still is [17].
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