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Abstract: Endorheic rivers as landlocked systems with no hydrological connections to marine envi-
ronments are suffering from water and ecosystem crisis worldwide, yet little is known about their
structural characteristics with complex geomorphic and climatic dependence. Based on the river
networks identified from 30 m resolution digital elevation models and surface water dynamic infor-
mation derived from Landsat images, we investigate the hierarchical characteristics of 60 sub-basins
in the Tarim Basin, the largest endorheic river basin in China. In the Tarim River basin, endorheic
rivers exhibit a self-similarity only in the range of stream-orders 1–4, compared to the range of stream-
orders 1–5 observed in exorheic rivers, owning to the limited stream power to maintain the similar
aggregation of rivers in the arid regions. Moreover, the Tarim River networks demonstrate lower
bifurcation ratio (2.48), length ratio (2.03), fractal dimension (1.38), and drainage density (0.24 km−1)
in representative sub-basins, with a significant decay in median values compared with those derived
from exohreic rivers at similar scales, suggesting sparser and imperfect developed branching river
networks in endorheic basins. Further analysis on the Tarim reveals that endorheic river structure
is more related to glacier extent (r = 0.67~0.84), potential evapotranspiration (r = 0.63~0.81), and
groundwater type index (r = 0.64~0.73), which is essentially different from the structure of exorheic
river represented by the Yellow River largely controlled by surface runoff, precipitation, and vegeta-
tion coverage. This study stresses the differences in intrinsic structural characteristics and extrinsic
drivers of endorheic and exorheic rivers and highlights the necessity of differentiated strategies for
endorheic river management in fragile ecosystems.

Keywords: endorheic river; self-similarity; structural characteristic; river-basin relation; Tarim

1. Introduction

Endorheic rivers play an important role in water resources allocation [1], carbon
cycle [2], biodiversity [3], and socio-economic development [4] in arid regions. Unlike
exorheic river systems with good hydrological connections to marine environments, en-
dorheic rivers as landlocked fragile eco-environmental systems are facing a crisis of drying
out of rivers [5,6], loss of channel connectivity [7,8], decline in water storage [9], and deple-
tion of groundwater [10] worldwide, which further lead to increased droughts frequency,
land degradation, damaged ecological integrity, and biodiversity loss under climate change
and human interventions [11,12].

As the product of the arid and semi-arid climate, endorheic rivers exhibit particular
characteristics in both river structures and basin properties. The endorheic river systems are
usually composed of middle and small rivers with ephemeral flows [7]. Lacking sufficient
flow energy to erode through the topographic barriers, the rivers converge to the inside
of the basin, known as a ‘sink’, which may be permanent or ephemeral lakes, swamp, or
even desert [13]. The drainage pattern of endorheic rivers is more likely to be radial as
rivers converge into a lake and organize as more parallel when the sink is a salt flat or
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desert. Due to limited precipitation and extremely strong evaporation [14], the endorheic
rivers are unable to develop into dendritic networks that are common in the exorheic rivers.
Moreover, the endorheic river networks usually show a temporal pattern of expansion and
contraction [15], characterized with intermittent streamflow and ephemeral channels [16].

Endorheic rivers show more complicated hydrologic, geomorphologic, and hydro-
geologic conditions than exorheic rivers [17]. The elevation of a ‘sink’ is usually local
minima in the endorheic river basin; thus, the landlocked river basin acts as a depression
topographically [18–20]. Consequently, most endorheic river systems have independent
hydrological cycle within the basin. Diverse surface underlying types, such as glacier, oasis,
grass, lake, wetland, and desert, are widely distributed in the endorheic river basins [21,22],
which strongly influence the infiltration and interception processes [17]. The upper-stream
part (e.g., mountain area) of endorheic basins are mainly supplied by snowmelt of glacier
and precipitation, while the middle and lower stream parts are always primarily supplied
by groundwater [23,24]. In particular, the gains and losses of groundwater, which are con-
trolled by hydrogeological features and geological transitions along the channel, play a very
important role in providing moisture for both the surface and subsurface [25], considering
the short duration of overland flow from storm events in the endorheic regions.

Currently, exorheic rivers have been explored by coupling primary basin factors, such
as precipitation, topography, underlying rocks, soil, and vegetation [26–28], under climate
change and human interference [29,30]. With the unique river networks and complex basin
properties, the relationship between river structure and basin factors of endorheic rivers
would be quite different from exorheic rivers. However, existing studies on characteristics
of endorheic rivers mainly focus on watershed delineation [18,19], streamflow dynamics [7],
water storage variation [5,9], geomorphology characterization [31,32], and material circula-
tion [2,33] as well as ecological health [34,35]. In 2013, Dorsaz et al. [13] made a quantitative
analysis of the three endorheic river basins in Chile in terms of descriptors such as Horton’s
ratios, drainage density, and normalized Euclidean length, and indicated differences in
river networks between exorheic and endorheic rivers.

Noting the insufficient understandings on characteristics of endorheic rivers and their
geomorphic and climatic dependence, we investigate the structures of river networks in
60 representative sub-basins of the Tarim River basin, the largest endorheic river basin in
China. With a comparison between the Tarim and the Yellow River basin, we elucidated the
significant difference in stream-order range of self-similarity, structural characteristics, and
influencing factors of endorheic and exorheic rivers, which is helpful to decision making
for river management in vulnerable ecosystems.

2. Materials and Methods
2.1. Study Area

As the largest endorheic basin in China, the Tarim River basin (Figure 1) is distributed
in 73◦28′E–93◦25′E and 34◦40′N–43◦20′N, with a total area of 1.02 × 106 km2. The Tarim
River is highly dependent on the water source from the TienShan, Kunlun, Eastern Pamir,
and Karakorum mountains that surround the basin, with violent evaporation [36]. Under
the extreme arid climate, the mean annual precipitation of Tarim is 116.8 mm. Peak flow
months in the rivers are July, August, and September, which are influenced by snow
melting and glacier melting [24]. Major rivers, such as the Tarim River, Hotan River,
Keriya River, and Qarqan River, are intermittent rivers with streamflow usually occurring
during June~September [24]. The shortage of water resources and fragility of ecological
environment are two key constraints for sustainable river management as well as regional
economic development in the Tarim Basin [8].
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Digital elevation modes (DEMs) at 30 m × 30 m resolution for extraction of river net-

works and basin boundaries are available at https://search.earthdata.nasa.gov/search (ac-
cessed on 31 December 2011). 

The HydroSHEDS, HydroLakes, and HydroBASINS data databases at 15 arc-second 
resolution for initial sink locating and basin boundary delineation were accessed at 
https://hydrosheds.org/ (accessed on 30 April 2022). Global wetland and lake datasets 
(GWLD) were obtained via http://www.wwfus.org/science/data.cfm (accessed on 1 July 
2020). Water occurrence data [37] for modification of extracted drainage networks were 
accessible via http://global-surface-water.appspot.com (accessed on 31 December 2016). 
The referenced river networks data of the partial endorheic rivers for validation were col-
lected from http://www.resdc.cn/ (accessed on 31 December 2005). Precipitation and tem-
perature data were assessed via https://www.worldclim.org/ (accessed on 31 January 
2020). Land surface runoff data were obtained from http://www.bafg.de/grdc.htm (ac-
cessed on 28 August 2008). Actual evapotranspiration and soil water content data were 
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ary 2019). Information on groundwater type data was extracted from the hydrogeological 
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type, soil type, and vegetation type at 1:1 million spatial resolutions were provided by 
Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences 

Figure 1. Study area. Location of representative sub-basins with different underlying surface
conditions in the Tarim River basin. 1©– 7© refer to major rivers in the study area, correspondingly
named Qarqan River, Tarim River, Kaidu River, Aksu River, Kashgar River, Yarkant River, and
Hotan River.

We selected 60 sub-basins in the Tarim River basin with different climatic and geomor-
phic conditions (Figure 1). The catchment areas of these 60 sub-basins range from 1049 km2

to 22,533 km2, and the maximum Strahler orders range from 6 to 7.

2.2. Data Sources

Digital elevation modes (DEMs) at 30 m × 30 m resolution for extraction of river
networks and basin boundaries are available at https://search.earthdata.nasa.gov/search
(accessed on 31 December 2011).

The HydroSHEDS, HydroLakes, and HydroBASINS data databases at 15 arc-second
resolution for initial sink locating and basin boundary delineation were accessed at https:
//hydrosheds.org/ (accessed on 30 April 2022). Global wetland and lake datasets (GWLD)
were obtained via http://www.wwfus.org/science/data.cfm (accessed on 1 July 2020).
Water occurrence data [37] for modification of extracted drainage networks were acces-
sible via http://global-surface-water.appspot.com (accessed on 31 December 2016). The
referenced river networks data of the partial endorheic rivers for validation were col-
lected from http://www.resdc.cn/ (accessed on 31 December 2005). Precipitation and
temperature data were assessed via https://www.worldclim.org/ (accessed on 31 Jan-
uary 2020). Land surface runoff data were obtained from http://www.bafg.de/grdc.htm
(accessed on 28 August 2008). Actual evapotranspiration and soil water content data
were obtained from Global High-Resolution Soil-Water Balance dataset (https://doi.org/
10.6084/m9.figshare.7707605.v3, accessed on 2 December 2019). Potential evapotranspi-
ration and aridity index data (30 arc-seconds) for the years 1970–2000 were download
from the https://doi.org/10.6084/m9.figshare.7504448.v3 (accessed on 18 January 2019).
Information on groundwater type data was extracted from the hydrogeological map
via https://geocloud.cgs.gov.cn/ (accessed on 31 October 2020). Datasets of landform
type, soil type, and vegetation type at 1:1 million spatial resolutions were provided by
Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn, accessed on 31 May 2001), and National Cryosphere Desert Data
Center (http://www.ncdc.ac.cn/portal/, accessed on 31 October 2019).

https://search.earthdata.nasa.gov/search
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2.3. Identification of Hierachial Endorheic Rivers

As is well known, the accuracy of river networks and watershed boundaries are
closely related to DEMs resolution [38,39], adopted algorithms [40–42], and local basin
conditions. In this study, we identified endorheic river networks from 30 m resolution
DEMs because relatively large-scale basins like the Tarim River basin and its sub-basins are
more concerned instead of the details in a small endorheic river basin. The advances in
extraction of river networks have been made by developing optimized algorithms related
to DEMs pretreatment, flow direction determination, and channel identification, as well as
efficiency upgradation. For endorheic rivers eventually flowing to lakes or deserts, both
the depression topography and insufficient streamflow in endorheic river basin limit the
accurate identification of channels through DEM. Hence, we established a framework for
identification of endorheic rivers and basin boundaries composed with three modules (I, II,
III), which are shown in Figure 2.
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Figure 2. Identification of endorheic rivers. (a) The overall framework composed of three modules,
i.e., introduction of internal drainage areas (Module I), extraction of river networks and delineation
of basin boundaries (Module II), and identification of flowing rivers (Module III). (b,c) Separately
represent two cases about the workflows on identification of endorheic rivers with a wet/lake sink
and with a desert sink.

2.3.1. Introduction of Internal Drainage Areas

To guarantee the smooth carry out of endorheic river extraction, some pretreatment
was undertaken whereby internal drainage areas were introduced (Module I).

Three types of sinks were observed in endorheic basins, i.e., lakes, wetlands, and desert
areas. For each of endorheic river systems, the basin boundaries could be initially sketched
out based on the basin or sub-basin boundaries information stored in HydroBASINs
database (slightly expanding to the outside of the ridge line to guarantee the accurate
extraction) as well as the elevation information (Figure 2b,c).

For both lake-draining basins and wetland-draining basins, the sink locations were
initially identified based on the river networks information of HydroSHEDS database (in
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the database sinks are processed as the junction nodes of multiple rivers). Lake sinks
boundaries (referring those lakes without apparent outlets) were further identified by
overlaying lakes information from the HydroLAKES Database on the DEM, while wetland
sinks boundaries were identified by overlaying information from the wetlands information
(corresponding to cell values 7–12) from global lake and wetland database (GLWD) on the
DEM (Figure 2b).

The remaining rivers were considered to end in the desert. For these basins, we
determined the sink location by visually examining with desert extent and elevation value
(Figure 2c). A critical elevation value was set, below which a region was a sink. We then
used Arc info to erase the pixels of sink area; thus, the outlets of water flow were created
for the endorheic river systems.

2.3.2. Extraction of River Networks and Delineation of Basin Boundaries

Endorheic drainage networks were extracted using a high-efficiency algorithm based
on a size-balanced binary search tree (Module II) [43]. Two threshold values (i.e., critical
source area (number of grid cells) and local slope) in this study were involved during the
extraction procedure, which were separately determined as 20 and 0.01. The stream-orders
of rivers were defined by Strahler ordering scheme [44,45], where the first-order streams are
headwaters without bifurcation, and the stream-order of downstream river at a confluence
followed the rules as below:

nd = {n1 + 1, n1 = n2; max (n1, n2), n1 6= n2} (1)

where nd is the stream-order of the downstream river. n1 and n2 are the stream-orders of
the upstream rivers at the confluence, respectively.

2.3.3. Identification of Flowing Rivers

Flowing endorheic river systems were identified by excluding the pseudo-rivers never
carrying water flow (Module III). A pseudo-river identification hypothesis was proposed
as follow: a pseudo-river was defined as a river channel never carrying water flow and was
located in a river basin whose temporal frequency of surface water presence (set as Fw, %)
during 1981–2015 was zero [20]. Information on surface water dynamic could be derived
from satellite imagery [37]. A final check was conducted during which rivers erroneously
identified as pseudo-rivers was manually modified (vice versa).

2.4. Characterization of River Networks

River networks were described from both the topological and geometric perspectives.

2.4.1. Test of the Horton Self-Similarity and Estimation of Horton Ratios

The river network followed some laws during its development [46], expressed as:

Nw = RB
N − w (2)

Lw = L1 × RL
w − 1 (3)

where is the stream-order. Nw and Lw are the total number and mean channel length of
rivers at the w-order, respectively. RB, and RL, respectively indicate the proportionality
between the channels number and channel length of one stream-order and those of a higher-
order, are named as the bifurcation ratio and channel length ratio, and are collectively
called the Horton ratios.

The Horton self-similarity of river networks stated constant Horton ratios at an appro-
priate range of stream-orders and can be tested through best linear interpolation:

lgNw = − (lgRB) × w + N × lgRB (4)

lgLw = (lgRL) × w + lgL1 − lgRL (5)



Remote Sens. 2022, 14, 4502 6 of 19

A river network will be considered to be self-similar when the respective coefficient of
determination R2 is above a predefined value R0

2.
The Horton ratios were estimated as 10 b (Method I), where b is the slope of the best

least squares fit to the above lineal modes [47].
An alternative method to estimate Horton ratios [47], called as the Average Method

(II), is expressed as:

RB = [(N1/N2) + (N2/N3) + . . . . . . + (Nr − 1/Nr)]/(r − 1) (6)

RL = [(L2/L1) + (L3/L2) + . . . . . . + (Lr/Lr − 1)]/(r − 1) (7)

where r is the upper limit of stream-order in which the Horton ratios exhibit convergence.

2.4.2. Calculation of Fractal Dimension

Based on the RB, and RL, we could further calculate the fractal dimension index (FD)
of river networks [48]:

FD = max (1, log RB/log RL) (8)

FD was an effective measure of river network and watershed topographic features. A
greater FD (e.g., >1.6) usually represented a more complicated river network and a more
developed stage of geomorphologic evolutions [49].

2.4.3. Assessment of Drainage Density

We also introduced the drainage density (DD), defined as the ratio of total channel
length in a catchment to total catchment area, to measure the development level of rivers in
the endorheic river basins [50]. In this study, we also made a hierarchal analysis on DD.

For a river basin whose maximum stream-order is of N, the DD at certain stream-orders
could be calculated as below:

DD − w = TLw/Aw (9)

where TLw is the total length of rivers from 1- to w-order. Aw is the total catchment areas
of rivers at w-order.

2.5. Quantificvation of Basin Properties

Basin characteristics were described through three dimensions by typical variables, as
displayed in Table 1.

Table 1. List of variables as descriptors of river basin properties.

Category Attribute Abbreviation Unit

Climate and
Meteorology

Annual mean precipitation Pmean mm·a−1

Monthly minimum precipitation Pmin mm·a−1

Monthly maximum precipitation Pmax mm·a−1

Potential evapotranspiration PET mm·day−1

Annual mean actual evapotranspiration Tmean
◦C

Monthly minimum temperature Tmin
◦C

Monthly maximum temperature Tmax
◦C

Aridity index AI -
Annual mean actual evapotranspiration AETmean mm·day−1

Monthly minimum actual
evapotranspiration AETmin mm·day−1

Monthly maximum actual
evapotranspiration AETmax mm·day−1
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Table 1. Cont.

Category Attribute Abbreviation Unit

Hydrology and
hydrogeology

Land surface runoff R mm
Annual mean soil water content SWCmean mm·a−1

Monthly minimum soil water content SWCmin mm·a−1

Monthly maximum soil water content SWCmax mm·a−1

Groundwater type GWT -

Geomorphology

Mean basin slope S ◦

Area proportion of glacier Glacier %
Area proportion of oasis Oasis %

Area proportion of vegetation VC %
Area proportion of desert Desert %

2.6. Statistical Analysis

Relationships between hierarchical characteristics of river networks and primary
basin factors were identified with Spearman correlation analysis (a value of p < 0.01 was
considered significant). The relative importance of multiple basin factors to structural
characteristics of endorheic rivers was estimated by using the multiple regression model
(lm function in “stats” package in R) and variance decomposition analysis (calc. relimp
function in the “relaimpo” package in R). The dissimilarities of structural parameters
between the Tarim the Yellow River were examined by Wilcoxon rank-sum tests (wilcox.
test function in “stats” package in R).

3. Results
3.1. Self-Similarity of Endorheic Rivers

The Horton self-similarity test was made for each river network identified from 60
representative sub-basins in the Tarim Basin. Figure 3 shows the distribution of p values
and coefficient of determination (R2). Based on the acceptance thresholds (R2 > 80% and
ANOVA p values < 0.05) for Horton self-similarity assumption [47], 83% and 73% of
examined sub-basins pass the test in terms of RB and RL, respectively, suggesting that most
endorheic river systems in the Tarim Basin could be considered as self-similar statistically.
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Figure 3. Distributions of river network parameters for endorheic sub-basins considered. Empirical
cumulative distribution function of (a) the coefficients of determination, R2, and (b) the p value
obtained during self-similarity test. F in (a,b) refers to the frequency of sub-basins whose R2 or p do
not exceeding a certain value.

To detect hierarchal characteristics of endorheic river structure, Figure 4 displays
variations of four typical structural parameters (RB, RL, FD, and DD) as functions of stream-
orders for representative sub-basins in the Tarim River basin. Convergences of RB and RL
generally happen to rivers at stream-orders 1–4 (Figure 4a,b). As the stream-order increases
from 5 to 7, RB and RL exhibit increased uncertainty. DD remains stable with median values
ranged 0.7~1.3 km−1 at stream-orders 1–4, showing a sharp drop at Strahler order 5, and
decreasing significantly with stream-orders after (Figure 4d).
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Overall, the self-similarity is fairly presented in about 70~80% of sub-basins in the
Tarim, primarily at stream-orders 1–4. Such a topological rule could not be maintained
for rivers at higher Strahler orders (>4) owning to very limited stream power to maintain
the similar aggregation of rivers in the arid endorheic regions. Greater RB and FD with
median values of 4.1 and 2.4 are presented at Strahler-orders 1~2, suggesting maintenance
of dendritic structure in headwater streams (Figure 4a,c). Moreover, all the structure
parameters show notable variations at stream-order 5, which might be related to local
conditions of hydrogeology and geomorphology.

3.2. Structural Characteristics of Endorheic Rivers

For endorheic rivers passed the Horton self-similarity test, we estimated the Horton
ratios (RB, RL) and FD by regression method (I) and average method (II) and compared
them by introducing a diagonal line representing ‘y = x’ (Figure 5a–c). These two methods
should be equally effective as most plots are distributed around the diagonal lines, and thus
the ranges of Horton values (RB ∈ [1.6, 4.2], RL ∈ [1.6, 3.0]) derived from the methods would
not vary significantly, though both were lower than those typically observed in exohreic
rivers [51], i.e., RB ∈ [3, 5], RL ∈ [1.5, 3.5]. Similarly, about 80% of concerned sub-basins
show a smaller FD than that (1.6) are commonly observed in exohreic rivers [49,52].

Figure 5d shows the frequency histograms of drainage density (DD, km−1) for sub-
basins. DD ranges from 0.003 to 1.1 km−1, which is also much lower than those
(0.76–1.29 km−1) computed for exohreic rivers at similar levels of basin scales in the humid
and semi-arid regions [26].

Overall, endorheic rivers demonstrate lower RB, RL, FD, and DD in representative sub-
basins in the Tarim compared with those derived from exohreic rivers at similar scales, which
suggests less branching, undeveloped, and sparser river networks in endorheic basins.
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3.3. Major Drivers of Endorheic River Structures

To investigate the primary influencing factors of endorheic river networks, we made
a correlation analysis between structural parameters (RB, FD, DD, and mean river length
at stream-order 5 (L5)) and 12 basin factors (Table 1) categorized into three major issues
(climate and meteorology, hydrology and hydrogeology, geomorphology).

As results, there are 14, 15, 18, and 15 factors significantly correlated to RB, FD, DD, and
L5, respectively. Among the climatic and meteorological factors, the structural parameters
of endorheic rivers in the Tarim Basin are mostly sensitive to potential evapotranspiration
(PET) induced by high temperature and extra-terrestrial radiation. In Figure 6a–c, RB, FD,
and DD are all significantly negatively correlated to PET, with correlation coefficients in the
range −0.63~−0.81. However, a positive correlation is shown between the mean length
of the 5-order rivers (L5) and PET (Figure 6d). These results are reasonable since the high
potential evaporation exacerbates the loss of surface runoff, leading to less stream power to
sustain the river networks. Another important driving force in shaping river network would
be the aridity index (AI), which is defined as the ratio of precipitation and PET. Extremely
high potential evapotranspiration in the arid regions of Northwest China, together with
scarce precipitation, in turn increase climate-induced aridity and facilitate extensive drying
out of channels. Consequently, RB, DB, and DD exhibit positive correlation with AI, while L5
exhibits negative correlation with AI (Figure 6a–d). Actual evapotranspiration (AET) is the
effective water quantity that is removed from the soil due to evaporation and transpiration
processes. In the arid regions, AET is largely dependent on quantity of water available
in the soil, hydrological properties, and vegetation characteristics, such as soil moisture,
precipitation, and vegetation coverage, which are beneficial to the development of river
networks and streamflow generations. Hence, positive correlations between AETmax and
RB, FD, and DD are observed.
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Geomorphologic conditions, which could be described from perspectives of topogra-
phy and underlying surface, are essential in characterizing the structural characteristics of
endorheic rivers in the Tarim. In particular, the structural parameters are highly dependent
on the basin slope (S), suggesting the key role of energy gradient in shaping river networks.
Moreover, basin underlying surface conditions can also impact the structural properties
of river networks. In the Tarim River basin, glacier and desert are two important basin
underlying surface types. It appears that RB, FD, and DD are positively correlated to the
glacier extent (Glacier, %) and negatively correlated to desert extent (Desert, %), which is
reasonable since the glacier is regarded as the key water source (glacier melt water) for
endorheic rivers, and the desert could represent the scarcity of vegetation coverage and
groundwater resources availability in the endorheic river basins.

Hydro-geological features are also found closely associated with endorheic river
structures. For most endorheic basins with independent hydrological cycle systems in the
Tarim River basin, endorheic rivers flow through five hydrogeological units in sequence
from the watershed divide to the downstream direction, each corresponding to a specific
groundwater type (Appendix A.1, Figure A1). In the high mountain areas (attitude above
3500~4000 m) where glacial permafrost is distributed, groundwater mainly exists as water
above frozen layer (I), supplied by precipitation and melting water of snow and glacial.
With large elevation gradient, groundwater would like to discharge into the gullies in the
form of descending springs at appropriate locations, resulting in surface flow occurrence.
In the middle and low mountainous areas (attitude below 3500 m), groundwater exists
in the form of Karst water as well as fissure water in rocks, including cave water in Karst
rocks (II), fissure water in metamorphic rocks, igneous rocks, and clastic rocks in mountains
(III). Further downstream, pore water in loose soils is developed, including pore water
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in alluvial and flooding layers in piedmont plains (IV) and pore water in sand dunes in
deserts (V). Here, we introduce a groundwater type index (GWT), which is closely related
to the groundwater type I, IV, and V, to represent the characteristics of hydrogeological
units. We find an increasing trend in RB, FD, and DD, and a decreasing trend in L5
with increase of GWT. The decreased trend of streamflow occurrence frequency in rivers
along the downstream dimension (Appendix A.1, Figure A1) further suggests that spatial
distributions of hydrogeological units as well as groundwater types are well projected to the
longitudinal patterns of surface flow intermittence, and therefore structural characteristics
of endorheic rivers. Moreover, RB, FD, and DD all show significant positive correlations
with SWCmax, and L5 exhibits significant negative correlation with SWCmax. These results
suggest that the spatial distributions of hydrogeological units as well as groundwater types
are closely related to the structural characteristics of endorheic rivers owing to the very
tight hydraulic connection of surface water and groundwater in the endorheic regions that
results from the frequent transformation between each of them.

The major drivers for structures of river networks vary among the 60 sub-basins
in the Tarim with different underlying surface conditions. Two representative types of
sub-basins could be identified, i.e., glacier-dominant river basin and desert-dominant river
basin (Figure 1). The glacier-dominant rivers are those with greater glacier extent, usually
flowing through high mountain areas, corresponding to hydrogeological units where
groundwater mainly exists as water above frozen layer (I), supplied by precipitation and
melting water of snow and glacial. Meanwhile, these rivers usually exhibit higher SWC and
vegetation coverage. On the other hand, the desert-dominant rivers are those with greater
desert proportion, usually distributed in flatter areas where pore water in loose soils (IV,
V) is developed, and exhibit lower SWC and vegetation coverage. In the desert-dominant
sub-basins, the vegetation coverage, grass, and oasis extent is found to be closely related
to the structure of river networks, in addition to the glacier extent and groundwater type
(Figure 6e,f). In the glacier-dominant sub-basins, PET is still the dominant factor, since the
glacier melt water is sensitive to the temperature variation (Figure 6g,h).

Considering the correlations among the basin factors, we further use the multiple
regression model and variance decomposition analysis to assess the relative importance of
multiple basin factors to structure parameters of endorheic rivers (Figure 7). It appears that
Glacier and PET explain the most of the RB and FD variance, while the Glacier and GWT
are the most important drivers of DD. L5, on the other hand, is mainly explained by Desert
extent and temperature.
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Figure 7. Relative contributions of basin factors to the differences in structural parameters for
the 60 sub-basins in the Tarim River basin: (a) bifurcation ratio (RB); (b) fractal dimension (FD);
(c) drainage density (DD); (d) mean length of the rivers at stream-order 5 (L5). The bar chart shows
the variable importance, that is, the proportion of explained variability calculated via multiple
regression modeling and variance decomposition analysis.

4. Discussion
4.1. Differences in Intrinsic Structurs and Extrinsic Drivers of Endorheic and Exorheic Rivers

In the Tarim River basin, endorheic rivers exhibit a self-similarity only in the range
of stream-orders 1–4, which is lower than the range of stream-orders 1–5 observed in
exorheic rivers [26]. Compared the structural parameters of river networks in the Tarim
and the Yellow River basins (Table 2), we find that median values of mean river length
at Strahler order 1 (L1) and 5 (L5) are considerably larger in the former, while RB, RL, FD,
and DD are greater in the latter. Moreover, we examine the dissimilarities of structural
parameters between Tarim and Yellow River basin by using the Wilcoxon rank-sum tests.
As is illustrated in Figure 8, significant differences in RB, FD, and DD between the two basins
are observed, which further confirm the vulnerability of endorheic rivers characterized
with less branching, imperfect developed, and sparser network structures. It should be
noted that the multifractal spectra, composed with a sequence of generalized FD with
different scaling exponents, could been used for a more detailed description of internal
fractal structure in river networks [53]. As an extension of FD, significant distinction of
multifractal spectra between the endorheic and exorheic rivers could also be expected and
worth exploring in the following analysis.
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Table 2. Structural parameters of river networks in the Tarim and the Yellow River basins.

River Basin Structural Parameter Median Value

Tarim

RB 2.48

RL 2.03

FD 1.38

DD 0.24 km−1

L1 1.31 km

L5 24.35 km

Yellow

RB 4.61

RL 2.15

FD 1.92

DD 1.24 km−1

L1 1.21 km

L5 19.58 km
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Figure 8. Comparison of structural parameters between the Tarim River and the Yellow River (ns,
p > 0.05; **** p < 0.0001; Wilcoxon rank-sum test): (a) bifurcation ratio (RB); (b) channel length
ratio (RL); (c) fractal dimension (FD); (d) drainage density (DD); (e) mean length of the rivers at
stream-order 1 (L1); (f) mean length of the rivers at stream-order 5 (L5).

We further plotted relationships between structural parameters and key basin fac-
tors for sub-basins of the Tarim (Figure 9). For comparison, we displayed the results of
20 sub-basins at a similar scale in the Yellow River (Appendix A.2, Figure A2), which cover
typical climatic and geomorphic conditions in the basin. We selected the Yellow River
as a reference because the basin is partially located in the semi-arid regions, where it ex-
hibits to a certain extent similar climatic and meteorological, hydrological, hydro-geologic,
landform, and vegetation coverage conditions with the Tarim River basin. Differences
in extrinsic drivers of endorheic and exorheic rivers are identified in terms of diverse
river-basin relations.
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including (a,b) PET, (c,d) Pmean, (e,f) GWT, (g,h) R, (i,j) Glacier, and (k,l) VC for representative
sub-basins in the Tarim (orange dot) and the Yellow River basins (black hollow dot) (** p < 0.01;
Spearman correlation).

River networks in the Tarim Basin are more sensitive to PET than those in the Yellow
River basin, even though PET for sub-basins of the two basins are at similar levels (i.e.,
733–2013 mm day−1 in the Tarim, and 862–1564 mm day−1 in the Yellow) (Figure 9a,b). For
the Yellow River basin, structural parameters have much closer relations to precipitation,
with RB and DD exhibiting significant positive feedback to increased Pmean (Figure 9c,d).

In sub-basins of the Tarim, groundwater mainly exists as water above frozen layer (I)
with an area proportion of 41%, while the most common groundwater types are pore water in
loose soils (groundwater type IV and V) with an area proportion of 43% (Figure 9e,f) in the
sub-basins of the Yellow. For sub-basins in the Tarim River basin, RB and DD significantly
increase with GWT. However, no correlation is found between structural parameters and
GWT in the Yellow River basin. Alternatively, surface runoff (R) seems to be an important
influencing factor of river networks in the Yellow River, even with comparable runoff of
the Tarim (Figure 9g,h).

Compared the underlying surface condition of the two basins, we find that sub-
basins in the Yellow mostly correspond to a relatively higher vegetation coverage (median
VC = 27%) than sub-basins in the Tarim (median VC = 9%). Among the diverse surface
underlying types in the Tarim River basin, glacier is widely distributed in 90% of concerned
sub-basins, which significantly promotes both RB and DD of river networks. In the Yel-
low River basins, hierarchal characteristics of river networks are more closely related to
vegetation cover in addition to the soil erodibility [26].

Overall, it appears that structure of endorheic networks is more related to the glacier
extent, potential evapotranspiration, and groundwater type, which is essentially different
from the structure of exorheic river represented by the Yellow River that is largely controlled
by surface runoff, precipitation, and vegetation coverage.
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4.2. Mangement Implications for Endorheic Rivers

Differentiated strategies are needed for sustainable management of varying kinds of
endorheic rivers in fragile ecosystems. Commonly, a river is prone to sustaining streamflow
when the channel has higher water supply and lower consumption [25]. For endorheic
rivers in the Tarim, the streamflow is mainly supplied by glacial melt water, alpine precipita-
tion, and release from existing water storage (e.g., groundwater, lakes), while consumption
is mainly caused by the infiltration, evapotranspiration, and other natural and human-
driven river discharge loss. Compared with exohreic rivers dominated by precipitation
supply, the integrity and development degree of endorheic river networks are very sensitive
to climatic factors. Hence, variation in PET and temperature should be focused as a matter
of priority during the water resource management.

As a regulator for water resources, groundwater is important to maintenance of river
surface hydraulic connections as well as ecosystem health in the endorheic river basin.
In particular, changes in groundwater depth directly affect the soil moisture, vegetation
growth, and land desertification. Therefore, local administrators need to put forward a
scientific scheme for both annual total groundwater storage and groundwater level control,
establish the integrated scheduling model of underground reservoir and surface water, and
formulate the integrated management strategies for both surface runoff and groundwater
regulation in the arid regions.

Considering the complex geomorphic dependence of endorheic river structure in-
duced by multiple underlying surface types, specific strategies are highly necessary for
watershed management in the endorheic regions. For the desert-dominant sub-basins, river
networks are highly dependent to the vegetation coverage, grass, and oasis extent. In such
a case, vegetation restoration strategies should be preferred options for watershed sustain-
able management. For the glacier-dominant sub-basins, the glacier melt water dynamic
under climate change would be the key factor influencing flow regimes and integrity of
endorheic rivers, which highlights the particular importance of adaptive policies against
climate change.

5. Conclusions

Based on the river networks identified from DEMs and surface water dynamic informa-
tion derived from satellite image in the Tarim River basin, we investigate the structural char-
acteristics of endorheic rivers and their geomorphic and climatic dependence. Compared
with exorheic rivers, endorheic rivers exhibit significant differences in the stream-order
range of self-similarity, structural characteristics, and influencing factors. The lower stream
power limits the capability of channel aggregation and narrows the range of stream-orders
for self-similarity in endorheic river networks, leading 70~80% of the sub-basins in the
Tarim to observe Horton’s law within stream-orders 1–4. Moreover, the river networks
exhibit lower RB, RL, FD, and DD in representative sub-basins of the Tarim, demonstrating
sparser and imperfect developed branching river networks in endorheic regions. The
structural parameters for endorheic rivers are more related to glacier extent (r = 0.67~0.84),
potential evapotranspiration (r = 0.63~0.81), and groundwater type index (r = 0.64~0.73),
which is essentially different from the exorheic rivers like the Yellow River, which is largely
controlled by surface runoff, precipitation, and vegetation coverage. This study provides
new insights into topological structure of endorheic river networks and highlights the
significance of differentiated strategies for sustainable river management of endorheic
ecosystems sensitive to climate change.
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Appendix A.

Appendix A.1. Hydrogeological Conditions of the Tarim River Basin

This longitudinal flow frequency pattern of endorheic rivers is closely related to the
hydrogeological features, which affect geological transitions along the channel as well as
the gains and losses of groundwater along the channels. For most endorheic basins with
independent hydrological cycle systems in the Tarim, endorheic rivers flow through five
hydrogeological units along the downstream direction, each corresponding to a specific
groundwater type (Figure A1). The streamflow intermittence of endorheic rivers varies with
groundwater types. From groundwater type I to type V along the downstream dimension,
the median values of temporal frequency of surface water presence (set as Fw, %) reduced
from 2.2% to 0.4%. This result suggests that the spatial distributions of hydrogeological
units as well as groundwater types are well projected to the longitudinal patterns of surface
flow intermittence variations.
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Figure A1. Hydrogeological unit map in the Tarim River basin classified by five major groundwater
types, i.e., I, II, III, and IV, corresponding to water above frozen layer, cave water in Karst rocks,
fissure water in rocks, pore water in loose soil, and sand dunes in deserts, respectively. The box
plots illustrate the variation of streamflow occurrence frequency (Fw, %) in endorheic rivers flowing
through different groundwater types.

Appendix A.2. Representaitve Sub-Basins in the Yellow River Basin

The Yellow River, with a total river length of 5,464 km, is the second longest river
in China, with a total area of 758,600 km2, and the basin is distributed in 95◦E–119◦E,
32◦N–42◦N, dominantly characterized by a semi-arid and arid climate. Flowing through
world’s largest and thickest loess deposits, the Yellow River has the largest average annual
sediment yield (1.6 × 1012 kg/yr during 1919–1960) in the world.

For comparison, we selected 20 sub-basins in the Yellow River representing typical
climatic and geomorphic conditions as illustrated in Figure A2. The selected sub-basins
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have catchment areas in the range of 5474~38311 km2. The maximum Strahler orders for
river networks in the sub-basins range from 6 to 7.
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