
Citation: Ma, Y.; Qu, X.; Yu, C.; Wu,

L.; Zhang, P.; Huang, H.; Gui, F.;

Feng, D. Automatic Extraction of

Marine Aquaculture Zones from

Optical Satellite Images by R3Det

with Piecewise Linear Stretching.

Remote Sens. 2022, 14, 4430. https://

doi.org/10.3390/rs14184430

Academic Editor: Wenwen Li

Received: 5 August 2022

Accepted: 31 August 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automatic Extraction of Marine Aquaculture Zones from
Optical Satellite Images by R3Det with Piecewise
Linear Stretching
Yujie Ma 1,† , Xiaoyu Qu 2,†, Cixian Yu 1, Lianhui Wu 3 , Peng Zhang 1, Hengda Huang 1, Fukun Gui 4

and Dejun Feng 4,*

1 Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
2 School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China
3 Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology,

Tokyo 108-8477, Japan
4 National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University,

Zhoushan 316000, China
* Correspondence: fengdj@zjou.edu.cn; Tel.: +86-152-5708-0767
† These authors contributed equally to this work.

Abstract: In recent years, the development of China’s marine aquaculture has brought serious chal-
lenges to the marine ecological environment. Therefore, it is significant to classify and extract the
aquaculture zone and spatial distribution in order to provide a reference for aquaculture management.
However, considering the complex marine aquaculture environment, it is difficult for traditional
remote sensing technology and deep learning to achieve a breakthrough in the extraction of large-
scale aquaculture zones so far. This study proposes a method based on the combination of piecewise
linear stretching and R3Det to classify and extract raft aquaculture and cage aquaculture zones. The
grayscale value is changed by piecewise linear stretching to reduce the influence of complex aquacul-
ture backgrounds on the extraction accuracy, to effectively highlight the appearance characteristics
of the aquaculture zone, and to improve the image contrast. On this basis, the aquaculture zone
is classified and extracted by R3Det. Taking the aquaculture zone of Sansha Bay as the research
object, the experimental results showed that the accuracy of R3Det in extracting the number of raft
aquaculture and cage aquaculture zones was 98.91% and 97.21%, respectively, and the extraction
precision of the area of the aquaculture zone reached 92.08%. The proposed method can classify
and extract large-scale marine aquaculture zones more simply and efficiently than common remote
sensing techniques.

Keywords: image stretching; R3Det; aquaculture; remote sensing; deep learning

1. Introduction

In recent years, with the continuous increase in fishing intensity, marine aquatic
resources have gradually decreased. To meet the demand for aquatic products, the marine
aquaculture industry in various countries has been extensively developed [1,2]. According
to the statistics of global aquaculture production in 2022, the total amount of aquaculture
in Asia accounts for 91.61% of the global total. China accounts for 62.77% of the total
aquaculture in Asia, and the aquaculture industry has an important position in China [3].
As an important part of the aquaculture industry, the rapid expansion of marine aquaculture
has brought great challenges to the marine ecological environment [4]. The geographical
and environmental conditions of marine aquaculture zones weaken the exchange capacity
of internal and external water bodies. Meanwhile, the pollutants such as fish excrement,
residual bait, and antibiotics exceeded the environmental carrying capacity, causing serious
water pollution in the marine [5–7]. Moreover, the harsh natural environment such as
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typhoons is constantly threatening the development of marine aquaculture. The huge
waves caused by typhoons can bring devastating blows to the aquaculture zones and cause
incalculable economic losses [8,9]. Reasonable planning of aquaculture zones, control of
aquaculture scale, and reduction in aquaculture density can reduce aquaculture risks and
improve economic efficiency. Therefore, it is significant to accurately obtain the spatial
distribution, aquaculture quantity, and the area of the marine aquaculture zone [10].

Marine aquaculture zones are widely distributed, numerous, and complex in the envi-
ronment, which makes it difficult to obtain accurate information. The traditional method
of manually determining the number and area of aquaculture zones is time-consuming
and labor-intensive. High-resolution remote sensing satellite images are featured with a
wide imaging range and high imaging accuracy; thus, they have obvious advantages for
the extraction of large-scale and small target objects and have been widely developed in
the extraction of marine aquaculture zones [11–13]. Jayanthi adopted visual interpretation
to extract aquaculture zones along the southeastern coast of India and statistically analyzed
changes in aquaculture zones [14]. Seto and Fragkias adopted visual interpretation to
extract information on aquaculture zones in QuickBird remote sensing images to inves-
tigate the impact of the Ramsar Convention on Wetlands on the aquaculture industry.
It was found that the implementation of the Ramsar Convention on Wetlands did not
slow down the development of aquaculture in Ramsar wetlands [15]. Although the visual
interpretation method has higher extraction accuracy, the workload is high in terms of time
consumption, and the extraction accuracy depends on the experience of the interpreter.
This method has strong subjectivity and is not suitable for the extraction and quantitative
analysis of large-scale aquaculture zones. To further improve the extraction accuracy and
efficiency of aquaculture zones, experts and scholars proposed methods such as informa-
tion extraction based on spatial structure [16,17], information extraction based on ratio
index analysis [18], information extraction based on correspondence analysis [19], and
object-oriented information extraction [20–22]. The aquaculture zone is effectively extracted
by classifying the spatial, spectral, texture, and shape features of the object. Although the
use of traditional remote sensing technology can achieve good results in the extraction of
a single aquaculture type in a small range, with the expansion of the aquaculture range,
the aquaculture environment becomes increasingly complex. Meanwhile, the traditional
extraction method is affected by factors such as “salt-and-pepper noise”, “same substance
with different spectrum”, and “same spectrum foreign matter”, which lead to a decrease in
the extraction accuracy.

In recent years, deep learning has achieved great success in the field of computer
vision. Because of its generalization and robustness, it has been gradually applied to
aquaculture extraction [23,24]. In the face of high-density, large-scale marine aquaculture
zones and aquaculture sea conditions with complex spectral information, deep learning has
better feature analysis capabilities and can achieve better extraction accuracy. For example,
Cui improved the U-Net network structure by adding a pyramid up-sampling module
and a squeeze-excitation module (PSE), which solved the problem of fuzzy boundaries.
The network was applied to extract the raft aquaculture zone in the east of Lianyungang,
China [25]. Liu et al. proposed a multisource feature fusion target extraction method
based on DeepLabv3, which could effectively extract marine aquaculture zones with weak
signals [26]. Fu et al. proposed a hierarchical cascade convolutional neural network (HC-
Net), which could effectively extract multiscale information from images and map marine
aquaculture zones more finely [27]. On the basis of Sentinel-2 multispectral scan imaging
(MSI) image data, the improved U-Net model reduces the edge-sticking phenomenon and
improves the extraction accuracy of the aquaculture zone [28]. However, to improve the
extraction accuracy of aquaculture zones, most of the existing research took raft aquaculture
in a specific zone as the research object, and the extraction of aquaculture areas in this
area was realized by improving the network structure. This method has high professional
requirements for scholars, and the extraction range is limited, which makes it difficult to
be applied to statistics and monitoring in large-scale aquaculture zones. In addition, the
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marine aquaculture management department usually needs to conduct statistical analysis
and monitoring of a variety of aquaculture types (mainly including rafts and cages), and
the extraction of a single type of aquaculture zone cannot provide substantial help for the
statistical management of aquaculture zones.

As an improved single-stage detector, R3Det has higher extraction speed and extraction
accuracy, and its rotation bounding box has a higher fitting effect with the extraction
target [29]. In a previous study, Ma et al. applied it to the extraction of cage aquaculture
zones in Fujian Province, and good results were achieved in the extraction of large-scale
single-type aquaculture zones [30]. However, the extraction of cage aquaculture zones is
still affected by similar features due to the complex marine environment. For example, some
raft aquaculture and cage aquaculture zones have similar characteristics, which reduces
the extraction accuracy of the model for the aquaculture zone. Meanwhile, the statistics
of a single type of cage aquaculture do not result in practical effects on the management
of marine aquaculture. In this case, it is crucial to reduce the influence of the aquaculture
background on the aquaculture zone and realize the classification and extraction of different
aquaculture types. Moreover, further improving the extraction accuracy in a simple way
needs to be investigated.

As a high-efficiency and low-cost image processing technology, image enhancement
can highlight the important details according to qualitative criteria so as to improve the
extraction of the target [31–34]. In particular, the method of enhancing image contrast
using an image histogram has gradually been accepted because of its ability to process
images more adaptively [35,36]. Therefore, this study proposes a combination of histogram-
based piecewise linear stretching and R3Det to extract marine aquaculture zones. The
image of the offshore aquaculture zone is enhanced by piecewise linear stretching, and
then the aquaculture zone is classified and extracted by R3Det. It was found that piecewise
linear stretching can effectively suppress the grayscale range of raft aquaculture and cage
aquaculture zones and reduce the color difference in the raft aquaculture zone due to
different aquaculture periods. Meanwhile, it can improve the contrast of the image and
reduce the influence of the aquaculture background on the extraction accuracy of the
aquaculture zone. The experimental results indicate that the proposed method is simple and
efficient to improve the classification and extraction accuracy of offshore aquaculture zones.

2. Study Area and Data
2.1. Study Area

Sansha Bay is in the northeastern part of Fujian Province (26◦30′–26◦58′N, 119◦26′–120◦10′E)
(Figure 1). It is a semi-closed world-class natural deep-water port composed of Dongchong
Peninsula and Jianjiang Peninsula, with a water area of 714 square kilometers [37,38].
Moreover, Sansha Bay is an important aquaculture zone in China, where cage aquaculture
and raft aquaculture are the two main aquaculture types (Figure 2). Traditional aquaculture
cages are mainly used for fish farming and are composed of rigid frames (wood or steel
structure), flexible nets, floats (EPS floating balls), and anchors. The cages are always
floating on the water surface and can be seen as a gray-white color in the remote sensing
images (Figure 2c) due to the cage frame and floats. Raft aquaculture mainly uses floats and
ropes to form floating rafts, which are fixed to the seabed with cables so that the seedlings
of seaweed and sessile animals (such as mussels) are fixed on the slings suspended on the
floating raft. The raft aquaculture zone has a dark-gray band on the image (Figure 2d),
and the color tone of a single aquaculture zone is uniform. Meanwhile, the depth of tone
varies between different raft aquaculture zones at different aquaculture stages. In addition,
there are many estuaries and islands in Sansha Bay, and the sand in the near-coastal zone is
accumulated, resulting in a complex sea environment.
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2.2. Data and Preprocessing

Optical remote sensing images can provide spectral information and capture ground
objects with different spectral characteristics. Gaofen-6 (GF-6) is a low-orbit optical remote
sensing satellite equipped with a multispectral high-resolution sensor PMS (panchromatic
band spatial resolution of 2 m, multispectral band spatial resolution of 8 m) and a multispec-
tral medium-resolution wide-width sensor WFV (multispectral band spatial resolution of
16 m), which can achieve a global observation, and the image data effectively cover the
coastal areas of China; the specific parameters of the two sensors are shown in Table 1.
Compared with Gaofen-1, Ziyuan-3, and other Gaofen series satellites, GF-6 PMS obser-
vation has a width of 95 km, and it has the advantages of large coverage, which help to
avoid the influence of ground object reflectivity due to different image shooting times. In
addition, GF-6 and GF-1 have multispectral high-resolution sensors with the same spatial
resolution, enabling 2/8 m sensors to revisit the world in 1 day.
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Table 1. Indicators of GF-6 satellite payload and performance.

Sensor Type Spectral Range
(nm)

Spatial
Resolution (m)

Swath Width
(km)

Revisit Period
(Day)

Coverage
Period (Day)

PMS sensor

Panchromatic Panchromatic:
450–900 2

95 4 41
Multispectral

Blue: 450–520

8
Green: 520–590
Red: 630–690
NIR: 770–890

WFV sensor Multispectral
Blue: 450–520

16 860 4 41Green: 520–590
Red: 630–690

The raft aquaculture zone has different characteristics in different aquaculture stages.
The zone with a longer aquaculture period is more distinct from the seawater background,
while the characteristics of the cage aquaculture zone do not change with the aquacul-
ture stage. To ensure that the raft aquaculture zone had obvious characteristics in the
remote sensing images and to avoid the influence of cloud coverage, this study selected the
panchromatic and multispectral images of PMS (17 April 2020). All images were prepro-
cessed by ENVI5.3 software, in which panchromatic images were processed by radiometric
calibration and orthorectification, and multispectral images were subjected to radiometric
calibration, atmospheric correction, and orthorectification. In this way, the effects of unfa-
vorable factors such as sensors and the atmosphere could be eliminated [39,40]. Meanwhile,
to ensure the visual effect during data processing, it was necessary to upscale the image
resolution to 2 m with ENVI5.3.

3. Research Methods
3.1. Extraction Process from Satellite Images

The operation process of extracting aquaculture zones in this study consisted of the
following three stages: image processing, model training, and results analysis (Figure 3). In
the first stage, the effects of factors such as sensors and the atmosphere were eliminated by
image preprocessing and by constructing the NDWI (normalized difference water index,
which can efficiently achieve the separation of water and land when faced with a large
area of sea) model to realize the separation of water and land for the fused images, thus
eliminating the influence of inland features on the extraction accuracy of aquaculture zones.
However, it was found that some of the cages would be rejected as non-water bodies in the
experiment because the aquaculture cages made of materials such as wooden boards or
steel structures were floating on the sea surface, and the spectral reflectance was different
from that of water bodies. Therefore, it was necessary to repair this part of the image
information to ensure the integrity of the information to be identified, and then the image
was stretched by piecewise linear stretching. In addition, in subsequent experiments, only
the true-color images composed of three bands of red, green, and blue were used as data
sources. In the second stage, to ensure the credibility of the experiment, it was necessary to
divide the research area into a training set and a test set and expand the training samples
for model training. In the third stage, the test set was input into the trained model for
testing, the resulting image was obtained, and the accuracy evaluation and comparative
analysis of the resulting images under different conditions were performed.
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3.2. Piecewise Linear Stretching Based on Histogram

An image histogram reflects the grayscale value distribution that represents the occur-
rence frequency of each grayscale value [41]. The piecewise linear stretching based on a
histogram can highlight the region of interest by changing the grayscale value of the image
pixel, enhancing the image contrast, and improving the image quality [42,43]. Sansha
Bay aquaculture zones were mainly divided into three types: cage aquaculture zone, raft
aquaculture zone, and non-aquaculture zone. Among them, the raft aquaculture zone had
weak texture characteristics, and there were differences in aquaculture periods and zones.
Although cage aquaculture had strong texture characteristics, the differences between
some cages and raft aquaculture zones were small. To intuitively reflect the grayscale
characteristics of three different aquaculture zones, we statistically evaluated the grayscale
values of the different types of aquaculture zones in Figure 4, and the results are shown in
Table 2. In the green band and blue band, the cage aquaculture zone had the largest average
grayscale value, followed by the non-aquaculture zone, while the raft aquaculture zone
had the smallest average grayscale value due to the influence of underwater aquaculture
species; in the red band, the average grayscale value of the raft aquaculture zone was
higher than that of the non-aquaculture zone. Therefore, to better reduce the complex
appearance characteristics of the raft aquaculture zone and the influence of the aquaculture
background, the effect of image recognition was improved by enhancing the contrast of
the image. In this study, when adjusting the piecewise transformation points of piecewise
linear stretching, the transformation points were set between the average grayscale value
of the raft aquaculture zone and the non-aquaculture zone, as well as between that of the
non-aquaculture zone and the cage aquaculture zone. The schematic of piecewise linear
stretching is shown in Figure 5, and the corresponding calculation is shown in Equation (1).

g(y) =


c
a × f(x) 0 ≤ f(x) < a[

d − c
b − a

]
× f(x)+c a ≤ f(x) ≤ b

255 − b
255 − d × f(x) + d b < f(x) ≤ 255

. (1)
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Figure 5. The schematic diagram of piecewise linear stretching. Here, f(x) represents the grayscale
value of the original image; a and b represent the segment transformation points in the original image;
g(y) represents the grayscale value after image enhancement; c and d represent the segment point
after enhancement.

To compress the grayscale range of raft aquaculture and cage aquaculture, according
to the actual stretching effect, the value of c should be within [0, a), and the value of d
should be within (b, 255]. The images before and after piecewise linear stretching are
shown in Figure 6. From the comparison of the enlarged area in the lower right corner
of the two figures, it can be seen that, in the image after piecewise linear stretching,
the grayscale interval of the raft aquaculture zone was obviously compressed, and the
complex appearance characteristics caused by the aquaculture cycle were reduced, while
the grayscale of the aquaculture cage was significantly improved.
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3.3. Dataset

In this study, the aquaculture zone of Sansha Bay was used as the dataset and divided
into a training set and a test set. The training set was used to train the parameters in the
model, and the test set was used to evaluate the generalization ability of the model. The
traditional dataset division is mainly based on the training set to ensure the training effect
of the model. However, aquaculture zones have different characteristics such as color and
texture. To ensure the credibility of the model evaluation results, the test samples should
contain as many characteristics of the identification target as possible. Therefore, the ratio
of the training set and test set was adjusted to 0.4:0.6 by taking the aquaculture zone of
Sansha Bay as the unit in this study [44–46]; the division results are shown in Figure 7a. To
ensure the quality of training samples and alleviate the impact of the shortage of training
samples on model training, this study used python to divide the training image into
135 images of 800 × 800 pixels as the data source (Figure 7b), and the labelme software
was adopted to create a training set (Figure 7c). Then, the training set was augmented
using data augmentation methods, including image translation, image flipping (horizontal,
vertical, diagonal), and image brightness adjustment. Through data augmentation, the
original 135 images were expanded tenfold, yielding 1350 training samples.
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Figure 7. Dataset division of Sansha Bay (a), where the blue patch represents the range of the training
set, and the red patch represents the range of the test set; an example image in the training dataset
with a repulsion of 800 × 800 pixels (b); building of the training set by labelme (c), where the red
borders represent cages, and the green borders represent rafts.

According to the research conditions, the model training environment was as follows:
Ubnutu 16.04 + intel®Cor (Santa Clara, CA, USA)-eTMi9-10900 XCPU + RTX2060 super +
python 3.5 + cuda 10.0 + opencv-python 4.1.1.26 + tensorflow-plot 0.2.0 + tensorflow-gpu
1.13 + tqdm 4.54.0 + shapely 1.7.1 + cpython 0.29.23, and the model training parameters are
shown in Table 3.
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Table 3. Model training parameters.

Parameter Value

Max epoch 10
Iteration epoch 27,000
Max iteration 270,000

Batch size 1
Epsilon 0.00005

Momentum 0.9
Learning rate 0.0005
Decay weight 0.0001

3.4. R3Det

The R3Det detector [29] is a single-stage detector proposed by Xue et al. by adding
a feature refinement module (FRM) to RetinaNet [47]. R3Det is mainly composed of two
parts: backbone network and regression subnetwork (classification and bounding box),
where the backbone network involves building a feature pyramid network (FPN) [48]
on ResNet [49] through top-down paths and horizontal connections. In this way, a rich
multiscale feature pyramid is constructed from an input single-resolution image to detect
objects at different scales, thereby efficiently extracting features from images. Each layer
of the backbone network is connected with a classification and regression sub-network
for object classification and location prediction. The horizontal anchor point can achieve
a higher recall rate, and the rotation anchor point has a more accurate monitoring effect
in dense scenes. Thus, R3Det uses the horizontal anchor point in the first stage to obtain
faster speed and higher recall rate, and it uses refined rotation anchors in the refinement
stage to detect objects in dense scenes. Meanwhile, to avoid the feature offset caused by the
position change of the bounding box, FRM re-encodes the position information of different
target bounding boxes to the corresponding feature points, reconstructs the feature map,
and realizes the accurate detection of the target. The model structure is shown in Figure 8.
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3.5. Confusion Matrix

To verify the accuracy of the extraction results in the Sanshawan aquaculture zone. This
study adopted the confusion matrix (Table 4) for evaluation. To ensure the generalization
and authenticity of the test results, the remote sensing images in the test set were used
as the data source to avoid the influence of the training set on the extraction accuracy of
the model. On the basis of the extracted result images, this study combined with higher-
resolution Google satellite images to visually interpret the extraction targets to obtain
relevant aquaculture information, ensuring the accuracy and reliability of the evaluation
data [50]. Three commonly used precision evaluation indicators, namely precision, recall,
and F-measure, were used to evaluate the extraction precision of the model. Precision
and recall indicate the characteristics of a certain classification, while F-measure combines
precision and recall and can be used for the overall evaluation of model accuracy. When
the F-measure is higher, the classification model is more effective. Therefore, F-measure
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was used as the indicator to evaluate the accuracy of the model in extracting aquaculture
zones. The specific calculation of the evaluation indicators is as follows:

Precision =
TP

TP + FP
. (2)

Recall =
TP

TP + FN
. (3)

F-measure =
2 × recall × precision

recall + precision
. (4)

Table 4. Confusion matrix.

Actual

Positive Negative

Predict
Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

4. Experimental Results and Analysis
4.1. Extraction Results

The extraction results of the marine aquaculture zone on the test set based on piecewise
linear stretching and R3Det are shown in Figure 9. Raft and cage aquaculture zones are
marked with bounding boxes with bright yellow color and dark yellow color, respectively.
In addition, “SC” represents the predicted score of cage aquaculture, “RF” represents the
predicted score of raft aquaculture, and the score ranges from 0 to 1. A larger score indicates
a stronger correlation between the bounding box and the real ground object. The “angle”
represents the rotation angle of the bounding box relative to the horizontal.
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To intuitively explain the influencing factors of the extraction accuracy, this study
examined the missed objects and misidentified objects in the test images. It can be seen
from the number and distribution of missed targets and misidentified targets in Figure 9
that the aquaculture zones with poor extraction effect were mainly distributed in coastal
zones, especially at the intersection with rivers, and there were many omissions and
misidentifications. As for the extraction of the raft aquaculture zone, the number of missed
extraction zones was lower than the number of misidentified zones. According to field
investigations, it was found that the raft aquaculture zones that were not extracted were
mainly small aquaculture zones with inconspicuous appearance characteristics; the zones
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mistakenly identified as raft aquaculture were mainly aquaculture cages with low grayscale
values because farmers usually cover the top of the cages with a layer of black bird nets to
prevent birds from catching fish in the cages. As a result, the grayscale value of the cage
aquaculture zone was low, which had a certain impact on the accuracy of raft aquaculture
extraction. For the extraction of aquaculture cages, the number of missed extraction
cages was much larger than the number of misidentified cages. Misidentified aquaculture
cages were mainly affected by ships at sea and were mainly distributed in coastal zones.
The missed identification of aquaculture cages was mainly composed of cages with low
grayscale values and cages with a small area of the aquaculture zone and oversaturated
brightness. The lower grayscale value was mainly due to the existence of the black bird net
on the upper layer of the cage, which led to the zone resembling raft aquaculture. Cage
aquaculture was similar to raft aquaculture, with many omissions in smaller zones, and
this was mainly due to the influence of image resolution, resulting in the loss of target
texture features. Moreover, due to the influence of waves, the brightness of the surrounding
cages was oversaturated, which led to an increase in the number of missed cages during
the extraction process.

4.2. Comparisons of Accuracy of Different Stretching Conditions

To verify that piecewise linear stretching could effectively highlight the cage and raft
aquaculture zone and improve the image contrast, this study compared piecewise linear
stretching with several commonly used image stretching methods, including square root
stretching, equalization stretching, Gaussian stretching, and logarithmic stretching. R3Det
was used to classify and extract the aquaculture zones from the stretched images by different
stretching methods and the original image, and the comparison results are shown in Table 5.
For different stretched images, the F-measures of the extracted cage and raft aquaculture
zones by R3Det were both higher than 90%, and the F-measure of the raft aquaculture zone
was higher than that of the cage aquaculture zone. In the extraction results of cages, the
F-measure following logarithmic stretching was lower than the unstretched results, and
the F-measure following square root stretching and Gaussian stretching was higher than
the unstretched results, but the overall improvement effect was not obvious. Furthermore,
the F-measure following equalization stretching was higher than the unstretched results,
and the F-measure following piecewise linear stretching was the largest, while the effect
of extracting cages was the best. Additionally, the recall was smaller than the F-measure.
It can be seen that the main factor affecting the accuracy was the missed extraction of
cages. In the extraction results of rafts, the F-measures of square root stretching, logarithmic
stretching, and Gaussian stretching were all lower than the unstretched results, and the
square root stretching and the logarithmic stretching had a lower recall. Furthermore,
equalization stretching and piecewise linear stretching had a good effect on the extraction
of cultured rafts, and piecewise linear stretching performed the best.

Figure 10 shows the results of R3Det extracting aquaculture zones under different
stretching conditions. To visually show different extraction effects, some annotations
are added to the figure, and the changes before and after the annotations are shown
in Figure 10g,h. The red rectangles in Figure 10 represent the wrongly extracted aquaculture
zones, and the green rectangles represent the aquaculture zones that were not completely
enclosed by the bounding box. Compared with the unstretched image (Figure 10f), the over-
all brightness of the resulting images of square root stretching (Figure 10a) and logarithmic
stretching (Figure 10b) was significantly improved, but the contrast between the aquacul-
ture zone and the aquaculture background was not significantly enhanced. Meanwhile,
the overall brightness of the resulting image of Gaussian stretching (Figure 10c) was not
significantly improved, but the grayscale range of the aquaculture zone was compressed
to a certain extent, which reduced the complex characteristics of the aquaculture zone.
Although equalization stretching (Figure 10d) enhanced the image brightness and the
contrast between the aquaculture zone and the aquaculture background, the noise contrast
in the aquaculture background also increased. By contrast, piecewise linear stretching could
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not only improve the brightness and contrast of the image but also reduce the complex
features caused by different aquaculture periods. According to the number of annotations
in Figure 10, under the condition of piecewise linear stretching, R3Det performed better
than other stretching methods in extracting the aquaculture zone.

Table 5. Comparisons of extraction cage and raft aquaculture zones under different image stretching
conditions by R3Det.

Type Stretching Method Precision
(%)

Recall
(%)

F-Measure
(%)

Cage

Square root stretching 97.88 89.52 93.51
Logarithmic stretching 98.57 85.09 91.33

Gaussian stretching 97.58 89.35 93.28
Equalization stretching 96.27 94.41 95.33

Piecewise linear stretching 98.79 95.67 97.21
Unstretched 98.28 88.16 92.91

Raft

Square root stretching 97.17 94.31 95.72
Logarithmic stretching 97.30 90.26 93.65

Gaussian stretching 96.66 96.41 96.53
Equalization stretching 97.13 98.61 97.86

Piecewise linear stretching 98.66 99.16 98.91
Unstretched 96.67 96.73 96.70
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Figure 10. Resulting images of R3Det extraction aquaculture zone under different stretching con-
ditions. The red rectangles represent misidentified aquaculture zones, and the green rectangles
represent aquaculture zones not included by the bounding box. (a) Square root stretching: 13 green
rectangles. (b) Logarithmic stretching: 14 green rectangles. (c) Gaussian stretching: 10 green rectan-
gles and one red rectangle. (d) Equalization stretching: seven green rectangles and one red rectangle.
(e) Piecewise linear stretching (ours): six green rectangles. (f) Unstretched: 11 green rectangles and
one red rectangle. (g) Images of misidentified result (left) and manually annotated (right). (h) Images
of aquaculture zones not fully included by the bounding box (left) and manually annotated (right).
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4.3. Comparisons of Different Models

Previous research work confirmed the high accuracy and high efficiency of R3Det for
aquaculture cages [30]. However, the simultaneous applicability of extracting raft aqua-
culture and cage aquaculture still requires further verification. R2CNN [51] is a two-stage
detector based on the faster R-CNN [52] for detecting text in natural scenes in any direction.
It has high accuracy and a high degree of fit between the inclined bounding box and the
target, which ensures the advantage of R2CNN in scene text extraction; RetinaNet is a new
single-stage detector improved by taking ResNet-101–FPN [48] as the backbone, which can
solve the problem of class imbalance by adding a “focal loss” function. Meanwhile, the
fit between the rectangular box and the extraction target is improved by adding a rotated
rectangular box into RetinaNet [29], which further improves the accuracy of the single-stage
detector to extract the target objects from the remote sensing image. In this study, R2CNN,
RetinaNet, and R3Det were used to simultaneously extract the raft aquaculture zone and
the cage aquaculture zone for comparative analysis. The classification and extraction
accuracy of different models for aquaculture zones is shown in Table 6. Although the
F-measures of the three models for extracting cage aquaculture and raft aquaculture zones
all exceeded 95%, compared with R2CNN and RetinaNet, R3Det had a better extraction
effect. Figure 11 shows the partial extraction results of the three models in the marine
aquaculture zone under piecewise linear stretching. For the extraction results of R3Det,
R2CNN, and RetinaNet, three, 11, and 23 bounding boxes did not fit the aquaculture zone,
respectively. Compared with R2CNN and RetinaNet, the bounding box extracted by R3Det
fit better with the aquaculture zone. Therefore, the use of R3Det for the statistical analysis
of aquaculture zones had higher reliability.

Table 6. Comparisons of extraction accuracy of aquaculture zones using different models.

Type Model Precision (%) Recall (%) F-Measure (%)

Cage
R2CNN 97.59 95.94 96.76

RetinaNet 96.97 95.87 96.42
R3Det 98.79 95.67 97.21

Raft
R2CNN 97.82 99.10 98.45

RetinaNet 96.66 98.84 97.74
R3Det 98.66 99.16 98.91
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5. Discussion
5.1. Importance of Piecewise Linear Stretching for Extraction of Aquaculture Zones

The piecewise linear stretching based on image histogram has a good promotion effect
on the extraction of coastal aquaculture. However, influenced by factors such as aquaculture
types, aquaculture cycles, human intervention, and coastal and estuary sediments, it is
difficult to further improve the extraction accuracy of marine aquaculture zones. The
piecewise linear stretching takes into account the characteristics of different grayscale
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values between the aquaculture zone and the aquaculture background and sets different
thresholds between raft aquaculture, non-aquaculture, and cage aquaculture zones, which
can reduce the grayscale level of raft aquaculture zones. In this way, the grayscale value
of the cage aquaculture and the nearshore sediment deposition zone is improved, and
the grayscale value of the raft aquaculture, cage aquaculture, and the nearshore sediment
deposition zone is compressed, as shown in Figure 6. Accordingly, the features of raft
aquaculture and cage aquaculture zones are highlighted, the contrast of images is improved,
and the influence of nearshore and estuary zones on the classification and extraction of
marine aquaculture zones is reduced. Compared with the method of using remote sensing
technology and improving the network model to improve the extraction accuracy, this
method is simpler, more feasible, wider in extraction range, and higher in application
value. To further improve the extraction accuracy, traditional remote sensing methods such
as object-oriented extraction and threshold segmentation are interfered with by various
factors such as sediment, sediment concentration, and chlorophyll concentration in the
aquaculture background, making it difficult to effectively distinguish the aquaculture
zone from the aquaculture background, thus leading to a high false-positive rate. With
the increase in the area, the phenomenon of “same spectrum foreign matter” gradually
increases, which also makes it more difficult for traditional methods to extract the target.
The method of improving the extraction accuracy of aquaculture zones by improving
the network structure of deep learning not only has higher technical requirements for
researchers but is also difficult to implement. At this stage, the extraction effect of this
method on the marine aquaculture zone has not been significantly improved. According to
the extraction results of raft aquaculture and cage aquaculture in Sansha Bay, the precision,
recall, and F-measure of R3Det were all greater than 95% under piecewise linear stretching.
As a natural aquaculture port, Sansha Bay has an area of 714 square kilometers. There
are many estuaries, and the waves at the connection with the outer sea are larger. The
successful application of the proposed method in this complex environment shows that
the method is not restricted by the area and specific aquaculture environment, and it can
provide guidance for the marine management department.

5.2. Importance of R3Det for Extraction of Aquaculture Zones

Under piecewise linear stretching, R3Det simultaneously extracts raft aquaculture
and cage aquaculture zones with higher accuracy. Moreover, it has higher accuracy and
faster speed than the advanced single-stage detectors and two-stage detectors in the field of
computer vision. As a more advanced two-stage detector, R2CNN is improved on the basis
of fast R-CNN, which not only maintains the extraction accuracy of the two-stage detector
but also realizes the tilting of the bounding box. However, the marine aquaculture zone
has a large aspect ratio and dense arrangement. There are many “non-fitting” phenomena
in the results identified by R2CNN, resulting in more aquaculture background information
inside the bounding box. This not only increases the impact of background information
on classification accuracy but also reduces the precision of the area extraction. Although
RetinaNet introduces a “focal loss” function to solve the problem of class imbalance, the
extraction results show (Table 6, Figure 11) that, in the classification and extraction of
aquaculture zones, RetinaNet has a lower extraction accuracy and has more “non-fitting”
phenomena, resulting in lower reliability when the extraction results are used for statistical
analysis in aquaculture zones. By combining the horizontal frame and the rotating frame,
R3Det improves the detection speed and accuracy. Furthermore, the feature map can be
reconstructed according to the added FRM to achieve feature alignment, ensure the fit
of the bounding box and the border of the aquaculture zone, and reduce the influence of
non-aquaculture zones.
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5.3. Influence of the Bounding Box on the Aquaculture Zone

This study verified that piecewise linear stretching and R3Det have good performance
in classifying and extracting aquaculture zones. However, the bounding box in the extrac-
tion result of R3Det cannot completely fit the actual aquaculture boundary. Therefore, the
area of the aquaculture zone is counted according to the coordinate information of the
bounding box, and the result obtained is different from the actual aquaculture area. To
evaluate the gap between the area obtained by the method proposed in this study and the
actual area, eight zones with a size of 4 km2 were randomly selected in the test result image
for comparative analysis, and the selected zones are illustrated in Figure 9. In the extraction
results, each bounding box had four corresponding coordinate points, allowing the size of
the area represented by the bounding box to be obtained. Meanwhile, on the basis of the
vectorized data of different types of aquaculture zones in the eight regions, the actual area
was obtained.

Figure 12 shows the extraction results and vectorization results of the selected eight
regions. It can be seen that the extraction results of the proposed method could effectively
avoid the phenomenon of “adhesion” in the aquaculture zone, and the bounding box had
good coverage for the aquaculture zone. The detailed results are presented in Table 7.
Except for the raft aquaculture zone in zone A, the area of the cage and raft aquaculture
zones extracted by R3Det were larger than the vectorized results. This is mainly because the
bounding box contained some non-aquaculture zones due to the actual aquaculture zone
and the bounding box not fitting completely. In addition, the differences in the extraction
precision of the area of cages and rafts in the eight regions were obvious, as the area of the
non-aquaculture in the bounding box had a greater contingency for smaller aquaculture
zones. Additionally, the precision in the G zone was −189.67%, because the cages in this
zone had low grayscale values and were mistakenly identified as raft aquaculture zones.
To ensure the validity of the extraction precision, all areas of cages and rafts in the eight
regions were evaluated as data sources. The area extraction precision of cage aquaculture
and raft aquaculture was 92.48% and 91.88%, respectively, and the extraction precision of
the area of the aquaculture zone was 92.08%. Therefore, although the bounding box in the
extraction results of R3Det could not completely fit the actual aquaculture boundary, the
actual area represented by the bounding box was used for the statistical analysis of the
aquaculture area, and the accuracy exceeded 90%, indicating high reliability.

Table 7. Extraction precision of the R3Det model for the area of the aquaculture zone.

ID Type Vectorized
(Hectare)

R3Det
(Hectare)

Precision
(%) Type Vectorization

(Hectare)
R3Det

(Hectare)
Precision

(%)

A Cage 7.04 7.83 88.75 Raft 74.24 66.58 89.68
B Cage 0.00 0.00 - Raft 168.34 188.41 88.08
C Cage 8.98 11.53 71.60 Raft 173.51 188.76 91.21
D Cage 53.30 62.38 82.97 Raft 110.86 120.95 90.90
E Cage 28.80 33.83 82.53 Raft 150.40 166.21 89.49
F Cage 71.31 72.06 98.95 Raft 8.13 8.28 98.12
G Cage 47.97 50.59 94.53 Raft 0.62 2.41 −189.67
H Cage 125.49 130.45 96.05 Raft 1.76 2.10 80.68

A–H Cage 342.89 368.68 92.48 Raft 687.85 743.70 91.88
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5.4. Problems and Prospects

There are still some shortcomings in the method proposed in this study. To reduce the
impact of complex inland on aquaculture zones, when separating land and water, inland
water bodies will affect the results, and some aquaculture cages will be eliminated as
non-water bodies. This part of the patch needs to be repaired, which inevitably increases
the workload. Meanwhile, when performing linear stretching of the image, the threshold
setting is artificially determined according to the histogram of the number of pixels with
different grayscale scales, and there may be slight differences from the optimal threshold
setting, which will affect the image stretching effect and reduce the extraction accuracy.
Furthermore, a rectangular bounding box was used to replace the aquaculture zone in the
results extracted by R3Det. Although the fit between the bounding box of R3Det and the
object was the highest in the rotating object detection model, the result was still affected by
non-aquaculture zones.

In future work, we will try to extract the boundary of the aquaculture zone according
to the grayscale difference of the object in the bounding box, establish the area of interest
of the aquaculture zone, and further improve the extraction precision of the aquaculture
area. With the improvement of multispectral satellite resolution, the development of the
aquaculture industry can progress more effectively by establishing a more reasonable
aquaculture plan via the extraction of aquaculture information from the remoted images. In
addition, marine litter is an important factor affecting the marine environment, and efficient
removal of marine litter is of great significance to the protection of marine ecology [53,54].
In the future, we will investigate the performance of the proposed method in identifying
marine litter.

6. Conclusions

This study took the aquaculture zone of Sansha Bay in 2020 as the research area and
proposed a new method for marine aquaculture zone extraction. This method highlighted
the features of the aquaculture zone through piecewise linear stretching, which further
improved the classification and extraction accuracy of R3Det for marine aquaculture zones.
The conclusions are as follows:
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1. Compared with the stretched images using methods of square root stretching, equal-
ization stretching, Gaussian stretching, logarithmic stretching, and unstretched images,
piecewise linear stretching could more effectively highlight the appearance characteris-
tics of raft aquaculture and cage aquaculture zones, as well as improve the contrast of
the images, achieving the highest accuracy for both raft and cage extraction.

2. Compared with R2CNN and RetinaNet, R3Det showdc a higher extraction accuracy
for marine aquaculture zones under piecewise linear stretching. The overall extraction
accuracy of R3Det for Sansha Bay raft aquaculture and cage aquaculture were 98.91%
and 97.21%, respectively, and the extraction precision of the total area of aquaculture
was 92.08%.

3. The method proposed in this study is not limited by factors such as specific aquacul-
ture zones and model structure and can classify and extract marine aquaculture zones
under large-scale and complex aquaculture backgrounds. The study results can pro-
vide effective assistance for relevant marine aquaculture management departments
to conduct large-scale aquaculture monitoring and scientific sea use, thus achieving
sustainable development of the marine aquaculture industry.
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