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Abstract: The accurate estimation of global evapotranspiration (ET) is essential to understanding
the water cycle and land–atmosphere feedbacks in the Earth system. This study focused on the
Inner Mongolia Reach of the Yellow River Basin, a typical arid and semi-arid region. Although
there are many remote sensing ET datasets, many of the ET algorithms have not considered the
impact of soil moisture, especially in water-limited areas. In this paper, the new PT-JPL model, which
incorporates soil moisture into ET simulation, is used to improve the accuracy of ET simulation in
water-limited areas. The simulation value is evaluated using two Hobq Desert eddy-covariance
towers and the Penman–Monteith–Leuning version 2 (PML-V2) dataset. The new PT-JPL model
shows the most significant improvements in water-limited regions; the coefficient of determination
can reach 0.826, and the RMSE can reduce to 9.645 W/m2. Soil evaporation is central to the actual
ET increase in the study area. Implementing ecological restoration projects reduced the exposed
area of land in the study area and reduced the rate of total ET effectively. Furthermore, the most
advanced machine learning local interpretation algorithm—the TreeExplainer-based Shapley additive
explanation (SHAP) method—was used to identify the driving factors of ET capacity under different
land use types. Temperature, NDVI, and root zone soil moisture were the main environmental factors
causing ET changes in different plants. Meanwhile, temperature and root zone soil moisture had a
noticeable coupling effect, except for grassland. Furthermore, a threshold effect of temperature to
ET was found, and the value is 25, 30, and 30 ◦C in the forest, grassland, and cropland, respectively.
This study provides an essential reference for accurately describing the ET characteristics of arid and
semi-arid regions to achieve the efficient management of water resources.

Keywords: evapotranspiration; soil moisture; TreeExplainer-based Shapley additive explanation
(SHAP); threshold effect; arid and semi-arid region

1. Introduction

Evapotranspiration (ET) is an important part of the water cycle, linking energy, water,
and circulation [1,2]. ET consumes more than 80% of the precipitation in arid and semi-arid
regions and therefore plays a crucial role in the overall hydrological cycle [3–7]. It has been
shown that ET is influenced by net radiation [8], wind speed [9], soil moisture stress [10], etc.
At the same time, changes in vegetation cover and land use strongly affect hydrothermal
balance and have a significant impact on changes in ET. Land use/cover change affects ET
by changing vegetation species with different transpiration rates, radiative transfer within
the canopy [11,12], topography [13], albedo [14], soil texture [15], apoplastic cover [16], and
vegetation cover.

In the 1970s, the large-scale development of intensive agriculture led to severe soil
erosion in the upper and middle reaches of the Yellow River Basin, coupled with the conver-
sion of large areas of forest to arable land, low vegetation cover, and fragile ecology [17–19].
Since 1999, China has proposed and implemented a series of ecological restoration projects
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such as the “Grain for Green Project (GfGP)”, and the vegetation cover of the Yellow River
basin has increased significantly [20,21], while the large-scale new planting of vegetation
has also changed the local water cycle process [22]. Related studies have shown that with
the annual increase in vegetation cover, soil erosion in the middle reaches of the Yellow
River basin in the Loess Plateau region has significantly decreased [23–26], but the annual
runoff of the Yellow River has dramatically decreased; the ET in the Loess Plateau region
has increased substantially, and the regional climate also has become warm drying [27,28].
However, the Inner Mongolian reach of the Yellow River basin shows a decrease in evap-
otranspiration from year to year, mainly due to the reduction in precipitation and the
increase in the degree of drought [5,29]. Therefore, in the Inner Mongolia Reach of the
Yellow River Basin, which is strongly influenced by climate type, the study of the intrinsic
correlation between ET and vegetation cover/land use is still important and challenging.

Traditional ET monitoring is mainly based on single-point instrument observation,
such as the lysimeter method, eddy covariance method, Bowen ratio/energy balance
method, eddy-covariance method, etc. [30,31]. Although the above methods can obtain
single-point high-precision ET information, they cannot meet the large-scale regional ET
research [32]. With the development of remote sensing technology, the surface albedo,
vegetation index, and other surface characteristic parameters of large-scale regions can
be obtained, and it becomes easier to explore the land surface ET on a large scale [33].
Although hydrological models are available to estimate ET, the complexity and difficulty
of obtaining model parameters limit the application of the models. Priestley–Taylor Jet
Propulsion Laboratory (PT-JPL) models embedded in remote sensing data can obtain ET
at the regional scale with good physical processes that can be distinguished as vegetation
transpiration versus soil evaporation [34,35]. In addition, the model does not consider
stomatal resistance and wind speed data, and it combines the P–T equation with a new
ecophysiological model that converts potential ET into actual ET [35]. Compared with
other remotely sensed ET models, the PT-JPL model can be applied on multiple time scales
(hourly, daily, monthly, etc.) and spatial scales (point and region) [36,37]. Although the
PT-JPL model has been able to meet the needs of different studies, it lacks control of soil
moisture [35,38], especially in arid and semi-arid regions where the ET bias simulated by
the PT-JPL model is greater [39]. Therefore, combining soil moisture data with the PT-JPL
model improves the accuracy of ET simulation in the study area.

In order to examine the influence of climatic factors on regional evapotranspiration
and the interaction between different factors, we apply the state-of-the-art continuous learn-
ing local interpretation algorithm and the Shapley additive explanation (SHAP) method
based on the TreeExplainer [40]. Machine learning algorithms are more suitable for deal-
ing with difficult nonlinear and complex correlation influences than traditional statistical
methods [41,42]. Compared with other machine learning methods, the XGBoost model
introduces regular terms and column sampling to prevent the occurrence of model overfit-
ting and improve the robustness of the model [43,44]. At the same time, the parallelization
strategy is used to increase the computational speed of the model. The XGB–SHAP method
based on machine learning algorithms can extract the factors that significantly influence ET
from a large amount of data and identify nonlinear interactions.

Long-term, large-scale ET data are vital for studying the water cycle and climate
change in arid and semi-arid regions. Therefore, we used the Inner Mongolia Reach of the
Yellow River basin as the study area and the PT-JPL model, which incorporates soil water
limitations to obtain ET data for a long time series from 1982 to 2015. Additionally, we
compared it with the eddy-covariance flux tower measurements data and remote sensing
ET products. At the same time, the SHAP method was applied to assess the reasons for
the spatial heterogeneity of ET occurring in different sub-bedding surfaces (Figure 1). This
study provides an essential reference for accurately describing the ET characteristics of arid
and semi-arid regions to achieve the efficient management of water resources.
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Figure 1. Research framework.

2. Materials and Methods
2.1. Study Area

The Inner Mongolia Reach of the Yellow River Basin is located at the northernmost end
of the Yellow River Basin (38◦~42◦N, 106◦~112◦E); the average altitude is about 1000–1500
m, and the area of drainage is 96,400 km2 (Figure 2). In the study area, the major type of
vegetation from west to east are grassland and forest. The basin has various geomorphic
types, including deserts, plateaus, hills, mountains, and plains. It is located in arid and
semi-arid climate areas, with long winters, severe cold, and dry springs. The annual
average precipitation is 297.25 mm, the average annual temperature is about 5 ◦C, and the
change in annual evapotranspiration is between 200~300 mm.
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2.2. Data Preparation

In this study, we obtained land use data for 1990, 1995, 2000, 2005, 2010, and 2015 with
a resolution of 1 km from the Institute of Geographic Sciences and Natural Resources Re-
search, China (http://www.resdc.cn/, accessed on 30 December 2021). The land use/land
cover (LULC) data used in this paper were produced by Jiyuan Liu’s team at the Insti-
tute of Geographical Sciences and Natural Resources Research, the Chinese Academy
of Sciences. The dataset is based on Landsat 8, GF-2, and other remote sensing data.
The land use data from 1990 to 2015 were obtained by constructing a high-resolution
remote sensing–UAV–ground survey and observation technology system, combined with a
human–machine interactive interpretation method. This dataset is unified and integrated,
quality checked, and finally evaluated by a confusion matrix for classification accuracy and
total accuracy. Among them, the comprehensive evaluation accuracy of the primary type
reaches more than 93%, and the secondary classification can reach more than 90% [45–48].
It was divided into six main categories: cropland, forest, grassland, water bodies, impervi-
ous, and bare land.

The data driving the PT-JPL model comprise the following: Meteorological data (pre-
cipitation, temperature, air pressure, wind speed) for the period from 1979 to 2015, which
were obtained from the China Meteorological Forcing Dataset (CMFD) (http://data.tpdc.
ac.cn/, accessed on 30 December 2021). The data range covers the whole Chinese mainland
with a spatial resolution of 0.1◦ × 0.1◦; the time resolution is one month. Radiation data (net
longwave radiation and net shortwave radiation) was obtained from the fifth-generation
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis
(ERA5) (https://cds.climate.copernicus.eu/, accessed on 30 December 2021). The data
range covers worldwide with a spatial resolution of 0.25◦ × 0.25◦; the time resolution is one
month. At the exact times, we also obtained the long-time series vegetation data, including
the normalized difference vegetation index (NDVI) data from global inventory modeling
and mapping studies (GIMMS) (https://glam1.gsfc.nasa.gov, accessed on 30 December
2021). The data have a spatial resolution of 0.083◦ × 0.083◦; the time resolution is 15 days.
The maximum value composite method was used to synthesize monthly data from 15 days
of NDVI data.

To evaluate the performance of the PT-JPLnew model, we used data from two flux
tower sites in the Hobq Desert (KBQ04 and KBQ05) (Figure 2). The flux station data are
half-hourly instantaneous data from 2006 to 2009, which are averaged to obtain daily
average data. Then, all daily data in that month are averaged to obtain monthly latent
heat flux data. The data set Penman–Monteith–Leuning version 2 (PML-V2) [49], which
includes vegetation transpiration (Ec), soil evaporation (Es), vaporization of intercepted
precipitation (Ei), and water body and snow evaporation (ET_water), was used to validate
the accuracy of the evapotranspiration component simulation by the new PT-JPL model.
The PML-V2 datasets have 16 years (2002 to 2017) of global ET data sets, spatial resolution
of 500 m, and time resolution of 8 days (Table 1.). All data for one month are averaged
and then multiplied by the number of days in the month to obtain the monthly ET data.
All of the remotely sensed data were resampled to 0.083◦ resolution to match the spatial
resolution of NDVI data to better reflect the effect of vegetation change on local ET.

Table 1. PT-JPL model-driven and validation data.

Variable Product Name Time Range Time Resolution Spatial Resolution

meteorological data CMFD 1982–2015 Monthly 0.1◦ × 0.1◦

Net radiation ERA5 1982–2015 Monthly 0.25◦ × 0.25◦

Relative humidity ERA5 1982–2015 Monthly 0.25◦ × 0.25◦

NDVI GIMMS 1982–2015 15 d 0.083◦ × 0.083◦

Soil moisture GLDAS 1982–2015 Monthly 0.25◦ × 0.25◦

ET PML-V2 2002–2017 8 d 500 m × 500 m

http://www.resdc.cn/
http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
https://cds.climate.copernicus.eu/
https://glam1.gsfc.nasa.gov
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2.3. Method
2.3.1. PT-JPL ET Algorithm

The PT-JPL ET algorithm applies ecophysiological constraints to model reductions of
ET from the atmospheric potential ET due to sub-optimal environmental conditions [35].
The model effectively solves the difficulty of obtaining ground impedance data in ET
simulations. Additionally, the model contains a lot of plant physiological parameters,
which can effectively reflect the changes of ET or latent energy (LE) caused by vegetation
changes in the study area. ET and latent heat (LE) are the links between the water cycle
and energy cycle, so there is ET λ = LE. The PT-JPL model can divide the ET into three
parts: vegetation canopy transpiration (LEc), soil evaporation (LEs), and vegetation canopy
interception evaporation (LEi). The algorithm can be describe as:

LE = LEs + LEc + LEi (1)

LEs = [ fwet + fsm × (1 − fwet)]×
∆

∆ + γ
× α × (Rns − G) (2)

LEc = (1 − fwet)× fg × fT × fM × α
∆

∆ + γ
Rnc (3)

LEi = fwet × α × ∆
∆ + γ

Rnc (4)

where fwet is relative surface humidity (dimensionless) and fwet = RH4; RH is the relative
humidity of air (%); fsm is soil moisture constraint (dimensionless); fg is green canopy
fraction (dimensionless); fT is planted temperature constraint (dimensionless), and fM
is plant moisture constraint (dimensionless); α is the Priestley–Taylor coefficient that is
set as 1.26; ∆ is the slope of the saturated vapor–pressure relationship (kPa/◦C); γ is the
psychrometric constant (kPa/◦C); G is the ground heat flux (W/m2); λ is the latent heat of
vaporization (MJ/kg); Rn is the net radiation (W/m2), (Rn = Rnshort + Rnlong), Rnshort is
net shortwave radiation (W/m2), and Rnlong is net longwave radiation (W/m2); Rns is the
net radiation reaching the soil surface (W/m2), Rns = Rn exp(−kRn LAI), kRn the extinction
coefficient, taken as 0.6; and Rnc is the net radiation intercepted in the canopy (W/m2),
Rnc = Rn − Rns [39,50]. For further detailed reference, see Fisher et al., 2008.

In this model,

fg =
fAPAR
f IPAR

(5)

fm =
fAPAR

fAPARmax

(6)

ft = exp

[
−
(

Ta − Topt

Topt

)2
]

(7)

where fAPAR is the fraction of absorbed photosynthetically active radiation, f IPAR is the
fraction of intercepted PAR, Ta is the maximum daily air temperature, and Topt is the
optimum temperature [39].

fsm = RHVPD (8)

where soil water control on evaporation is implicitly represented through the upper formula.
However, in some arid and semi-arid areas, soil moisture is the main limiting factor of ET
compared with vapor pressure deficit (VPD) [32]. Therefore, we used the soil moisture to
modify model parameters fsm [39]:

fnew_sm =
θobs − θwp

θFC − θwp
(9)
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where θobs is the soil moisture observation, θwp is the soil–plant wilting point, and θFC is the
soil field capacity. Due to the lack of long-term measured soil water data, the Global Land
Data Assimilation System (GLDAS) soil moisture dataset is used to replace θobs [51]. Soil
properties extracted from the Harmonized World Soil Database version 1.2.1 (HWSD 1.21)
include the porosity and the wilting point. This paper combined the new PT-JPL model
with remote sensing data to obtain the ET from the regional scale. We use this method to
find out the main factors affecting the change in ET in the Inner Mongolia Reach of the
Yellow River Basin. The spatial resolution of all data is unified, as the NDVI data’s spatial
resolution is 0.083◦ × 0.083◦, and the time resolution is one month.

2.3.2. Extreme Gradient Boosting Method (XGB)

Chen and Guestrin [52] first proposed the Tree-based machine learning model XGB
method; it is one of the integrated learning methods that combine multiple learning models,
so that the XGB method can obtain better prediction results. Compared with deep learning
models, the tree-based model’s performance is better on tabular datasets [40]. The algorithm
utilizes CART as the base classifier and is jointly decided by multiple related decision trees.
It can solve most regressions and classifications; one of the critical applications is data
feature mining and analysis. This method can perform multithreaded calculations and
scale the newly added weight at each pressurization step using shrinkage technology to
avoid overfitting [40].

Therefore, the nonlinear XGB algorithm is to simulate monthly ET from different
drivers, including temperature (TEM, ◦C), precipitation (PRE, mm), vapor pressure deficit
(VPD, hPa), air pressure (PA, Pa), relative humidity (RH, %), NDVI, surface soil moisture
(SM1, m3/m3), soil moisture at 10–40 cm (SM2, m3/m3), and soil moisture at 40–100 cm
(SM3, m3/m3). There were 90,675 samples of monthly combinations of the iterative decision
tree model, with a sample number of 6516 forests, a sample number of 60,316 grasslands,
and a sample number of 23,843 farmlands. We need to input a sample size as large as
possible to obtain reliable results.

2.3.3. Explainable Predictions: Shapley Additive Explanations

With the development of machine learning algorithms in feature extraction and pre-
diction, the prediction process has been regarded as the ‘black box’, and the lack of enough
interpretability has led to doubt [53,54]. We applied the state-of-the-art TreeExplainer-based
SHAP framework, presented by Lundberg et al., to analyze the primary factors and thresh-
old of the ET in different land use covers [55]. The XGB–SHAP framework has successfully
been applied to the local explanations of human disease and socioeconomic sciences [56,57].
Based on the classical game-theoretic Shapley values inthe previous model-agnostic work,
the TreeExplainer realized optimal local interpretation, enabling us to better understand the
impact of individual features on model losses. The Shapley additive explanation (SHAP)
interaction values use the ‘Shapley interaction index’ to capture local interaction effects. By
calculating the average marginal impact of many possible factors on the predicted value,
SHAP assigns the expected significant value to each feature to provide a theoretical basis
for the subsequent interaction effect calculation. Through the SHAP method, the factor
effect, main effect, and coupling effect between different factors influencing the land use
mechanism on ET can be interpreted easily.

3. Results
3.1. The Area Variations and Transfer Direction of the Land Use in the Inner Mongolia Reach of the
Yellow River Basin

The extent of the different land types in the Inner Mongolia Reach of the Yellow River
Basin between 1990 and 2015 are shown in Figure 3. Over the past 30 years, the area of the
other land types has barely been unchanged. Grassland, cropland, and bare land are the
main types of land use, but the impervious area shows a rising trend year by year. Although
the Chinese government has implemented several ecological restoration measures since
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1999, the total area of forest and grassland is almost unchanged. Therefore, combining
the land use transfer matrix is necessary to analyze the effect of GfGP comprehensively.
As shown in Figure 3b, the impervious area and forest showed the most change over
the study period, with up to 41.2% of the impervious area converted to cropland and
30.6% of the forest area converted to grassland. Although the forest area has risen, the
increase is slight. However, the water area showed a decreasing trend year after year.
Additionally, the proportion of different land use types converted to water area is small.
Therefore, it is necessary to study the ET laws under different land use types in this water
deficiency region.
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3.2. Model Validation

Figure 4 compares the latent heat flux measured at the flux station (KBQ04 and KBQ05)
with PT-JPL and the new PT-JPL. Figure 4a,c shows the time-series process, and Figure 4b,d
shows the comparison diagram of simulated value and measured value before and after
model improvement. The blue dot represents the simulation value of the new PT-JPL model,
and the green dot represents the simulation value of the PT-JPL model. The diagonal is the
line y = x; the closer to this line, the closer the simulation effect is to the measured value
and the better the simulation effect is. The results show that, compared with the original
model, the improved model could well reflect the change process of latent heat flux in time;
the original model underestimated the growing season [58,59]. According to the value
of coefficients of determination (R2) and root mean square error (RMSE), the new PT-JPL
model improves the accuracy of the model to a certain extent, and the simulated LE is closer
to the actual value. For example, at site KBQ04, the R2 has almost doubled from 0.381 to
0.721, and the RMSE has fallen from 19.066 W/m2 to 9.418 W/m2. However, the simulated
ET value is always underestimated during peak growing season (i.e., June–August). This
is because our study area is an arid and semi-arid region with perennial water scarcity,
and precipitation is the only water source in the region. Once ET exceeds precipitation,
it will result in less available water in the soil, reducing runoff and ultimately negatively
affecting groundwater storage. Meanwhile, despite the introduction of soil moisture data
in the new PT-JPL model, there is a certain underestimation of remotely sensed soil water
data products compared with the actual measured soil water data.

A further validation of the PT-JPLnew model’s accuracy on a different component
with the data of PML-V2 LE in the same period was taken (Figure 5). To the vegetation
canopy transpiration Ec, the correlation coefficient in most regions is higher than 0.8. In
about 45% of areas, the correlation of soil evaporation Es exceeded 0.5. The correlation is
higher in the northwest and lowers in the southeast. According to Figure 2, negative values
mainly appear in the cropland area. Due to the forest being distributed primarily on the



Remote Sens. 2022, 14, 4499 8 of 16

southeastern margin of the study area, the simulation Ei is mostly in these places. Although
the region is small, the scope of the correlation exceeded 0.4, about 50%. Although we
considered the influence of soil moisture on the model, we did not consider the influence of
farmland irrigation on ET simulation. However, the PML-V2 model considers the effects of
stomatal conductance and atmospheric CO2 concentration on vegetation carbon and water
processes. The PML-V2 model has a spatial resolution of 500 m, which is more accurate,
but the PT-JPL model results correlate well. In general, the new PT-JPL model shows good
performance on time and space scales, and the simulation results in this paper are reliable.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

3.2. Model Validation 
Figure 4 compares the latent heat flux measured at the flux station (KBQ04 and 

KBQ05) with PT-JPL and the new PT-JPL. Figure 4a,c shows the time-series process, and 
Figure 4b,d shows the comparison diagram of simulated value and measured value before 
and after model improvement. The blue dot represents the simulation value of the new 
PT-JPL model, and the green dot represents the simulation value of the PT-JPL model. The 
diagonal is the line y = x; the closer to this line, the closer the simulation effect is to the 
measured value and the better the simulation effect is. The results show that, compared 
with the original model, the improved model could well reflect the change process of la-
tent heat flux in time; the original model underestimated the growing season [58,59]. Ac-
cording to the value of coefficients of determination (R2) and root mean square error 
(RMSE), the new PT-JPL model improves the accuracy of the model to a certain extent, 
and the simulated LE is closer to the actual value. For example, at site KBQ04, the R2 has 
almost doubled from 0.381 to 0.721, and the RMSE has fallen from 19.066 W/m2 to 9.418 
W/m2. However, the simulated ET value is always underestimated during peak growing 
season (i.e., June–August). This is because our study area is an arid and semi-arid region 
with perennial water scarcity, and precipitation is the only water source in the region. 
Once ET exceeds precipitation, it will result in less available water in the soil, reducing 
runoff and ultimately negatively affecting groundwater storage. Meanwhile, despite the 
introduction of soil moisture data in the new PT-JPL model, there is a certain underesti-
mation of remotely sensed soil water data products compared with the actual measured 
soil water data. 

 
Figure 4. Compared accuracy of the original (PT-JPL) and improved model (new PT-JPL) against 
eddy-covariance flux tower latent heat data from 1 January 2006 to 30 September 2009 in the study 
area. (a,b) Comparison results of site KBQ04, and (c,d) comparison results of site KBQ05. 

A further validation of the PT-JPLnew model’s accuracy on a different component 
with the data of PML-V2 LE in the same period was taken (Figure 5). To the vegetation 
canopy transpiration 𝐸 , the correlation coefficient in most regions is higher than 0.8. In 
about 45% of areas, the correlation of soil evaporation 𝐸 exceeded 0.5. The correlation is 
higher in the northwest and lowers in the southeast. According to Figure 2, negative val-
ues mainly appear in the cropland area. Due to the forest being distributed primarily on 
the southeastern margin of the study area, the simulation 𝐸  is mostly in these places. 

Figure 4. Compared accuracy of the original (PT-JPL) and improved model (new PT-JPL) against
eddy-covariance flux tower latent heat data from 1 January 2006 to 30 September 2009 in the study
area. (a,b) Comparison results of site KBQ04, and (c,d) comparison results of site KBQ05.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

Although the region is small, the scope of the correlation exceeded 0.4, about 50%. Alt-
hough we considered the influence of soil moisture on the model, we did not consider the 
influence of farmland irrigation on ET simulation. However, the PML-V2 model considers 
the effects of stomatal conductance and atmospheric CO2 concentration on vegetation car-
bon and water processes. The PML-V2 model has a spatial resolution of 500 m, which is 
more accurate, but the PT-JPL model results correlate well. In general, the new PT-JPL 
model shows good performance on time and space scales, and the simulation results in 
this paper are reliable. 

 
Figure 5. Spatial distribution of the correlation coefficient of the performance of the improved mod-
els (new PT-JPL) against the PML-V2 evapotranspiration data from 1 January 2006 to 30 September 
2009 in the study area. (a) Vegetation canopy transpiration, 𝐸 ; (b) soil evaporation, 𝐸 ; (c) vegeta-
tion canopy interception evaporation, 𝐸 . 

3.3. Spatiotemporal Variations in Regional ET 
Figure 6a shows the spatial distribution of multiyear-averaged ET under different 

land use/cover. The total actual ET is high in the south and low in the north; the lowest 
value occurs in bare land areas with low vegetation coverage (Figure 2). Vegetation tran-
spiration (𝐿𝐸 ) is also an essential part of regional water consumption, but the vegetation 
types in this area are mainly grassland and cropland. Therefore, the high 𝐿𝐸  value area 
primarily occurs in the Hetao Irrigation Area, cropland and forest east of the study area 
(Figure 2). The forest is mainly distributed east of the study area, so the vegetation canopy 
interception evaporation (𝐿𝐸 ) is mainly concentrated here. Still, the LEi value of the mul-
tiyear average is very low—perhaps 1 W/m2 (only 12 mm/year). Another critical compo-
nent of ET is soil evaporation; from the spatial distribution of Figure 6c, soil evaporation 
(𝐿𝐸 ) is low in cropland and forest-covered areas. The vegetation coverage here is exten-
sive. The western region of the study area is mainly grassland because the vegetation is 
sparse in this area; the larger the soil area exposed, the greater the solar radiation reaching 
the ground, so the more significant the soil evaporation. 

Figure 5. Spatial distribution of the correlation coefficient of the performance of the improved models
(new PT-JPL) against the PML-V2 evapotranspiration data from 1 January 2006 to 30 September 2009
in the study area. (a) Vegetation canopy transpiration, Ec; (b) soil evaporation, Es; (c) vegetation
canopy interception evaporation, Ei.



Remote Sens. 2022, 14, 4499 9 of 16

3.3. Spatiotemporal Variations in Regional ET

Figure 6a shows the spatial distribution of multiyear-averaged ET under different land
use/cover. The total actual ET is high in the south and low in the north; the lowest value
occurs in bare land areas with low vegetation coverage (Figure 2). Vegetation transpiration
(LEc) is also an essential part of regional water consumption, but the vegetation types in
this area are mainly grassland and cropland. Therefore, the high LEc value area primarily
occurs in the Hetao Irrigation Area, cropland and forest east of the study area (Figure 2).
The forest is mainly distributed east of the study area, so the vegetation canopy interception
evaporation (LEi) is mainly concentrated here. Still, the LEi value of the multiyear average
is very low—perhaps 1 W/m2 (only 12 mm/year). Another critical component of ET is
soil evaporation; from the spatial distribution of Figure 6c, soil evaporation (LEs) is low in
cropland and forest-covered areas. The vegetation coverage here is extensive. The western
region of the study area is mainly grassland because the vegetation is sparse in this area;
the larger the soil area exposed, the greater the solar radiation reaching the ground, so the
more significant the soil evaporation.
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period in the study area: (a) total actual LE; (b) vegetation canopy transpiration, LEc; (c) soil
evaporation, LEs; (d) vegetation canopy interception evaporation, LEi.

As stated above, we can obtain the spatial distribution of the total actual ET and
different ET components. However, it cannot reflect the change across the entire temporal
variety of ET in the study area. Therefore, based on the spatial analysis, we calculated the
statistics of the time series of multiyear latent heat values during the 1982–2015 period
to comprehensively analyze the effect of GfGP. Meanwhile, the LEc and LEs are the main
components of the total LE in this study, so the time variation of these three parts was
mainly analyzed (Figure 7).
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Taking 1999 as the boundary, we compared the temporal changes of actual evap-
otranspiration (LE), vegetation transpiration (LEc), and soil evaporation (LEs) between
1982–1999 and 2000–2015. During the study period, the total actual ET, vegetation transpi-
ration, and soil evaporation of the study area almost continuously increased from 1982 to
2015. After 1999, the increase rate of LE reduced from 0.068 W/m2 to 0.009 W/m2, and the
increase rate of LEc reduced from 0.052 W/m2 to 0.047 W/m2. Surprisingly, the increase
rate of LEs reduced from 0.012 W/m2 to −0.021 W/m2. It shows that the ecological restora-
tion measures effectively reduced the exposed area of land in the study area and reduced
the rate of total LE. In general, soil evaporation (LEs) is central to the actual ET increase in
the study area. We further compare the changes of ET under different underlying surfaces
and the influencing factors to provide theoretical support for implementing ecological
restoration projects in the study area.

4. Discussion
4.1. Effect of Land Use/Cover on ET Distribution

To study the impact of land use/cover on ET accurately, we superimposed the land
use/cover maps and annual ET results by ArcGIS (taking the 2000 land use/cover map and
replacing the land use/cover from 2000 to 2004, and so on) to extract the ET value under
different land use types. The land use/cover is divided into forest, cropland, grassland,
water, impervious, and bare land in this study, so we only analyzed the effect of plants on
ET. In winter, the overall value of ET is low, and the spatial change is not apparent. The
growing season represents the main ET change, so the main research period is from May to
September every year.

As shown in Figure 8, with the growth of plants, the ET of plants increases gradually
from May to July. The ET reached the maximum in July and began to decline in August.
Therefore, it can be seen that there is a great correlation between ET and surface coverage.
Although the ET of the forest is large, the ET of cropland increases yearly. According to
the above, the cropland area has not increased significantly, so the increase in the ET of
croplands in the growing season may be related to artificial irrigation. From the statistics
of the annual average ET value on these three plants, the ET rate of cropland showed
an obvious upward trend, with an average yearly increase of 0.086 mm/mon. Instead,
the ET rate of forest and grassland showed a downtrend, with an average decrease of
0.014 mm/mon and 0.079 mm/mon, respectively. Combined with the previous study,
implementing ecological restoration projects effectively reduced local ET, which is very
important for water-stress regions. However, it should be noted that the ET rate of croplands
showed an increasing tendency. It is necessary to adjust the planting structure and irrigation
methods to save water and reduce ET effectively.
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Figure 8. The time series of multiyear ET values during the 2000–2015 period on different land use in
the growing season.

4.2. Drivers of ET Change in Different Plants

Figure 9 shows the SHAP values of each factor contributing to ET–XGB across different
plants. If the SHAP value is negative, it indicates that the specialized variables make a
loss of prediction value. Figure 9a–c shows that NDVI, TEM, and SM3 were the main
factors for ET sensitivities in the forest, grassland, and cropland. PA and RH were the
secondary factors in the woods, PRE and SM1 were the secondary factors on grassland and
PA, and SM1 was the secondary factor on cropland for ET sensitivities. Compared with
precipitation, the temperature was the main climate factor for ET on these three plants. The
maximum NDVI SHAP values in forests are 6.1 W/m2, and the minimum NDVI SHAP
values in grasslands are 1.6 W/m2. Because the range span is large, it shows that the change
in NDVI can significantly affect ET.
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value mean influence of variables on ET–XGB model prediction of this sample.

Moreover, to the right of the 0-value line, the SHAP values gradually increased with
increasing NDVI, indicating a significant positive correlation between NDVI and evapo-
transpiration (Figure 9d–f). The SHAP values of TEM in all three sub-bedding cases are
about 5 W/m2, while the SHAP values of TEM in Figure 9d–f are also uniformly distributed
around the value of 0. Additionally, there is an apparent aggregation state within a certain
temperature value, which indicates that either too high or too low temperature will initiate
the main effect on ET and further confirms that there is a threshold effect of temperature on
ET. Although the soil moisture in the root zone (SM3) was the main factor for ET sensitivi-
ties, the SHAP values of SM3 showed a relatively aggregative state under around the value
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of 0, no matter in forest or grassland (Figure 9d–f). This indicates that ET is low when the
soil water content is small. For cropland, the left tails of SHAP values are very scattered,
indicating the more significant the soil moisture content in the root zone, the greater the
ET. Other climate factors limited the average contribution of VPD (0.3 W/m2) to ET–XGB.
However, if VPD is low, it will also inhibit the ET of plants (Figure 9d–f). Except for air
pressure, other factors have positive effects on ET. In summary, the TEM and NDVI are
the relatively critical driving factors for the ET of different plants. Compared with VPD,
soil moisture is dominant for plant water stress in arid and semi-arid regions. To further
understand whether and how the three main factors affect each other, we use the shape
correlation diagram from the SHAP package to explore.

4.3. Coupling Effect and Threshold Effect of Temperature and Soil Moisture on ET Dynamics

The SHAP dependence plot can explain the given variables and how to affect the
prediction of each sample. At the same time, it can also be used to judge whether there is
a coupling effect between different influencing factors. Therefore, the SHAP dependence
plots were used to explore the coupling effect between these three main factors. Human
activities have greatly disturbed vegetation restoration after 2000, so we mainly analyze
the coupling effect of temperature and soil moisture on ET dynamics.

Figure 10a–c shows that TEM and SM3 have a noticeable coupling effect. Specifically,
the slope of the SHAP value is positive, and a high TEM was usually coupled with a higher
SM3, producing positive SHAP values. However, the coupling effect in grassland is more
vital than in forests and cropland. Compared with Figure 10a,c, when TEM is the same,
with the increase in SM3, the SHAP value in grassland increased more obviously, which
suggests that a high root zone soil moisture can bring a higher ET loss in arid and semi-arid
regions. In contrast, due to the influence of human irrigation activities, the coupling effect
between farmland and woodland is not very prominent.
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The SHAP main effect value of TEM always increased with increasing TEM (Figure 10d–f),
indicating that the positive effect of TEM on ET increased. The SHAP main values become
flattened when the temperature value is over 25, 30, and 30 ◦C in the forest, grassland, and
cropland. Therefore, the threshold values are 25, 30, and 30 ◦C in the forest, grassland, and
cropland, respectively. However, the threshold effect of SM3 is less obvious, the SHAP main
effect value of SM3 always increased with increasing SM3 (Figure 10g–i). In forests and
croplands, when the SM3 exceeded 0.1 m3/m3, the influence of SM3 on ET was positive. In
grasslands, when the SM3 exceeded 0.125 m3/m3, the influence of SM3 on ET was positive.
A threshold of TEM on ET was identified in the study area, once the threshold is exceeded,
the increase in temperature will not lead to the growth of ET. When the temperature rises
to a certain value, the plant will choose to close its pores to sustain water in the leaves
and stop transpiration. Therefore, the main cause of vegetation ET affecting the study area
is heat.

Although we found the primary factors and the threshold effect of ET in different
plants, this study also has some uncertainties. First, in this study, we only considered
the response relationship between climate change and vegetation ET on a monthly scale.
Second, this study did not consider the irrigation and managements measures over crop-
lands. Therefore, future studies should consider the impacts of climate change and human
activities on vegetation ET at various time scales.

5. Conclusions

The accurate simulation of actual ET has always been necessary for scientific research.
This study used an improved new PT-JPL model to obtain the actual ET in the study area.
We compared the simulation data over the Inner Mongolia Reach of the Yellow River Basin
area with remotely sensed ET products and eddy-covariance data. In addition, the extreme
gradient boosting models–Shapley additive explanations framework were used to identify
the primary factors and their threshold effect for ET in different plants.

The main findings were as follows:
1. The results of the eddy-covariance flux tower and PML-V2 data sets show that

the new PT-JPL model, which incorporates soil moisture constraints on evaporation and
transpiration simulation, can accurately simulate the spatiotemporal variation of actual
evapotranspiration in the study area.

2. Soil evaporation is the main part of the actual ET increase in the study area.
Implementing ecological restoration projects reduced the exposed land area in the study
area and reduced the rate of total LE effectively. After 1999, the increase rate of LE reduced
from 0.068 W/m2 to 0.009 W/m2, and the increase rate of LEs reduced from 0.012 W/m2 to
−0.021 W/m2.

3. Since the ecological restoration project was implemented in 1999 by the Chinese
government, the ET of forests and grasslands has decreased in the growing season. On
the contrary, cropland ET is increasing yearly, while the cropland area has not increased
significantly. Therefore, it is necessary to adjust the planting structure and irrigation
methods to save water and reduce ET effectively.

4. NDVI, temperature and root zone soil moisture were the main environmental
factors causing ET changes in different plants. Meanwhile, temperature and root zone soil
moisture have a noticeable coupling effect, except grassland. Additionally, there was a
pronounced threshold effect of temperature stress on ET, which is 25, 30, and 30 ◦C in the
forest, grassland, and cropland.
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