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Abstract: Glaciers are important sentinels of a changing climate, crucial components of the global
cryosphere and integral to their local landscapes. However, many of the commonly used methods
for mapping glacier change are labor-intensive and limit the temporal and spatial scope of existing
research. This study addresses some of the limitations of prior approaches by developing a novel
deep-learning-based method called GlacierCoverNet. GlacierCoverNet is a deep neural network that
relies on an extensive, purpose-built training dataset. Using this model, we created a record of over
three decades long at a fine temporal cadence (every two years) for the state of Alaska. We conducted
a robust error analysis of this dataset and then used the dataset to characterize changes in debris-free
glaciers and supraglacial debris over the last ~35 years. We found that our deep learning model could
produce maps comparable to existing approaches in the capture of areal extent, but without manual
editing required. The model captured the area covered with glaciers that was ~97% of the Randolph
Glacier Inventory 6.0 with ~6% and ~9% omission and commission rates in the southern portion of
Alaska, respectively. The overall model area capture was lower and omission and commission rates
were significantly higher in the northern Brooks Range. Overall, the glacier-covered area retreated
by 8425 km2 (−13%) between 1985 and 2020, and supraglacial debris expanded by 2799 km2 (64%)
during the same period across the state of Alaska.

Keywords: glacier change; glacier inventory; deep learning; neural network; remote sensing; Landsat

1. Introduction

Glaciers are crucial components of the global cryosphere and iconic symbols of the
landscapes they occupy and shape. Meltwater from glaciers constitutes an important
component of freshwater discharge through river systems in many regions of the world,
impacting water availability, temperature, sediment, and nutrient conditions in their as-
sociated stream, river, and ocean ecosystems [1–4]. Glaciers affect the Earth’s energy
balance, and glacier discharge is an important contributor to global sea level rise [5–7].
With ~60,000 km2 of glacier-covered area, the state of Alaska is one of the most heavily
glaciated regions in the world outside the polar regions. Alaska encompasses many differ-
ent glacier types, from very small (<0.1 km2) mountain glaciers to North America’s largest
and longest valley, tidewater, and piedmont glaciers. These systems contribute ~75% of the
freshwater input and significant nutrient flux to the Gulf of Alaska, supporting one of the
world’s most productive fisheries [8].

The effects of climate change are being felt more immediately in the Arctic than in
other regions of the world [9–11]. As a result, glacier-covered areas in Alaska are being
adversely affected and most debris-free ice is receding and thinning [6,12,13]. However,
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the trends for debris-covered glaciers and tidewater glaciers are more complex, with
expansions of supraglacial debris and mixed impacts on area and volume changes [14–18].
Cataloging ongoing changes and improving sources of uncertainty in understanding
changes in Alaska’s glaciated landscape are crucial for many reasons, including land
and water management decisions, economic activity, and cultural purposes. Due to the
importance of Alaska’s glaciers for the state, as well as the global cryosphere, it is necessary
to understand their trajectory and magnitude of change by mapping these trends efficiently
with fidelity and regularity.

Previous studies have cataloged the overall spatial extent of Alaska’s glaciers at various
points in time [19–22], while others have investigated additional glacier parameters such
as mass balance [6,12] and debris cover characteristics [14,17,23]. The existing literature
contributes to a solid understanding of the broad scope of glacier-covered area in Alaska,
but also leaves substantive gaps that diminish its utility for rigorously evaluating trends.

The first limitation in existing research arises from the classification techniques used
to map glacier areas. Most existing products were created with automated classification
followed by extensive manual editing (semi-automated). Semi-automated approaches
build from high to moderate spatial resolution (~2–30 m) spaceborne optical remote sens-
ing data, leveraging ratios between spectral bands or using a pixel-based classification
approach. Manual editing helps as a post hoc mapping technique, but is labor-intensive,
time-consuming, and subjective. At best, manual techniques are feasible for a broad spatial
scope or broad temporal scope, but not both. Exceptions to these issues exist [17,23–27],
but even those studies suffer from two additional limitations.

The second shortcoming of existing work is that it is limited in either temporal or
spatial scope. Even the studies that used a broad time range typically missed temporal
granularity or covered a very small area. Most studies which focused on long-term temporal
change took an end-point approach: an early date range composite was compared with
a contemporary date range composite to capture a shift over time [19,27]. End-point
composites miss important fluctuations in the intervening decades. Where approaches with
denser time-series resolution have been used, they are often for short time periods, limited
geographic scope and are pixel-based [28,29]. Pixel-based approaches lack the spatial
context of object-based approaches, which can be particularly problematic for mapping a
highly variable target such as glaciers. Where object-based approaches have been used to
map debris-covered glaciers, they are limited by small geographic areas [27] and sometimes
short study periods [26]. An important exception is a global time series of glacier change
developed by Hugonnet et al. [6]. Although useful, that work was constrained to a starting
year of 2000 and the mapped change did not explicitly consider debris-covered area as a
separate class.

The third limitation of existing work is a focus on a single glacial parameter. For
example, Hugonnet et al. (2021) focused only on mass loss, with no distinction between
debris-free glaciers and supraglacial debris. Others [14,17] have produced datasets of
global scope, but focused exclusively on supraglacial debris for a limited contemporary
time window. Likewise, McNabb and Hock [30] included a long time period (1948–2012)
but focused exclusively on capturing changes in Alaska’s tidewater glaciers. Without
considering multiple glacier types at a fine cadence over a broad area, spatial and temporal
interactions or trends occurring simultaneously in different types of glaciers may be missed.

Our study addresses these limitations by leveraging the rapidly evolving methods
of deep learning to construct a +35-year time series at two-year intervals for all glacier-
covered areas in the state of Alaska. We used an image processing and classification
model framework to capture overall glacier-covered area and to distinguish between
debris-covered glacier (supraglacial debris) and debris-free ice. The resultant dataset offers
higher temporal granularity than any existing product over a longer time period (two-year
composites for 1985–2020), and it does not employ the manual editing of glacier outlines in
the post processing steps. Although focused on the state of Alaska, we expect that these
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methods and associated findings have broader implications for identifying changes in
global glacier-covered area.

Our approach includes several important methodological advances. Firstly, we in-
corporate recent research from the computer vision subfield of deep learning techniques
to improve the accuracy of our glacial mapping products [31,32]. Secondly, our neural
network produces maps of glacier extent by semantically segmenting the imagery (i.e., each
pixel of the input image is labeled simultaneously), producing highly accurate glacier maps
with well-defined classification boundaries. In contrast, existing studies have classified
glacier extent using pixelwise, non-parametric classification techniques (e.g., Random
Forests, Support Vector Machines) [24,33,34]. Finally, instead of producing a single classifi-
cation, we develop a multi-decadal time series of maps which document the evolution of
glacier extent across multiple classes simultaneously.

To introduce and describe this novel and globally applicable method for mapping
glacier and glacial debris-covered areas we: (i) present a publicly available dataset of glacier
and glacial debris-covered areas in Alaska, with a robust classification of uncertainty;
(ii) characterize the location, magnitude, and trends of changes in debris-free ice and
supraglacial debris glacier-covered areas; and (iii) characterize the relationship between
modeled temperature gradients and historic changes in glacier-covered area in Alaska.

Study Area

The state of Alaska has approximately 60,000 km2 of glacier-covered area, with a wide
range of mean annual temperatures, terrain, and glacier types. Elevations across the state
range from 0 to 6190 m ASL [35]. The region is bounded on the north and east by the
seasonally frozen Beaufort, Chukchi and Bearing seas, and on the south by the deeper,
warmer waters of the North Pacific’s Gulf of Alaska. Approximately 99% of Alaska’s
glacier-covered area is found in the mountainous terrain of the southern region, within
approximately 200 km the Gulf of Alaska (Figure 1). The remaining 1% is found in the
Brooks Range in the northern area of the state (Figure 1). Although these two regions have
some similarities, there are many differences in glacier characteristics. The southern region,
adjacent to the Gulf of Alaska, has numerous tidewater, valley, and piedmont glaciers and
icefields, in addition to many cirque and alpine glaciers. Conversely, the northern region,
centered on the Brooks Range, is composed of smaller, shaded cirque and alpine glaciers at
a higher latitude, requiring different approaches from optical remote sensing. To ensure the
continuity of predictor variables and outputs, we defined our study area exclusively as the
state of Alaska. This choice was primarily due to a dearth of current, spatially continuous,
high-resolution digital elevation models outside the state boundary.
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Figure 1. Climate normal (1981–2010) calculated from mean annual temperature from Daymet v4 [36],
including simplified outlines of glacier-covered areas within Alaska.
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2. Materials and Methods

Our workflow consisted of a series of algorithms that created a spectrally homogenous
time series of optical imagery, followed by an initial classification of debris-free glacier ice,
and finally, the creation of multi-class maps of glacier cover change over the study time
period (1985–2020) using a deep neural network (Figure 2: GlacierCoverNet Training). We
created the initial optical imagery time series from the Landsat archive using the LandTrendr
algorithm [37] which was run on the Google Earth Engine (GEE) platform [38,39]. To train
the deep learning model, we built a training dataset composed of predictor variables from
LandTrendr outputs, topographic information, and a class label.
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The class label was created by first identifying debris-free glacier with a spatiotemporal
exploratory model (STEM) approach [40]. We then combined this classification with the
RGI 6.0 boundaries, assuming that the difference in area was supraglacial debris (Figure 2:
GlacierCoverNet Training).

We then used a set of ~650,000 nine-channel predictor variable and class label image
chips to train a deep neural network, hereafter referred to as GlacierCoverNet. The object-
based classification approach, coupled with the large training dataset, produced maps of
debris-free glaciers, supraglacial debris, and overall glacier-covered area with high spatial
fidelity across most of the study domain without manual editing of glacier outlines.

To prepare the dataset for public use, we carried out a series of post hoc editing steps
to convert from default raster outputs to vectors, assigned RGI 6.0 labels, and conducted
an error analysis (Figure 2: Vector Processing). We then added final metadata for archival
and public dissemination (Figure 2: Final Dataset).

2.1. Landsat Archive and LandTrendr

LandTrendr (LT) is a temporal segmentation algorithm designed for disturbance detec-
tion that also builds a radiometrically and temporally consistent time series of optical im-
agery, making it well suited for generating the imagery required for this project [37,40–42].
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The LT algorithm linearly segments the time series of spectral values and adjusts spectral
values based on those segments, thus removing ephemeral noise that can be introduced
by atmospheric haze, clouds, smoke, variations in image acquisition date, and sensor pa-
rameters [43,44]. The LT model was run on a time series of annual medoid composites [45]
of Landsat imagery. Our compositing window spanned from 20 July to 20 September to
obtain a sufficiently wide time window to maximize the number of Landsat overpasses
while minimizing conflation of glacier ice with out of season snow.

We utilized all available 30 m resolution images from the Landsat program from 1985
to 2020 collected over Alaska, resulting in biannual composites (see below) that ended on
the most recent year of imagery when work was conducted (2020). We used images from
Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI, employing coefficients
outlined by Roy et al. [46] to bridge the change in radiometric properties between the
pre-Landsat 8 and Landsat 8 mission sensors. We rely here on the LT algorithm to fill in
missing data and artifacts from the known SLC off error that resulted from the failure of
the scanline corrector on the Landsat 7 ETM+ instrument. We only used the data included
in the Collection 1 Tier 1 surface reflectance archive for this project.

Some of our domain, particularly near the Gulf of Alaska, was frequently obscured
by clouds. To address that challenge, we created two-year composites of cloud-masked
imagery, increasing the number of possible input images relative to a one-year cadence.
Therefore, in the processed images with the label year 2020, input data included images
from 2019 and 2020. For cloud masks, we started with the standard Landsat CFmask [47]
(including cloud and shadow), then augmented using normalized difference snow index
(NDSI) and shortwave infrared masks to reduce over-masking by the CFmask in glacier-
covered and commonly snow-covered regions where high reflectance was sometimes
mistaken for clouds. After cloud masking, areas of missing data were filled using LT to
interpolate between two-year composites. After comparing different composite lengths
with the availability of pixels not removed by the masking process, we determined
that two-year composites provided sufficient data to build image composites while
maintaining high temporal granularity. The outputs of this process were 18 biannual
image composites with full spatial coverage over the state, including areas with high
seasonal cloud cover.

2.2. Predictor Variables

Both the STEM and GlacierCoverNet models utilized a ten-band raster that incorpo-
rated five predictors from the LT-interpolated Landsat composites, four predictors derived
from the Alaska 5m IfSAR elevation product [48] and a class label (Table 1). General
predictor variable selection aimed to balance meaningful spatial and spectral inputs with
computational efficiency.

These optical predictors maximized the depth of spectral information derived from
the Landsat imagery by incorporating indices aimed at capturing different components
of heterogeneous landcover. In addition to the shortwave infrared (SWIR), green, and red
bands used to derive NDSI and used for band ratioing [28,29,54], we used NDVI and NBR to
assist in better delineation of bare ground and vegetation in the proglacial environment [55].
Linear transformations of the Tasseled cap indices have also been used for a wide range
of relevant remote sensing applications e.g., [56,57]. Here, they improved the delineation
of debris-free glacier, supraglacial/proglacial debris, and proglacial vegetation. Although
the thermal bands have been used successfully in the past to map supraglacial debris, we
opted not to use them here, mostly because of the difference in spatial resolution and lack
of time series consistency.
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Table 1. Summary of optical (1–5) and topographic (6–9) predictors used for the spatiotemporal
exploratory model (STEM) and GlacierCoverNet models.

Band Number Band Name Derivation Source

1 Normalized difference snow index
(NDSI) [49]

2 Normalized difference vegetation
index (NDVI)

3 Normalized burn ratio (NBR) [50]
4 Tasseled Cap Brightness [51] (p. 13)
5 Tasseled Cap Wetness [51] (p. 13)
6 Curvature [52]
7 Aspect intensity (north) [53]
8 Aspect intensity (south) [53]
9 DEM [48]

10 Class label Purpose built

The topographic indices derived from the IfSAR elevation dataset are robust for
identifying features related to snow deposition and glacier cover [53]. Their inclusion
augmented indices derived from optical data by aiding in the identification of glacier
surfaces where conflation with snow cover was common. The indices of curvature and
aspect intensity include slope and aspect in their derivation, providing information on the
shape, surface roughness, and landscape positions of glaciers.

2.3. Glacier Semantic Segmentation Dataset

We used an encoder–decoder neural network architecture (GlacierCoverNet) to seman-
tically segment the multispectral satellite imagery and topographic predictors. Semantic
segmentation differs from traditional pixel-based classification approaches such as random
forest [58] or support vector machines [59], which work by taking a vector of features
summarizing pixel-level attributes and mapping them to a set of outputs. Instead, the
GlacierCoverNet model used a 128 × 128 ten-channel image as input and output a classified
128 × 128 map. The value of each pixel in the final image was assigned to one of the label
classes: no glacier, supraglacial debris, debris-free glacier.

2.3.1. Class Label Generation

A deep learning model requires a target output, hereafter referred to as the class label.
To create the class label raster, we combined the outputs of the STEM model (discussed
below) with the RGI 6.0 boundaries, assuming the areas between the STEM classification
(debris-free ice) and the RGI boundary were debris-covered glacier areas. This differencing
approach follows other studies that have used it to approximate debris-covered glacier
area [17]. Although there is uncertainty associated with this step, deep learning models
have been shown to generalize well even in the presence of significant noise in the class
label layer [60–64].

The STEM was used to build a contemporary landcover map with a focus on debris-
free glacier ice. The STEM model was first used to extend the temporal coverage of the
Landsat-derived National Landcover Database (NLCD) [65]. Hooper and Kennedy [40]
used these finite NLCD maps (2001 and 2016) to define map classes and constrain the
sampling of predictor variables. Here, we substituted a glacier probability layer for the
NLCD data to identify the likelihood of glacier presence or absence. The glacier probability
layer was constructed as a stack composed of data from the 2016 National Landcover
Database (NLCD), the Randolph Glacier Inventory 6.0 (RGI 6.0) [20,22], and the NASA
MEASURES Inter-mission Time Series of Land Ice Velocity and Elevation (ITS-LIVE) [66,67]
datasets. These datasets were combined to produce a simple 0–3 scale, where a pixel with
the value 0 had none of the datasets identifying glacier-covered area, whereas pixels with
the value 3 were labeled glacier in all the datasets. The utility of the probability dataset was
twofold: first, it provided the STEM model with multiple glacier-specific strata to classify
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because the original target (NLCD) is not focused on the cryosphere. This multi-class
target layer was also used because there was no ancillary training/reference dataset that
combined the overall glacier-covered area and supraglacial debris for our domain. If such a
dataset existed, it would have been a logical choice for a target layer. Second, the probability
dataset evaluated the performance of the pixel-based classification approach where there
was no prior information on debris-covered glacier. When using STEM outputs in the class
label, values of two and above were included because there was too much noise in the
value 1 category to be of use in the model.

The predictor variables for the STEM model were spectral indices calculated from the
LT outputs and topographic indices generated from the Alaska 5 m IfSAR DEM (Section 2.2).
The STEM model used a group of regression trees which were deployed inside a series of
randomly shuffled, spatially overlapping support sets, essentially running the classification
n times for every pixel in the domain [40,68]. These cumulative results were then condensed
by taking the mode value on a pixel-wise basis to produce the classified output.

The output of the STEM model was a binary (glacier/no glacier) raster based on
2008–2010 optical imagery. This year range was chosen because it incorporated the median
start year for the glacier outlines in RGI 6.0 for Alaska. We found using the STEM model to
be effective for mapping debris-free ice and comparable to the widely used band ratioing
approach [28,69–71]. We combined the STEM output with RGI 6.0 to define debris-covered
glacier and created a three-class label raster (no glacier, debris-covered glacier, and debris-
free glacier). To prepare this class label raster for use in the GlacierCoverNet model, we
conducted limited manual editing to remove isolated artifacts from masked pixels in the
input images and then employed a nearest neighbor analysis (GDAL sieve) to remove
speckling left by the pixel-based STEM classification.

2.3.2. Training Data Generation

To build the training dataset for the GlacierCoverNet model, we gridded our class
label raster using 256 × 256 pixel partitions. After testing 128 × 128, 256 × 256, and
512 × 512 partition sizes, we selected 256 × 256 to balance a meaningful spatial unit (i.e., a
unit of analysis that captures informative spatial features such as a glacial lobe) with com-
putational performance. The 256 × 256 partitions were randomly split with 80% devoted
to training and 20% to testing (Figure 3). Training partitions were then systematically
subsampled into 128 × 128 pixel image chips (n = 823,976) with each chip comprising our
nine predictor variable channels and the class label. A stride of 32 pixels was used after
testing multiple versions. This selection was to balance dataset size (smaller stride) with
dataset variability (larger stride). To prevent a temporal mismatch between the predictors
and the labels, the spectral predictors were extracted from the biannual composite closest
to the average date of the RGI perimeters contained in the spatial partition. These dates
were identified by the BgnDate attribute field included with the RGI 6.0. A fundamental
weakness of the RGI 6.0 is tracking of temporal trends. A subset of the semantic segmenta-
tion dataset was allocated to model training (80%, n = 655,452). The remaining data were
assigned to a validation set (20%, n = 143,519), which was used to provide an estimate of
the deep learning algorithm’s performance.
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2.4. GlacierCoverNet Architecture
Encoder–Decoder Structure

The GlacierCoverNet model is an encoder–decoder neural network which uses a
ResNeSt-101 convolution neural network and a Pyramidal Scene Parsing Network (PSP-
Net) module to semantically segment glaciers and glacier debris using a combination
of spectral and topographic inputs [72,73]. ResNeSt-101 is a deep convolutional neural
network which modifies the ResNet101 architecture with split-attention blocks (i.e., a
group of convolutional layers, activation functions, and transformations) to improve the
network’s accuracy and efficiency (Appendix A.1). The split-attention blocks incorporate
residual connections, multiple pathways in each block, and channel-wise soft attention,
which have empirically been shown to improve the accuracy of models on computer vision
tasks [74–76]. Gaussian Linear Error Units were used as the non-linear activation functions
for both the ResNeSt-101 encoder and the PSPNet decoder [77]. The PSPNet decoder com-
bines information encoded at multiple resolutions by the ResNeSt-101 encoder to produce
a set of information-dense feature maps. This study did not explicitly use techniques
such as L1 or L2 regularization. Finally, the feature maps produced by the PSPNet were
up-sampled to match the resolution of the input imagery, enabling a classification label to
be assigned to each pixel in the input satellite imagery (Appendix A.1).

The spatial morphologies of glaciers in northern Alaska (e.g., Brooks Range) are
largely distinct from many glaciers in southern Alaska, which necessitated a two-phase
model development strategy. The majority of the training dataset generated from this
project comprises data from southern Alaska (~97%). During model development, we



Remote Sens. 2022, 14, 4582 9 of 36

identified a shortcoming in GlacierCoverNet models trained on examples on the entire
model dataset when classifying the northern (Brooks Range) region. These models failed
to adequately capture the distribution and spatial characteristics of glaciers in northern
Alaska. A simple transfer learning strategy was used to improve the capture of glaciers in
the northern portions of the study area [78]. First, a GlacierCoverNet model was trained
to capture glaciers in the southern portion of the study area. The weights of the initial
GlacierCoverNet model were then fine-tuned on examples from the northern extent [79].
This resulted in two deep learning classifiers with different parameter values that used
the same architecture and output classes. The models were applied in the northern and
southern portions of the study area separately to produce maps in the final time series.
These outputs were then merged for the final dataset.

GlacierCoverNet was developed using the PyTorch [80] deep learning library. The
Tanimoto loss function with a complement proposed by Diakogiannis et al. [81] was used
when optimizing the network. Tanimoto loss has been shown to have desirable convergence
properties when semantically segmenting satellite imagery, and performs well when classes
are imbalanced [81,82]. This was useful in the northern portion of the study area, where
glaciers are smaller, less distinct in boundary shape, and more spatially discontinuous than
in southern Alaska. The neural network weights were optimized during training using the
Adam optimizer with default parameters [83] using a batch size of 64 and a learning rate of
1 × 10−4. Both the initial GlacierCoverNet model used to map glaciers and debris-covered
glaciers and the GlacierCoverNet model that was fine-tuned for identifying glaciers in the
northern portions of the study area were trained using the same procedure.

2.5. Post-Processing Steps

The basic outputs of the GlacierCoverNet model were a full time-series (18 two-
year composite images) of three-class GeoTIFFs (no glacier, debris-free glacier, and
supraglacial debris). Each GeoTIFF covered the full spatial extent of Alaska and repre-
sented the medoid composite for each two-year period. These outputs did not contain
any explicit information about individual glaciers or any other characteristics besides the
timeframe from which they were derived and the pixel-based areas and class. The work-
flow for vector post-processing (Figure 2: Vector Processing) consisted of pixel-based
labeling, raster-to-vector conversion, application of a minimum mapping unit (MMU),
and topological correction, attribution of additional labels for unlabeled polygons and
matching of RGI 6.0 attribute identification metadata.

To ensure continuity and usability for the research community, we used the RGI
6.0 glacier labels and metadata to attribute our dataset. We also used internal RGI
boundaries only over ice fields (e.g., Bagley Icefield) where the boundaries between
individual glaciers were not immediately clear in the classification output. In all other
cases, GlacierCoverNet classifications were allowed to extend beyond or stop prior to the
boundaries of RGI 6.0. To attribute glacier pixels with a label from the RGI dataset, we
first labeled all GlacierCoverNet raster outputs which were spatially coincident with RGI
boundaries, bypassing anywhere that RGI identified a glacier and the GlacierCoverNet
outputs did not. We then applied an array-based maximum filter which used an iterative
process and a 3 × 3 kernel to label pixels directly adjacent to already-labeled pixels. This
novel region growing approach was repeated until there was less than a 1% change in
new pixels labeled per iteration. This decision was based on the asymptotic behavior of
the labeling process, whereby the decrease in unlabeled pixels per iteration dropped off
dramatically after the first 5–10 iterations, depending on the region. This conservative
approach served the dual purpose of extending labels beyond the RGI bounds and
leaving some of the minor artifacts unlabeled or early/late season snow conflation
present in the raw GlacierCoverNet outputs.

After labeling a majority of pixels in the raster data, we converted to vectors, removing
background non-glacier pixels. Next, we applied the RGI-suggested MMU of 0.01 km2

by filtering out any glacier polygons below that threshold. We then used a spatial join
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process to attribute polygons which touched labeled polygons but did not inherit an RGI
6.0 label in the raster-labeling process. Finally, we used a simple attribute join to migrate
the metadata from RGI 6.0 to our GlacierCoverNet output data.

2.6. Glacier Cover Change

To illustrate the utility of the dataset and present a novel summary of glacier change
in Alaska, we characterized the overall glacier-covered area, supraglacial debris area, and
overall changes with elevation and temperature shifts over the study time period. For
the overall and supraglacial debris area changes, we aggregated watershed-based climate
divisions, adapted from Bieniek et al. [35], to regional areas (see Section 3.1.1). To create the
aggregations, we added the areas of adjacent climate divisions for each biannual composite
to create the regions: Northeast Gulf, Northwest Gulf, Interior, and the Brooks Range.

To elucidate the relationship between changes in glacier-covered area and temperature
over time, we used mean annual temperatures from the Oak Ridge National Lab’s Daymet
v4 gridded meteorological dataset, split across elevation gradients (https://daac.ornl.gov/
cgi-bin/dsviewer.pl?ds_id=1904 (accessed on 28 July 2021). Daymet v4 is publicly available
for 1980–2020 at a daily temporal resolution and 1000 m spatial resolution. The dataset
was produced from the interpolation/extrapolation of in situ observations collected across
North America [36]. To use the daily data, we first created mean annual composites in GEE
that aligned with the years of GlacierCoverNet composites. We then down-sampled the
GlacierCoverNet GeoTIFF outputs and IfSAR DEM to 1000 m using a cubic resampling
method to match the spatial resolution of Daymet. We created 200 m elevation bins for
brevity of analysis and then assigned a mean annual temperature and elevation value to
each coincident pixel of the binary, down-sampled GlacierCoverNet pixels. This was con-
ducted by multiplying binary rasters from the three datasets. We then extracted descriptive
statistics from each composite for area, elevation band max, and mean annual temperature
(Appendix A.3).

2.7. Error Analysis Reference Datasets

We adopted a multi-part approach to error analysis due to the heterogeneity of glacier-
covered area in Alaska. Our error analysis consisted of four components. First, the glacier
segmentation validation set (20%) was used to evaluate GlacierCoverNet’s performance
over spatially disjoint partitions of the modeling dataset that were withheld during train-
ing. The datasets for the southern and northern areas were evaluated independently (see
Section 3.2.1). Second, we validated GlacierCoverNet’s accuracy using a purpose-built
point-based validation dataset (see Section 3.2.1). The point-based validation used 2000
stratified random instances of glacier-covered area interpreted from Google Earth images.
This validation dataset focused on pure end member locations of debris-free glacier cover
that were <100 m from distinct landcover changes (e.g., lateral moraine transitions). In
creating this dataset, we endeavored to match the time stamp of the Google Earth photo-
graph and the composite used for analysis. Third, the supraglacial debris maps produced
by GlacierCoverNet were compared with the debris-covered glacier datasets created by
Scherler et al. [17] and Herreid et al. [14] (see Section 3.2.2). However, the Brooks Range was
not included in the mapping of supraglacial debris due to higher uncertainty in generating
the class label for this region. Finally, we compared between areas of individual glaciers
generated by GlacierCoverNet with RGI 6.0 (n = 19,490) (see Section 3.2.3). We also provide
two examples from the final, classified dataset where GlacierCoverNet appears to have
mapped glacier change with higher fidelity and where GlacierCoverNet overclassifies when
compared with RGI 6.0 (see Section 4.2). Although a confusion matrix would generally be a
helpful way of presenting some of these results, we opted not to include that here because
we did not use one reference dataset for all classes for the aforementioned reasons.

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1904
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1904
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3. Results
3.1. Areal Change over Time

In this section, we briefly present long-term changes and discuss some of the finer
temporal changes observed in the dataset. To better understand the impact of climate on
changes in glacier-covered areas, we grouped our results using watershed-based climate
divisions adapted from Bieniek et al. [35], as units of analysis, and aggregated these regions
by hydrologic units and geographic proximity, as outlined in Table 2. We then discuss
changes in the overall glacier-covered area, area of supraglacial debris, and glacier change
across temperature gradients. Finally, we evaluate GlacierCoverNet’s performance and
present results of the error analysis.

Table 2. Summary of climate division aggregations of Mann–Kandell (MK) trend test results and
Theil–Sen slope (km2/2 years) for aggregated regions with statistically significant trends. Additional
area values are included in Appendix A.2.

Aggregated
Region

Climate
Divisions ˆ

MK Result *
(Total Area)

MK Result *
(Supraglacial

Debris)

Theil–Sen Slope
km2/2 Years

Total Area Loss
(1985–2020) (km2)

Interior
Central Interior

− + −21.2 −1333Southeast
Interior

Northeast Gulf

Northeast Gulf

− + −125.1 −5071

North
Panhandle

Central
Panhandle

South
Panhandle

Northwest Gulf

Aleutians

− + −46.4 −2021
Bristol Bay
Cook Inlet

Northwest Gulf

Brooks Range
North Slope

n.a. n.a. n.a. n.a.Northeast
Interior

ˆ List of Alaska climate divisions included in aggregated regions (Aggregated Region column) from [36]. * +, −,
or n.a. denotes increasing, decreasing or not significant (α ≤ 0.05), respectively.

3.1.1. Overall Glacier-Covered Area

Across all the glacier-covered regions in Alaska, our data show a decline in overall
glacier-covered area during the last three decades. Our results, using Mann–Kendall
trend analysis (Table 2), show that all aggregated climate divisions, except for the Brooks
Range, experienced a statistically significant (α ≤ 0.05) decrease in area over the study
period. Across Alaska between 1985 and 2020, the overall glacier-covered area decreased
by 8425 km2 (−13%), although regional variability was much higher. The Northeast Gulf
region has some of the largest ice-covered areas in North America, including a large
proportion of the Bagley Icefield and the Bering Glacier. The Northeast Gulf region also
lost the most glacier-covered area (−5071 km2 or −16% change) (Figure 4) and had the
largest glacier-covered area at 32,648 km2 in the 1986 composite (Appendix A.2).

The smallest, statistically significant, net loss in area was in the aggregated Interior
region (−1333 km2 or −8%), although the aggregated Interior and Northwest Gulf regions
had similar overall glacier-covered area. Despite the similar total glacier-covered area in
these two regions, the Northwest Gulf lost over 65% more total area than the Interior region
between 1985 and 2020.
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Figure 4. Change in overall glacier area (top) and area of supraglacial debris (bottom) for the period
1985–2020. Y-axis values are calculated as the percentage change from a 1986 composite baseline. The
Brooks Range is included as an inset (top) and uses 1990 as a baseline due to higher uncertainty in
this region, particularly early in the time series (Appendix A.2).

In addition to the long-term total changes, the structure of this dataset allows for the
interrogation of some finer temporal scale trends. In all the aggregated regions, except
the Brooks Range, we observed a steady or stepped decline in overall glacier-covered area
during the study period. However, the greatest divergence in percentage change from
the 1986 composite occurred in the last ~15 years of the study period (2005–2020). During
this period, we observed a flattening, albeit a continued declining signal, in the Interior
region, as compared with the first 15 years of the study period (Figure 4). In contrast, the
Northwest Gulf, and especially the Northeast Gulf, experienced increasing recession as
compared with the 1986 baseline in the last 5–10 years of the study (2010–2020). The Brooks
Range comprises ~1% of Alaska’s glacier-covered area and is spatially distant and distinct
from Alaska’s other glaciated regions. Both climate regions that cover the Brooks Range
(Northeast Interior and North Slope) showed a marked increase in glacier-covered area in
the first decade of the study period, followed by a sharp decrease with the areal minimum
occurring in both regions around 2010. The period 2006–2014 produced overall areas for
the Brooks Range (360 km2 in 2006 to 288 km2 in 2014) (Appendix A.2) that were closest to
the total area recorded in RGI 6.0 (346 km2 with mode year of imagery 2007). It should be
noted here, for the reasons elaborated in the Discussion (Section 4), that our uncertainty is
much higher in the Brooks Range than for the rest of Alaska, and this is particularly true
for the time series analysis in this region. This is also reflected by the lack of statistical
significance in the Mann–Kendall trend analysis (Table 2).
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3.1.2. Supraglacial Debris

The aggregated glacier-covered regions of Alaska showed an increase in supraglacial
debris cover over the study period, with the exception of the Brooks Range, which was
not included in this part of the analysis (Table 2 and Figure 4). Across the southern
part of Alaska, the area of supraglacial debris increased by 2865 km2 (64%) between
1985 and 2020. The largest net increase in debris-covered area by region occurred in the
Northeast Gulf by 1187 km2 (76%), with the next largest increase by percentage in the
aggregated Northwest Gulf 774 km2, (65%) and by area in the Interior region, 904 km2

or 53%. In some locations, the Southeast Panhandle, for example, we observed much
higher increases (>200%).

The smallest net increase in area of supraglacial debris between 1985 and 2020 was
in the Northwest Gulf (774 km2), which was also the region with the smallest overall
glacier-covered area of the aggregated regions in 2020 (13,604 km2). Areas of supraglacial
debris by biannual composite and region are included in Appendix A.2.

In the Northwest Gulf, area of supraglacial debris peaked in 2009/2010 (1983 km2)
before slightly decreasing or remaining stable for the remainder of the time period.
Similarly, the area of supraglacial debris in the aggregated Interior region peaked in
2010–2015 (max of 2685 km2 from the 2016 biannual composite) before remaining stable
and then decreasing slightly at the end of the study period. Conversely, while the
Northeast Gulf experienced a slower increase in supraglacial debris in the second half
of the 2000–2010 decade, supraglacial debris area continued to increase until the end of
the study period.

3.1.3. Changes with Elevation and Temperature

In addition to geographic location, temperature and precipitation are the primary
drivers of glacier mass balance. The relationships between the accumulation of solid vs.
liquid precipitation and the sensible and latent heat seasonally available for melting are
key determinants of glacial mass balance. We therefore investigated how historic changes
in mean annual temperature are related to glacier-covered area at different elevations
(Figure 5).

Although we have established that overall glacier-covered area has declined across
Alaska during the study period; recession has not been uniform with elevation gradients or
years. The largest changes in overall glacier-covered area occurred in the mid-elevations of
800–2200 m, which contain the largest overall glacier-covered area. This is also consistent
with our findings that the largest net glacier loss occurred in the most heavily glaciated
areas of Alaska.

Steady declines in mean annual temperature values with increasing elevation
are consistent with the influences of orographic cooling, sensible heat exchange, and
adiabatic lapse rates. However, it is notable that in the middle and especially the last
decade of the study period, mean annual temperatures increased rapidly, with the
exception of 2020. This was particularly evident at the highest elevations (>3000 m),
where temperatures increased by an average of ~2.5 ◦C between 1985 and 2020. There
were some years (e.g., 2014 and 2018) with markedly larger increases (>9 ◦C compared
with 1986). Despite these temperature changes, loss in overall glacier area at the highest
elevations was minimal.
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3.2. Error Analysis
3.2.1. Overall Glacier-Covered Area

The outputs of the GlacierCoverNet model are largely comparable to those produced
through the conventional methods of band ratioing and manual editing [21] for capturing
the area of debris-free glacier and supraglacial debris in the southern region of Alaska.
The GlacierCoverNet outputs for 2010 (southern region) and 2006 and 2008 (northern
region) were compared with the coincident years in RGI 6.0. These years were selected
as the median years stated in the RGI 6.0. The median start year for RGI 6.0 in the
Brooks Range is 2007; thus, we included 2006 and 2008 composites in our presentation of
results. Areas for both the southern area and the Brooks Range are drawn from the 20%
of 256 × 256-pixel partitions (one partition is ~59 km2) withheld from GlacierCoverNet
training data generation. As compared with RGI 6.0, false positives are areas of over-
classification by GlacierCoverNet, and false negatives, areas of under classification by
GlacierCoverNet (Table 3).



Remote Sens. 2022, 14, 4582 15 of 36

Table 3. GlacierCoverNet outputs for 2010 (southern region) and 2006 and 2008 (northern region).
Values are based on model outputs for areas in the validation set.

Southern Region Northern Region

GlacierCoverNet
2010 RGI GlacierCoverNet

2006
GlacierCoverNet

2008 RGI

Area (km2) 10,675 11,030 94.5 85.4 110.4
Area (% of RGI) 97 - 86 77 -
False positive (km2) 622.6 - 26.2 21.1 -
False positive
(% of RGI area) 5.6 - 23.7 19.1 -

False negative (km2) 983.7 - 42 46.1 -
False negative
(% of RGI area) 8.9 - 38.0 41.8 -

In 2010, GlacierCoverNet identified an area of glacier cover that was 97% of the
area identified in RGI 6.0 (true positive and false positive) in southern Alaska, which
comprises most of the state’s glacier cover (99%). The remaining, approximately 1%, of
Alaska’s glacier-covered area is found in the Brooks Range. In this region, GlacierCoverNet
identified a total area that was 86% of RGI 6.0, which is somewhat higher than the ~10%
error reported for the Brooks Range in Kienholtz et al. [21]. However, overall area statistics
mask errors of omission (false negatives) and commission (false positives). In the southern
region, we had 8.9% omission rates and 5.6% commission rates, largely commensurate with
those reported for other studies [19,21]. The rates of omission and commission errors in the
northern region were substantially higher, however, with omission rates of ~38–42% and
commission rates of ~19–24%. Some of the reasons for this dissonance are included in the
Discussion (Section 4).

Our analysis using the point-based validation shows similar results to the comparison
with RGI 6.0 for the southern region (Table 3). We observed very high agreement (~96%)
between the manually classified points and the outputs of the GlacierCoverNet model
(Table 4) for the southern region. This is particularly true for the glacier-covered areas;
in addition, areas of no glacier were captured with very high fidelity (i.e., minimal false
positives). In the northern region, we observed higher agreement between GlacierCoverNet
and the manually classified points than GlacierCoverNet and RGI 6.0 (precision = 0.93 and
recall = 0.79) but a similar overall accuracy (86%).

Table 4. Comparison of the 2016 target year point-based validation with GlacierCoverNet for glaciers
in southern Alaska and the Brooks Range.

Precision Recall F1-Score Support

Southern Region
0: no glacier 0.88 0.87 0.87 298
1: glacier 0.96 0.96 0.96 893

Accuracy 0.94 1191
Macro average 0.92 0.91 0.92 1191
Weighted average 0.94 0.94 0.94 1191

Northern Region
(Brooks Range)
0: no glacier 0.81 0.94 0.87 211
1: glacier 0.93 0.79 0.85 221

Accuracy 0.86 432
Macro Average 0.87 0.86 0.86 432
Weighted average 0.87 0.86 0.86 432
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3.2.2. Supraglacial Debris Error Analysis

We analyzed the error in GlacierCoverNet supraglacial debris using two ancillary
published datasets from Scherler et al. [17] and Herreid et al. [14]. We selected the year 2010
for comparison with the overall glacier-covered area results presented above, in Table 3, and
2016 to align with the stated year ranges used in Herreid et al. [14] and Scherler et al. [17]
(Table 5). Similarly to the overall glacier-covered area, the supraglacial debris comparisons
rely on 20% of the 256 × 256 partitions withheld from training data generation. Notably,
RGI 6.0 cannot be used for supraglacial debris error analysis directly because it does not
explicitly identify or calculate the area of supraglacial debris. However, it was used in the
derivation of both the Scherler et al. [17] and Herreid et al. [14] datasets.

Table 5. Summary of area of supraglacial debris captured by GlacierCoverNet for 2010 and 2016.

GlacierCoverNet 2010 GlacierCoverNet 2016 Scherler et al. [17] Herreid et al. [14]

Area (km2) 1232.8 1279 1358.8 1759.1
Area (% of Herreid) 70 73 77 -
Area (% of Scherler) 91 94 - 129
Under classified area

(km2 Herreid difference) 898.1 859.1 - -

Overclassified area
(km2 Herreid difference) 371.5 378.7 199.4 -

Under classified area
(km2 Scherler difference) 701.8 664.2 - -

Overclassified area
(km2 Scherler difference) 576 584.3 - 600

For both 2010 and 2016, GlacierCoverNet has high agreement with the Scherler dataset
in the area of supraglacial debris (91% and 94%, respectively). For 2010 and 2016, Glacier-
CoverNet also has good agreement, albeit noticeably lower, with the Herreid dataset (70%
and 73%, respectively).

3.2.3. GlacierCoverNet vs. RGI for Individual Glaciers

Overall, the total glacier-covered areas of RGI 6.0 and GlacierCoverNet are highly
comparable. However, some differences become evident when considering the size of the
individual glaciers. The majority of the smallest glaciers (~<1 km2) show good agreement
(r = 0.78). For individual glaciers with an area above 1 km2, agreement improves (r ≥ 0.89),
and we found very high agreement between GlacierCoverNet and RGI 6.0 for the largest
glaciers (r > 0.95). These relationships are shown in Figure 6, where glaciers have been
extracted from the GlacierCoverNet model outputs for the year corresponding to the start
year stated in the RGI 6.0 metadata. Herreid et al. [14] presented their data with an MMU of
1 km2 and 2 km2; however, we leave our dataset at the finer scale of the RGI-recommended
0.01 km2. Thus, Figure 6, unlike Table 3, includes all glaciers for Alaska included in RGI 6.0
paired with the GlacierCoverNet result for corresponding classification years.

Some disagreement between the GlacierCoverNet outputs and the RGI 6.0 is unsur-
prising. In the smallest glaciers (Figure 6a). The major outliers between GlacierCoverNet
and RGI 6.0 are in areas up to ~5 km2 from GlacierCoverNet and are primarily located in
the Brooks Range and the Aleutian chain. In addition, relatively small errors of commission
have magnified effects in glaciers <5 km2; the case for most of the dissonance in these
small Brooks Range and Aleutian chain glaciers. These error sources are repeated, to a
lesser extent, for the 1–5 km2 and 5–25 km2 glaciers (Figure 6b and c, respectively) and
are also primarily located in the Brooks Range and Aleutian chain. Another contributing
factor in the 1–25 km2 glacier size is some ambiguity in the assignment of RGI 6.0 labels to
GlacierCoverNet outputs, especially at the lower end of that range. For example, in cases
where glaciers extend outside RGI 6.0 boundaries but have adjoining boundaries, a label
must be assigned, and a boundary delineated. Errors of commission and errors in labeling
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attribution can have similar disproportionate effects on glacier area because of the small
overall size of these glaciers.
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Figure 6. Comparison of glacier sizes from RGI 6.0 and the GlacierCoverNet model outputs with
Pearson’s r values and the slope (m) of the linear regression line (shown in red) for (a) glaciers from 0
to 1 km2, (b) glaciers from 1 to 5 km2, (c) glaciers from 5 to 25 km2, (d) glaciers from 25 to 50 km2,
(e) glaciers from 50 to 100 km2, and (f) glaciers from 100 to 3000 km2.Highlighted glaciers (red box)
in subplots b and d are included in Section 4.2 Figure 7 (right and left, respectively). Note that axes
scales in plots a and b are intentionally different to accommodate the full range of variability in
capture of smaller glaciers.

In addition to per-glacier area disagreements, of note are the small glaciers ‘missing’
from the GlacierCoverNet classification. In the RGI 6.0 record, there are 19,490 glaciers with
unique identifiers in Alaska, but GlacierCoverNet identifies only 15,387 glaciers in 2010,
a difference of ~20%. However, as noted previously, the GlacierCoverNet model outputs
account for the overwhelming majority of the area identified by the RGI 6.0. The missing
glaciers total 354.2 km2 or ~0.6% of the overall area and have a mean area of 0.11 km2 and
a maximum size of 3.5 km2. In contrast to 2010, in an earlier classification (1988), difference
in net glacier numbers between GlacierCoverNet and RGI 6.0 drops to ~10%, a difference
which represents an area of 185.6 km2 (0.3% of the overall area of Alaska’s glacier cover).
The average individual glacier area and maximum individual glacier area of the ‘missing’
glaciers are analogous in 1988 as with the RGI 6.0 era.

4. Discussion
4.1. Status and Trends of Glacier-Covered Area

Alaska’s glaciers are in a state of dynamic change, exacerbated by the accelerated
warming of Earth’s higher latitudes [84,85]. To examine these changes in glacier-covered
area, and analyze their drivers and trends, we developed a novel method for creating a
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multidecadal time series of biannual observations that could be adapted and expanded to
use globally.

Our results indicate, in the state of Alaska over the period 1985–2020, total glacier-
covered area declined by 13% and supraglacial debris cover increased by 64%. However,
changes in debris-free and debris-covered glacier area are occurring at different scales and
rates in different parts of Alaska, with an overall trend of decline in total area below the
elevation of 2200 m (Figure 5). Although these changes have been distributed broadly over
the region, the greatest changes in the southern regions have been in locations with high
concentrations of tidewater and low-elevation glaciers, and the least change at the higher
elevations of Alaska’s Interior.

Temperature elevation gradients, from Daymet composites aggregated for glacier-
covered areas, trended upward over the 1985–2020 period of study. Overall, there was an
increase in biannual mean annual temperature (MAT) and a rise in the elevation of the 0 ◦C
isotherm (Figure 5). One exception to this pattern was the 2019–2020 biannual composite
(2020) that included one of the warmest summers on record (2019) and one of the coldest
Decembers (2020), for Alaska, in the time frame of this analysis [86]. Although less certain,
precipitation patterns over the same time period have also changed with the occurrence of
more rain, less snow, and earlier spring melting. These shifts in snow accumulation and
melt have been most prominent at lower elevations and during anomalously warmer years,
which are occurring more frequently [87,88]. This is likely due to increasing temperatures
in locations that are proximal to the Gulf of Alaska, where extreme temperatures and
increasingly frequent rainfall is associated with warm air masses over the Gulf [89,90].

In response to these drivers, elevation gradients of Alaska’s glacier-covered area show
three distinct patterns of recession, or lack thereof, in the (i) the lowest (<400 m), (ii) middle
(600–2200 m), and (iii) highest (>2200 m) elevations (Figure 5). Elevations < 400 m show a
distinct incremental decline that closely corresponds with the increase in mean biannual
temperature above 0 ◦C. The largest change in total glacier-covered area occurred in the
middle elevations, specifically 600–2200 m elevations, which showed the most substantial
loss in area between 1985 and 1990. These lower and mid-elevations include locations with
tidewater glaciers and low-to-mid-elevation piedmont and valley glaciers and icefields in
the Northeast and Northwest Gulf of Alaska, which have experienced the greatest loss in
total glacier-covered area (Figure 4).

Despite the greatest increase in temperatures at the highest elevations, above 2200 m,
these locations experienced little change in area (Figure 5). Glacier-covered areas above
2200 m are mostly found in the interior regions and comprise less total area in comparison
to the lower elevation bands; however, changes in area do not reflect changes in volume.
Furthermore, there are competing scenarios for climate at these higher elevations that
are consistently below the 0 ◦C isotherm in MAT. Although increasing temperatures,
and/or downwelling shortwave radiation would exacerbate a decrease in area and volume,
increasing precipitation, as snow accumulation, would have the opposite effect. There is
evidence that point to all of these scenarios; thus, this is an area of important research that
may be further elucidated by future studies of mass balance and the atmospheric physics
of precipitation in a warming climate.

Trends in glacier-covered area for the Brooks Range are difficult to establish due
to its relatively small area and GlacierCoverNet’s skill in this region (Figure 4 inset).
Uncertainty in the Brooks Range is higher than in other regions of the study area due to
its frequent late summer and early fall snow accumulation on these seasonally shaded
cirque glaciers. Furthermore, individual glaciers in the Brooks Range glaciers are relatively
small, and occur on generally steep, seasonally shaded high latitude north-facing slopes.
These characteristics exacerbate the uncertainty in satellite observation and subsequent
calculation of area, thus making Brooks Range glaciers inherently difficult to accurately
map. When comparing GlacierCoverNet time series outputs with RGI 6.0, in the Brooks
Range, the two are closely matched over the 6 years of 2007 to 2012, where RGI 6.0 has a
mode of 2007 for digitized boundaries, suggesting that GlacierCoverNet is overestimating
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due to conflation with seasonal snow cover (Figure 4 inset) in the early and late portions of
the study period.

All regions, exclusive of Brooks Range, which were evaluated for supraglacial debris
showed an increase in area and expanded across the study area by ~2800 km2 (64%)
throughout the study period. However, the area of supraglacial debris was not at its greatest
extent in 2020, nor did its increase follow a linear trajectory. Although the less-glacier-
covered locations of the Gulf of Alaska regions (e.g., Aleutians and southeast Panhandle)
do not account for a large net portion of that change, their percentage increases in area of
supraglacial debris were dramatic. These regions exhibited increases in supraglacial debris
area of 2–4-fold over the study period. This finding has important implications for glacier
mass balance studies and characterizations of surface albedo in the future.

A shift from debris-free to debris-covered surfaces can cause an increase in ab-
sorption of solar radiation and can influence melt patterns, with the direction and
magnitude dependent on debris thickness [17,91–93]. The Aleutian region is domi-
nated by active volcanoes and experienced a number of eruptions and ash or debris
deposition events over the period of study (e.g., Mount Redoubt, 1989–1990 and 2009,
Mount Spurr 1992, and Augustine 2005). The impact of volcanic eruptions is unrelated
to climatic influence and difficult to quantify, but does impact glacier melting, through
decreased albedo and increased debris cover resulting from ash deposition, lahar flows,
and entrained debris. Decreased albedo, from ash, dust, and algae, has also been shown
to increase glacier melt rates [94,95] and, antithetically, thick debris cover insulates the
underlying ice reducing melt [96,97], the slowing of the trend in total glacier-covered
area loss, as seen in Figure 5, could be a result of increased insulation and is worthy of
further investigation.

4.2. GlacierCoverNet Performance

The time series dataset presented here has high fidelity with existing datasets of
total glacier-covered area and supraglacial debris. Based on our point-based validation
and the subset of the RGI 6.0, overall glacier-covered area accuracies are very high in the
southern region of the state, and good in some years in the Brooks Range, albeit with much
higher errors of omission and commission. Individual glacier agreement between RGI
6.0 and the GlacierCoverNet outputs was also very good for glaciers down to ~1–5 km2.
Glaciers < 1 km2 were not captured as well, and this was one of the reasons why we
found higher errors of omission and commission in the northern Brooks Range than in
the southern region (e.g., Figure 7—right). We designed GlacierCoverNet to recognize
the distinct geomorphological shapes of glacial lobes and associated lateral, medial, and
terminal moraines; therefore, it is not surprising that the performance was decreased for
the smaller, steep, shaded glaciers of the Brooks Range. Our objective was to accurately
capture area change across landscape scales, which GlacierCoverNet does well, but if future
studies are primarily focused on smaller, individual glaciers, the model could be adapted.
Improving the capture of these small, distributed glaciers constitutes an important area of
future work.

Our degree of uncertainty for supraglacial debris is higher than it is for the total
glacier-covered area because of the conflation of supraglacial debris and areas of similar
spectral characteristics in the proglacial environment. Additionally, for error analysis, there
are limited possibilities for the validation or calibration of these estimates. The datasets
that are available from Herreid et al. [14] and Scherler et al. [17] represent time periods
with median imagery acquisition year of 2013 and a mode of 2015 and a range from 2013 to
2017 for Herreid et al. and Scherler et al., respectively. Due to the high degree of disparity
between the Scherler and Herreid datasets, we simply labeled under-classification (error
of omission) and over-classification (error of commission) to identify the disparities. It is
worth noting here that Scherler et al. [17] made no modifications to the existing RGI 6.0
boundaries, whereas Herreid et al. did modify the RGI 6.0 boundaries. Herreid et al. also
employed significantly more manual editing than Scherler et al.
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Figure 7. Examples of (a) GlacierCoverNet output (2019–2020) for the 25.8 km2 Hugh Miller glacier
vs. RGI 6.0 (2010) and (b) a small 1.4 km2 unnamed glacier in the Brooks Range for GlacierCoverNet
(2019–2020) vs. RGI 6.0 (2007). Note that adjacent glaciers were removed to simplify interpretation
and GlacierCoverNet outputs were selected to align with base imagery. Underlying imagery is from
the Environmental Systems Research Institute (ESRI) World Imagery layer, 15 m satellite imagery
from TerraColor NextGen (https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f0
8febac2a9 (accessed on 1 August 2022)).

Much of the uncertainty we found in identifying small glaciers is likely attributable
to conflation by GlacierCoverNet between glacier ice and out of season snow cover
(Figure 7—right). This led to a tendency of GlacierCoverNet to overclassify glacier-covered
area in the Brooks Range where the snow-free period is generally short and can be present
at any time of the year, and the Aleutian chain where there is persistent cloud cover and,
at times, sparse coverage from satellite overpasses. Conversely, we found that our ap-
proach was also able to produce glacier outlines that appear to better represent in situ
conditions than existing RGI 6.0 data (e.g., Figure 7—left). It should be noted that outlines
from RGI (up to 6.0), in most cases, are acquired from a single date; thus, capturing a
single snapshot in time. In contrast, GlacierCoverNet provides a biannual medoid time
series that allows for the quantification of regional change or trends using a common and
repeatable methodology.

4.3. Uncertainties and Future Work

Some sources of uncertainty remain in the workflow and outputs of GlacierCover-
Net which, if addressed, will improve its broader application. In the workflow method-
ology, the classification algorithms used are limited by the input training data and, in
some cases, by the model’s architecture. Issues with the training data and target layer
have two main considerations: (1) data for predictor variables and (2) class labels. As
noted, we selected the partition sizes to build the training dataset largely based on the

https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
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geomorphological features that define Alaska’s southern glaciated landscape with an
emphasis on improving the capture of debris-covered glacier lobes and glacier termini.
The drawback of that choice in terms of model design was that GlacierCoverNet was
less accurate with small glaciers < 1 km2 and, in some cases, up to 5 km2 (Figure 6).
Although the Brooks Range comprised only about 1% of the total area analyzed in our
study, we paid particular attention to this region for its unique qualities that test the
limits of GlacierCoverNet’s transferability. We trained the model that was deployed
for the Brooks Range glaciers on Alaska’s southern region, which limited our ability to
accurately map the predominantly small, discontinuous, shaded, high-latitude glaciers
of the Brooks Range. This could be improved by shifting the emphasis or expanding the
scope of the training dataset and associated model weights and architecture to improve
capture of these types of glaciers.

The largest uncertainties in the optical data that were used to train GlacierCoverNet
resulted from data loss in the available Landsat images and the spectral similarity of out-
of-season snow and glacier-covered areas and supraglacial debris and the surrounding
terrain. Landsat coverage over Alaska in the 1990s was limited due to the launch failure
of Landsat 6, and especially data loss due to limited downlinking over this region during
this period. Although additional optical data are largely unavailable for this epoch, it may
be possible to augment processing with the data of different spatial granularity or source
instruments in the future. Cloud contamination also created data gaps that were filled pro-
grammatically using the LT algorithm, but longer gaps without valid imagery also resulted
in higher uncertainty. Although our cloud mask was effective, recent improvements in
cloud masking [98] could be integrated into future versions of the workflow. As discussed
above, the conflations of snow with glacier ice, firn, and névé confound optical imagery
glacier classification. The date window for selecting the best optical data could be further
improved by adopting region- and/or elevation-specific windows and/or by the inclusion
of ancillary snow cover data from other satellite sensors.

The high spatial resolution (5 m) IfSAR is the only high-quality continuous elevation
product that includes all of our study area, but it is limited to the state of Alaska. Further-
more, the topographic indices produced from these data are derived from acquisitions
collected in the 2014–2017 period and are thus temporally static. This means that large
topographic features, calving faces at the toe of a glacier for example, are only captured for
that snapshot in time. In the future, a time series tracking the progression of glacial feature
predictor variables could potentially be generated from alternate airborne or spaceborne
sources such as interferometry or LiDAR and may become available in future versions of
the Global Land Ice Measurements from Space (GLIMS) (https://www.glims.org/RGI/,
accessed on 1 August 2022).

There are additional potential sources of uncertainty in the class label which we
attempt to address in our workflow. Although the RGI 6.0 data are crucial for this project,
there are inherent uncertainties even in manually edited glacier outlines [14,21]. These
uncertainties stem from differences in observer interpretations and human error, in addition
to the issues with optical imagery, as outlined above (e.g., shadows and a lack of imagery of
adequate spatial resolution for resolving highly heterogeneous areas). There is also inherent
ambiguity in the RGI 6.0 because of the multiple dates of imagery selected for boundary
delineation. Despite these uncertainties, the RGI 6.0 was integral to our model training
dataset; its use dramatically decreased the time that would have been required to manually
build a large training dataset and enabled us to create an output dataset in a relatively short
period of time. We also used the RGI 6.0 labels to inform the identification of our output
classifications which also removes much of the GlacierCoverNet model output which is
out-of-season snow misclassified as glacier ice. Lastly, future versions of RGI will likely
provide additional opportunities for data assimilation and validation.

The STEM model had 95% overall model accuracy based on our point-based valida-
tion and performed as well or better than other models attempting to map debris-free
glacier cover (e.g., band ratioing); however, as with any classification method, the classi-

https://www.glims.org/RGI/
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fication of debris-free ice and supraglacial debris will contain some inherent error. The
uncertainty in this class label also introduces uncertainty into the final GlacierCoverNet
modeling process and outputs. Some of the steps we took to address these issues are
discussed in the Methods section above, but further improvement could be made to
the class label by introducing more regionally specific classification approaches or by
more editing of initial debris-free ice outputs [99]. A band ratioing or other similar
less computationally intensive approach would also likely be required if applying the
GlacierCoverNet model to a global scope.

5. Conclusions

The methods and dataset introduced here represent an important step in the auto-
mated capture of glacier change. Our approach builds on existing work to produce data
at a higher temporal frequency with less manual editing than other methods currently in
use and will hopefully inform future studies in this area of research. Although our geo-
graphic focus was on the state of Alaska, the methods and modeling approach was built
to be scalable and flexible. Based on our analysis of results and errors, we believe that
this model will perform well in landscapes with a similar glacial makeup (e.g., coastal
British Columbia). However, due to the high uncertainty in the Brooks Range, our
approach to training and model architecture will require additional development for
areas dominated by shaded terrain and small mountain glaciers. This research has the
potential to expand our ability to capture changes and evaluate trends in this important
component of the global cryosphere.
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Appendix A.2. Glacier-Covered Area Values

Table A1. Overall glacier-covered area for biannual composites for aggregated climate divisions.
Note that areas for the Brooks Range are excluded from total areas and percentage changes due to
higher uncertainty in this region. Areas are km2.

Composite
Year

Northwest
Gulf

Northeast
Gulf Interior Brooks

Range Total

1986 15,625.1 32,648.3 15,803.5 - 64,076.9
1988 15,541.4 32,469.7 15,811.6 -
1990 15,328.9 31,957.7 15,337.2 565.7
1992 15,028.4 31,692.7 14,784.8 604.3
1994 14,836.1 31,624.9 14,864.2 600.2
1996 14,751.5 30,938.5 14,980.2 788.0
1998 14,689.0 30,670.4 14,917.1 768.4
2000 14,578.4 30,491.0 14,833.7 742.8
2002 14,522.0 30,194.1 14,690.7 663.1
2004 14,444.4 29,921.9 14,752.8 594.8
2006 14,336.5 29,870.9 14,694.7 339.1
2008 14,293.6 29,896.6 14,677.3 267.1
2010 14,143.4 29,874.1 14,615.7 166.2
2012 14,195.0 29,735.5 14,596.1 220.9
2014 14,042.8 29,442.0 14,580.4 262.0
2016 14,048.0 28,856.5 14,525.3 520.9
2018 14,008.4 28,591.5 14,491.4 571.4
2020 13,604.1 27,577.2 14,470.9 901.5 55,652.2

Net Area Change −2021.0 −5071.1 −1332.6 335.9 −8424.7

% Change −12.9 −15.5 −8.4 59.4 −13.1

Table A2. Supraglacial debris area by biannual composite and aggregated climate divisions. Areas
are km2.

Composite
Year

Northwest
Gulf

Northeast
Gulf Interior Total

1986 1195.1 1560.5 1701.8 4457.3
1988 1225.7 1557.7 1739.7
1990 1356.9 1604.1 1865.0
1992 1419.2 1611.2 1821.9
1994 1536.8 1851.9 1965.3
1996 1582.3 1753.4 2108.2
1998 1637.4 1920.7 2233.2
2000 1636.0 2057.1 2213.7
2002 1606.1 2095.0 2254.6
2004 1764.1 2076.7 2420.2
2006 1888.4 2117.7 2580.7
2008 1888.5 2140.2 2623.4
2010 1983.1 2166.0 2660.9
2012 1887.8 2166.0 2638.9
2014 1932.4 2341.2 2682.0
2016 1945.7 2420.9 2685.0
2018 1933.2 2473.5 2611.0
2020 1969.0 2747.3 2606.1 7322.4

Net area change 773.9 1186.9 904.2 2865.0

% Change 64.8 76.1 53.1 64.3
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Appendix A.3. Change in Glacier-Covered Area with Mean Annual Temperature and Elevation

Table A3. Summary of overall glacier-covered area by biannual composite, 200 m elevation band,
and mean annual temperature; elevation band label is the upper extent.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

1986 200 1617 3.6 1.0
1986 400 2836 2.4 1.1
1986 600 3155 1.4 1.4
1986 800 4308 0.3 1.8
1986 1000 6510 −0.7 2.2
1986 1200 9108 −1.9 2.6
1986 1400 10,936 −3.5 3.3
1986 1600 9595 −5.7 3.9
1986 1800 7159 −7.3 3.9
1986 2000 5066 −8.3 3.7
1986 2200 3551 −9.1 3.1
1986 2400 2574 −9.7 2.5
1986 2600 1764 −10.9 2.2
1986 2800 1215 −11.9 2.3
1986 3000 735 −12.7 2.6
1986 3200 473 −13.7 2.8
1986 3400 343 −15.0 3.0
1986 3600 183 −16.6 2.8
1986 3800 151 −17.5 3.3
1986 4000 104 −19.3 3.4
1986 4200 79 −20.1 3.8
1986 4400 47 −18.6 2.8
1986 4600 28 −20.1 3.6
1986 4800 19 −23.4 2.3
1986 5000 7 −21.2 3.4
1988 200 1822 2.2 1.0
1988 400 2819 0.8 1.2
1988 600 3097 −0.3 1.5
1988 800 4055 −1.1 1.8
1988 1000 5932 −2.2 2.0
1988 1200 7968 −3.3 2.3
1988 1400 9351 −4.7 3.0
1988 1600 8800 −6.8 3.5
1988 1800 7083 −8.4 3.2
1988 2000 5184 −9.3 2.8
1988 2200 3731 −10.3 2.2
1988 2400 2697 −11.1 1.7
1988 2600 1837 −12.1 1.6
1988 2800 1262 −13.0 1.6
1988 3000 754 −13.6 1.8
1988 3200 492 −14.5 1.9
1988 3400 351 −15.7 2.1
1988 3600 185 −17.1 2.0
1988 3800 154 −18.3 2.1
1988 4000 104 −19.6 2.3
1988 4200 79 −20.2 2.4
1988 4400 47 −19.2 1.9
1988 4600 28 −20.5 1.8
1988 4800 19 −22.5 1.8
1988 5000 7 −21.3 0.8
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

1990 200 1931 1.6 1.0
1990 400 2828 0.2 1.2
1990 600 3080 −0.8 1.5
1990 800 3930 −1.7 1.9
1990 1000 5609 −2.6 2.2
1990 1200 7631 −3.8 2.4
1990 1400 8684 −4.9 2.5
1990 1600 7657 −6.8 2.7
1990 1800 6132 −8.5 2.5
1990 2000 4712 −9.9 2.3
1990 2200 3568 −11.2 2.0
1990 2400 2641 −12.3 1.9
1990 2600 1808 −13.4 2.1
1990 2800 1249 −14.5 2.1
1990 3000 760 −15.3 2.2
1990 3200 490 −16.3 2.1
1990 3400 354 −17.5 2.4
1990 3600 186 −19.0 2.4
1990 3800 153 −20.7 2.2
1990 4000 104 −21.9 2.4
1990 4200 77 −22.8 2.5
1990 4400 47 −21.8 2.2
1990 4600 28 −23.0 2.2
1990 4800 18 −25.0 2.6
1990 5000 7 −23.5 0.9
1992 200 2280 3.0 0.9
1992 400 2834 1.6 1.0
1992 600 3074 0.5 1.3
1992 800 3919 −0.4 1.7
1992 1000 5484 −1.3 1.9
1992 1200 7411 −2.4 2.1
1992 1400 8523 −3.5 2.4
1992 1600 7476 −5.2 2.6
1992 1800 5995 −6.9 2.6
1992 2000 4623 −8.1 2.3
1992 2200 3436 −9.2 2.0
1992 2400 2525 −10.0 1.6
1992 2600 1741 −10.9 1.5
1992 2800 1198 −12.0 1.5
1992 3000 729 −12.9 1.5
1992 3200 475 −13.7 1.4
1992 3400 347 −14.6 1.6
1992 3600 180 −15.6 1.5
1992 3800 150 −16.7 1.6
1992 4000 104 −17.9 1.8
1992 4200 76 −18.6 1.7
1992 4400 45 −18.2 1.9
1992 4600 28 −19.2 1.5
1992 4800 18 −20.8 2.1
1992 5000 7 −20.2 1.4
1994 200 2083 2.6 1.0
1994 400 2817 1.1 1.2
1994 600 3028 0.0 1.4
1994 800 3822 −1.0 1.6
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

1994 1000 5368 −2.0 1.6
1994 1200 7311 −3.0 1.9
1994 1400 8490 −4.0 2.1
1994 1600 7418 −5.3 2.4
1994 1800 5981 −6.8 2.4
1994 2000 4643 −8.1 2.1
1994 2200 3439 −9.0 1.8
1994 2400 2539 −9.6 1.6
1994 2600 1746 −10.3 1.7
1994 2800 1233 −11.1 2.0
1994 3000 745 −11.9 2.0
1994 3200 486 −12.4 2.1
1994 3400 348 −12.9 2.1
1994 3600 181 −13.1 2.2
1994 3800 152 −13.4 2.2
1994 4000 104 −14.1 2.3
1994 4200 78 −14.4 2.3
1994 4400 47 −15.5 1.8
1994 4600 28 −16.8 2.1
1994 4800 19 −17.1 2.2
1994 5000 7 −19.7 1.1
1996 200 1602 3.1 1.1
1996 400 2790 1.9 1.3
1996 600 2971 0.7 1.5
1996 800 3740 −0.2 1.9
1996 1000 5316 −1.1 2.1
1996 1200 7272 −2.1 2.3
1996 1400 8431 −3.0 2.5
1996 1600 7425 −4.5 2.9
1996 1800 6042 −6.2 3.1
1996 2000 4741 −7.8 3.0
1996 2200 3510 −8.9 2.6
1996 2400 2569 −9.6 1.9
1996 2600 1786 −10.4 1.7
1996 2800 1240 −11.3 1.8
1996 3000 753 −12.2 1.9
1996 3200 487 −13.0 2.0
1996 3400 343 −13.6 2.2
1996 3600 182 −13.9 2.5
1996 3800 150 −13.9 2.3
1996 4000 104 −14.8 2.8
1996 4200 78 −14.9 2.8
1996 4400 48 −17.0 2.4
1996 4600 28 −18.1 2.7
1996 4800 19 −18.3 3.5
1996 5000 7 −21.4 2.3
1998 200 1599 1.2 1.2
1998 400 2766 0.1 1.3
1998 600 2941 −0.9 1.5
1998 800 3696 −1.8 1.8
1998 1000 5284 −2.7 1.9
1998 1200 7155 −3.8 2.2
1998 1400 8324 −4.8 2.3
1998 1600 7307 −6.2 2.3



Remote Sens. 2022, 14, 4582 28 of 36

Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

1998 1800 5965 −7.9 2.1
1998 2000 4703 −9.2 1.9
1998 2200 3489 −10.4 1.6
1998 2400 2564 −11.3 1.7
1998 2600 1777 −12.2 1.8
1998 2800 1230 −13.2 2.0
1998 3000 746 −14.0 2.0
1998 3200 486 −14.6 2.1
1998 3400 347 −15.2 2.3
1998 3600 183 −15.4 2.3
1998 3800 152 −16.0 2.7
1998 4000 102 −16.3 2.8
1998 4200 78 −16.5 3.0
1998 4400 48 −18.3 2.2
1998 4600 28 −18.7 2.2
1998 4800 19 −18.5 1.6
1998 5000 7 −19.7 1.9
2000 200 1514 3.3 0.9
2000 400 2738 2.3 0.9
2000 600 2901 1.3 1.2
2000 800 3657 0.3 1.4
2000 1000 5218 −0.6 1.4
2000 1200 7105 −1.7 1.6
2000 1400 8283 −2.9 1.9
2000 1600 7282 −4.5 2.4
2000 1800 5933 −6.1 2.9
2000 2000 4666 −7.1 2.9
2000 2200 3469 −7.6 2.6
2000 2400 2569 −8.2 2.2
2000 2600 1794 −9.2 2.4
2000 2800 1246 −10.3 2.7
2000 3000 757 −11.4 3.1
2000 3200 495 −11.8 3.0
2000 3400 351 −12.7 3.2
2000 3600 187 −13.5 3.6
2000 3800 151 −13.2 3.1
2000 4000 103 −14.7 4.2
2000 4200 78 −14.6 3.9
2000 4400 48 −17.3 4.1
2000 4600 28 −19.6 5.0
2000 4800 19 −21.1 6.0
2000 5000 7 −25.2 3.7
2002 200 1464 3.7 1.0
2002 400 2733 2.8 0.9
2002 600 2914 1.8 1.1
2002 800 3638 0.9 1.3
2002 1000 5175 −0.1 1.4
2002 1200 7016 −1.2 1.5
2002 1400 8207 −2.2 1.7
2002 1600 7181 −3.6 2.0
2002 1800 5857 −5.2 2.4
2002 2000 4576 −6.5 2.4
2002 2200 3422 −7.6 2.3
2002 2400 2547 −8.5 2.2
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

2002 2600 1784 −9.4 2.4
2002 2800 1240 −10.4 2.5
2002 3000 752 −11.3 2.7
2002 3200 496 −11.8 2.8
2002 3400 353 −12.2 2.8
2002 3600 190 −12.3 2.8
2002 3800 149 −13.3 3.1
2002 4000 103 −13.4 3.3
2002 4200 78 −13.5 3.5
2002 4400 47 −15.6 3.7
2002 4600 27 −15.4 3.5
2002 4800 19 −14.6 2.4
2002 5000 8 −14.5 2.5
2004 200 1450 4.1 1.0
2004 400 2725 3.0 0.9
2004 600 2892 1.9 1.1
2004 800 3617 0.9 1.2
2004 1000 5096 −0.1 1.3
2004 1200 6926 −1.1 1.5
2004 1400 8141 −2.2 1.6
2004 1600 7132 −3.5 1.9
2004 1800 5762 −4.9 2.2
2004 2000 4545 −6.0 2.3
2004 2200 3426 −6.8 2.1
2004 2400 2588 −7.2 1.8
2004 2600 1797 −8.1 1.8
2004 2800 1237 −9.1 2.0
2004 3000 750 −10.0 2.3
2004 3200 493 −10.5 2.1
2004 3400 350 −11.1 2.2
2004 3600 187 −11.7 2.1
2004 3800 151 −11.9 1.9
2004 4000 103 −13.2 2.6
2004 4200 79 −13.4 2.4
2004 4400 46 −14.8 2.2
2004 4600 28 −16.2 2.6
2004 4800 19 −17.5 3.0
2004 5000 8 −19.6 2.7
2006 200 1417 2.3 1.0
2006 400 2720 1.2 1.0
2006 600 2890 0.1 1.2
2006 800 3594 −1.0 1.3
2006 1000 5090 −2.0 1.4
2006 1200 6935 −3.0 1.6
2006 1400 8116 −4.1 1.8
2006 1600 7074 −5.3 2.1
2006 1800 5605 −6.5 2.3
2006 2000 4419 −7.3 2.2
2006 2200 3376 −7.9 1.9
2006 2400 2569 −8.4 1.7
2006 2600 1791 −9.2 1.7
2006 2800 1238 −10.1 2.1
2006 3000 739 −10.8 2.5
2006 3200 489 −11.1 2.1
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

2006 3400 345 −11.5 2.0
2006 3600 185 −11.8 1.4
2006 3800 150 −12.4 1.5
2006 4000 103 −13.2 1.7
2006 4200 78 −13.5 1.7
2006 4400 46 −13.6 1.2
2006 4600 28 −13.9 1.2
2006 4800 18 −14.7 1.0
2006 5000 8 −13.9 0.6
2008 200 1402 2.4 0.9
2008 400 2707 1.4 1.1
2008 600 2875 0.3 1.3
2008 800 3571 −0.8 1.4
2008 1000 5098 −1.7 1.6
2008 1200 6949 −2.6 1.9
2008 1400 8103 −3.6 2.0
2008 1600 7035 −4.8 2.2
2008 1800 5511 −6.0 2.3
2008 2000 4365 −7.1 2.4
2008 2200 3380 −7.9 2.4
2008 2400 2583 −8.3 2.0
2008 2600 1804 −8.9 1.8
2008 2800 1240 −9.6 2.0
2008 3000 738 −10.3 2.4
2008 3200 488 −10.5 2.1
2008 3400 347 −10.9 1.9
2008 3600 183 −11.2 1.4
2008 3800 151 −11.9 1.5
2008 4000 103 −12.6 1.8
2008 4200 78 −13.0 1.7
2008 4400 46 −12.7 1.1
2008 4600 28 −13.1 1.1
2008 4800 19 −14.0 1.3
2008 5000 8 −13.0 0.5
2010 200 1369 2.8 0.9
2010 400 2685 1.7 1.1
2010 600 2867 0.6 1.4
2010 800 3566 −0.6 1.5
2010 1000 5084 −1.5 1.7
2010 1200 6932 −2.5 2.0
2010 1400 8097 −3.4 2.3
2010 1600 6984 −4.6 2.5
2010 1800 5429 −5.8 2.4
2010 2000 4300 −6.8 2.3
2010 2200 3350 −7.7 2.2
2010 2400 2578 −8.2 1.9
2010 2600 1802 −8.9 1.7
2010 2800 1246 −9.7 1.8
2010 3000 745 −10.3 2.1
2010 3200 491 −10.7 2.0
2010 3400 348 −11.3 2.2
2010 3600 184 −11.8 1.8
2010 3800 151 −12.3 2.1
2010 4000 103 −13.3 2.5
2010 4200 79 −13.4 2.3
2010 4400 47 −13.5 1.0
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

2010 4600 27 −13.8 1.0
2010 4800 19 −14.8 1.0
2010 5000 8 −14.0 1.2
2012 200 1324 3.0 0.9
2012 400 2656 1.9 1.2
2012 600 2842 0.7 1.5
2012 800 3512 −0.4 1.7
2012 1000 5021 −1.3 1.9
2012 1200 6926 −2.1 2.2
2012 1400 8066 −3.0 2.5
2012 1600 6975 −4.2 2.8
2012 1800 5467 −5.4 2.7
2012 2000 4341 −6.5 2.7
2012 2200 3389 −7.4 2.7
2012 2400 2596 −8.0 2.3
2012 2600 1808 −8.7 2.0
2012 2800 1243 −9.4 2.0
2012 3000 740 −10.0 2.2
2012 3200 488 −10.6 2.2
2012 3400 346 −11.0 2.4
2012 3600 184 −11.5 2.1
2012 3800 153 −12.4 2.1
2012 4000 103 −13.5 2.1
2012 4200 78 −13.8 2.1
2012 4400 46 −13.3 1.1
2012 4600 27 −13.8 1.2
2012 4800 18 −14.9 1.2
2012 5000 8 −13.7 1.1
2014 200 1285 5.1 0.9
2014 400 2638 4.1 1.2
2014 600 2832 2.9 1.4
2014 800 3436 1.8 1.5
2014 1000 4906 1.0 1.6
2014 1200 6785 0.2 2.0
2014 1400 8039 −0.6 2.4
2014 1600 7044 −1.6 2.7
2014 1800 5535 −2.8 2.7
2014 2000 4376 −3.8 2.7
2014 2200 3390 −4.5 2.7
2014 2400 2596 −5.1 2.3
2014 2600 1809 −5.6 2.0
2014 2800 1239 −6.3 2.0
2014 3000 743 −6.8 2.1
2014 3200 486 −7.3 2.0
2014 3400 343 −7.9 2.2
2014 3600 180 −8.2 1.8
2014 3800 152 −8.9 2.1
2014 4000 103 −9.8 2.1
2014 4200 77 −9.9 1.6
2014 4400 44 −10.0 1.4
2014 4600 26 −10.1 1.4
2014 4800 18 −10.8 1.3
2014 5000 6 −9.6 1.4
2016 200 1254 3.4 1.0
2016 400 2615 2.2 1.3
2016 600 2788 1.0 1.5
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

2016 800 3371 −0.2 1.6
2016 1000 4786 −1.0 1.7
2016 1200 6657 −1.9 2.0
2016 1400 7925 −2.7 2.3
2016 1600 7103 −3.8 2.6
2016 1800 5690 −5.0 2.6
2016 2000 4513 −5.8 2.5
2016 2200 3475 −6.4 2.4
2016 2400 2582 −6.9 2.1
2016 2600 1799 −7.6 2.0
2016 2800 1232 −8.4 2.1
2016 3000 735 −9.1 2.4
2016 3200 477 −9.3 2.3
2016 3400 335 −9.9 2.5
2016 3600 178 −10.3 2.2
2016 3800 147 −10.8 2.3
2016 4000 102 −11.7 2.7
2016 4200 75 −11.6 1.9
2016 4400 43 −12.8 0.9
2016 4600 26 −13.2 1.2
2016 4800 18 −13.9 1.4
2016 5000 5 −15.2 0.5
2018 200 1210 5.2 0.8
2018 400 2590 4.2 1.0
2018 600 2756 3.1 1.2
2018 800 3336 2.0 1.3
2018 1000 4735 1.3 1.4
2018 1200 6585 0.5 1.8
2018 1400 7885 −0.3 2.2
2018 1600 7133 −1.4 2.6
2018 1800 5796 −2.5 2.7
2018 2000 4544 −3.3 2.6
2018 2200 3499 −3.8 2.4
2018 2400 2586 −4.1 1.9
2018 2600 1801 −4.7 1.7
2018 2800 1236 −5.4 1.9
2018 3000 735 −6.0 2.2
2018 3200 474 −6.2 1.9
2018 3400 334 −6.8 2.3
2018 3600 180 −7.1 1.8
2018 3800 147 −7.6 2.1
2018 4000 99 −8.4 2.5
2018 4200 72 −8.3 1.8
2018 4400 43 −9.1 1.0
2018 4600 26 −9.3 1.0
2018 4800 19 −9.9 0.8
2018 5000 5 −10.2 0.5
2020 200 1079 −0.1 1.2
2020 400 2532 −1.3 1.8
2020 600 2689 −2.6 2.2
2020 800 3217 −3.8 2.6
2020 1000 4521 −4.4 2.8
2020 1200 6324 −5.1 3.0
2020 1400 7666 −5.9 3.3
2020 1600 7053 −7.5 3.9
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Table A3. Cont.

Year Elevation Band
(m) Area (km2)

Mean Annual
Temp (◦C)

Standard
Deviation

2020 1800 5868 −9.4 4.0
2020 2000 4685 −10.9 4.0
2020 2200 3517 −11.8 3.9
2020 2400 2571 −12.1 3.8
2020 2600 1797 −12.6 3.7
2020 2800 1229 −13.2 4.2
2020 3000 734 −13.9 4.7
2020 3200 468 −14.2 5.1
2020 3400 323 −14.8 5.4
2020 3600 173 −14.4 4.8
2020 3800 142 −13.0 3.8
2020 4000 99 −14.0 4.6
2020 4200 70 −13.4 3.6
2020 4400 42 −14.8 2.8
2020 4600 27 −15.5 3.7
2020 4800 19 −16.2 3.9
2020 5000 6 −20.0 0.7
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