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Abstract: Artificial Neural Network (ANN) approaches are applied to detect and determine the
object class using a special set of the UltraWideBand (UWB) pulse Ground Penetrating Radar (GPR)
sounding results. It used the results of GPR sounding with the antenna system, consisting of one
radiator and four receiving antennas located around the transmitting antenna. The presence of four
receiving antennas and, accordingly, the signals received from four spatially separated positions
of the antennas provide a collection of signals received after reflection from an object at different
angles and, due to this, to determine the location of the object in a coordinate system, connected to
the antenna. We considered the sums and differences of signals received by two of the four antennas
in six possible combinations: (1 and 2, 1 and 3, 2 and 3, 1 and 4, etc.). These combinations were
then stacked sequentially one by one into one long signal. Synthetic signals constructed in such a
way contain many more notable differences and specific information about the class to which the
object belongs as well as the location of the searched object compared to the signals obtained by an
antenna system with just one radiating and one receiving antenna. It therefore increases the accuracy
in determining the object’s coordinates and its classification. The pulse radiation, propagation, and
scattering are numerically simulated by the finite difference time domain (FDTD) method. Results
from the experiment on mine detection are used to examine ANN too. The set of signals from different
objects having different distances from the GPR was used as a training and testing dataset for ANN.
The training aims to recognize and classify the detected object as a landmine or other object and to
determine its location. The influence of Gaussian noise added to the signals on noise immunity of
ANN was investigated. The recognition results obtained by using an ANN ensemble are presented.
The ensemble consists of fully connected and recurrent neural networks, gated recurrent units, and
a long-short term memory network. The results of the recognition by all ANNs are processed by a
meta network to provide a better quality of underground object classification.

Keywords: impulse subsurface radars; GPR-multichannel system; digital signal processing; landmine
detection; shallow GPR survey; artificial neural network ensembles

1. Introduction

Explosives of various kinds contaminate the territory of the Donetsk and Luhansk
regions as a result of military conflicts in the eastern part of Ukraine [1]. Among the most
hazardous of these objects are antipersonnel landmines. The demining of such areas is
commonly carried out by military sappers, but the concept of creating remotely controlled
devices for this purpose is of great interest [2–4]. During the last decade, techniques have
been developed to combine sensors of different types and fuse their data to achieve more
reliable mine detection and to decrease the false alarm rate [2,5,6].
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One promising approach to this uses UWB GPR [7], which radiates ultrashort elec-
tromagnetic impulses to provide high spatial resolution of a survey region [8]. There is a
wide range of applications for this technology, such as detecting humans, including people
hidden behind opaque obstacles [9], soil analysis for subway construction [10], and the
humanitarian demining activities mentioned above [11]. Mounting GPR systems on robotic
platforms [2,12] and on drones [13] provides additional safety.

One significant issue with any device working in a mined area is the false positive
rate of mine recognition. This results from the presence other kinds of buried objects in the
vicinity besides mines.

Successful implementation of GPR techniques requires special signal processing meth-
ods. Among these are the wavelet transform [14], a semi-analytic mode matching algo-
rithm [15], the generalized Hough transform [16], and the correlation method [17,18]. As
shown in practice, holographic radars are the most reliable devices to overcome false
positives in mine detection. They are used to identify mines of different classes using signal
processing [19,20].

In this article, we present an artificial intelligence approach to the problem, specifically
using neural networks [21]. They are used for different applications [22–24], and their
speed and effectiveness can be increased using neuroprocessors [25].

The effective use of artificial neural networks for automatic identification of defects
of this type is proposed in [26]. To reduce the information load on the network and speed
up the learning process, it is important to pre-process the images obtained during the
experiment. Canny edge detection operator is good for this purpose. This makes it possible
to highlight cracks and defects in the background of the entire image and converts the
image into a binary format, which greatly facilitates the further operation of the artificial
neural network. This approach has shown itself well when processing photos in different
lighting quality, which characterizes its stable operation in real conditions.

An interesting and effective approach [27], which includes the use of artificial in-
telligence, has also been proposed for the tasks of visual assessment of the condition of
infrastructure objects. Its peculiarity is the proposition to use the fusion features-based
broad learning system. This made it possible to speed up the learning process compared to
conventional deep neural networks. It is also important to note the possibility of scaling
such a system, because the process of additional training has also been simplified.

For the task of predicting faults on gas pipelines, the authors have well-demonstrated
the useful features of backpropagation neural network and support vector machines. As a
result, in 850 cases, they were able to effectively analyze possible breakdowns and find key
causes that led to malfunctions [28].

Neural networks require a training process before their use. This can be provided
by using a training dataset, which can be quite difficult to obtain due to limited access
to information, the high cost of obtaining the data, or the complexity of the computer
calculations. In our case, the training dataset can be collected from the reflected impulse
signals [29]. The more complex the object under investigation is, the more training data we
require for identification [30]. Fortunately, many studies have shown the stability of ANN
in working with noisy signals [31–34].

The application of neural network ensembles [35] can improve the effectiveness of
the system in comparison with a single network realization. The collective voting for the
best answer has already proven to be a valid approach to the problems of Hyperspectral
Image Classification [36], co-reference resolution [37], Computer Vision and NLP [38],
and healthcare [39]. Consequently, it is worth deploying this idea to address the mine
detection problem.

The purposes of this work are to demonstrate the benefits of the ANN application for
GPR signal analysis for landmine detection and positioning. Section 2 describes the design
of the 1Tx + 4Rx antenna system, a special way to arrange signals for analysis with ANN,
and models of objects chosen for investigation. Section 3 examined the influence of additive
noise in received signals on the object classification quality. Here we used numerically
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simulated and experimental data. At the end of Section 3, we studied what advantages
could be obtained if we apply ensemble learning to identify and classify subsurface objects.
Finally, conclusions are formulated in Section 4.

2. Statement of the Problem
2.1. Description of the GPR and the Working Pipeline

Consider the problem of detecting a subsurface object using UWB GPR with a
1Tx + 4Rx antenna system (AS) (Figure 1). The AS is located at the height Zo = 32 cm
above the surface of the ground with a relative permittivity ε = 9 and conductivity
σ = 0.005 S/m. The subsurface object is ‘buried’ at the depth 1 cm under the ground
surface in the location with coordinates Xo and Yo in the coordinate system X, Y, and Z
associated with the antenna system. At GPR sounding, the AS moves along the Y axis
(continuously in experiments or by steps in calculations) and collects radar data. The Tx
antenna is excited by a Gaussian pulse of 0.23 ns duration [34]. It means that the spectrum
of the voltage impulse exciting the transmitting antenna covers the frequency range from 0
to 4.4 GHz. Four receiving antennas (4Rx) receive electromagnetic waves coming to them
as combinations of direct coupling waves, reflections from other antennas, reflections from
the ground surface (shown in Figure 1), and reflections from the subsurface object (shown
in Figure 1).
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Figure 1. Schematic illustration of the subsurface sounding by the GPR with the 1Tx + 4Rx antenna
system. GPR pulse injection from Tx. Reflected waves: blue corresponds to surface reflection; red
corresponds to object reflection. Waves are shown only for two (Rx1 and Rx2) receiving antennas.
Antenna system is located at the height Zo = 32 cm over the ground surface.

Reflections for Rx1 and Rx2 are hidden in Figure 1.
Four Rx are located around the Tx antenna at the same distance (10 cm) from it with an

angular spacing of 90◦. All Rx antennas were oriented in such a way that their polarizations
were oriented at angles ±45◦ to the polarization of the Tx antenna (Figure 2b).

The same antenna design was used in the UWB GPR for landmine detection [2,40]. To
detect a subsurface object and determine its position, we used meanings of times of flight
of sounding signals from the Tx antenna to the object and back to all four Rx antennas.

In this paper we applied ANN for the detection, classification, and positioning of
different subsurface objects.

The received signals require pre-processing to work with the ANN. The pipeline of
the detection system (Appendix A) consists of signal resampling with equal for all signals
time steps 10 ps (10−11 s), normalization using the square root of the signal energy, and
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forming a single signal containing the resampled signals. Such pre-processing is performed
for the training and testing data for the ANN. Additionally, resampling allows the data
from different experiments and simulations to be used as signal sets for the training of
the ANN.
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Figure 2. Model of the GPR antenna system (a). The four receiving antennas (blue arrows denote
Rx antennas ports) are distributed in the corners of a square around the transmitting antenna (red
arrow denotes Tx antenna port) (b). Distances between the center of the transmitting antenna and the
centers of receiving antennas are 100 mm. The polarizations of receiving antennas are oriented at
angles ± 45◦ to the polarization of the transmitting antenna.

The set of four Rx simulated signals for sounding at one of the steps is shown in
Figure 3. As we can see, a significant part of signals corresponding to the direct coupling
and reflection from the surface has the same waveform (differs only in polarity). At the
same time, for better recognition difference between signals should be more notable.

To mitigate the influence of the direct coupling between Tx and Rx antennas and
reflections between all antennas, we applied a background removal procedure. However,
in contrast to the commonly used approach in which the averaged signal is calculated
on the base of all received signals and then subtracted from the sounding results, or the
signal is measured at the place where the object is definitely absent and then subtracted
from the results of sounding, in our case we have four received direct coupling signals
at the single place of measurement. Owing to the symmetry of the antenna system, the
direct coupling signals and reflections from the ground surface are identical waveforms,
and it allows removing background and reflection from the ground surface using simple
math procedures (adding or subtracting). Figure 4 shows six combinations of initial signals
S1 − S2/S1 + S3/S1 + S4/S2 + S3/S2 + S4/S3 − S4, providing mitigation of clutter
conditioned by both the direct coupling and reflected by the ground surface signals. It
forms a unique set of stitched-in sequence non-repeated signals for future processing
with ANN.

Such an approach is slightly different from preparing real GPR A-scans, including
the algorithm described in [41]. The proposed algorithm does not require the additional
measurements of waves reflected from the ground without a hidden object or averaged
signals for subtraction. The advantages of this approach also consist in the sufficiency of
only four received signals to eliminate the clutter. There is no necessity to wait while all
sounding data at the whole path will be recorded and averaged for subtracting. There is no
doubt whether the subsurface object exists at the starting point.
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Figure 3. Example of signals received by the 4Rx antenna system of the GPR, where region 1 is the
signal of direct coupling between the Tx and Rx antennas and the signals reflected by other antennas
of the system, and region 2 is the main reflection window time covering reflection from the ground
surface and subsurface object (if it present in the ground).
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Figure 4. Example of training/testing data samples for the neural network which consists of
6 stitched pre-processed signals.

In the proposed way, we can exclude from consideration the powerful direct coupling
signal and, most importantly, increase the informative low-amplitude components of the
received signal.
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For the future processing of the stitched in sequence signals (Figure 4), we used a
fully connected ANN (Figure A2) containing seven layers. The first (input) layer contains
4614 neurons, corresponding to the dimension of the array of the stitched data (six combina-
tions of signals containing 769 samples recorded with time steps of 10 ps as demonstrated
in Figure 4). The subsequent five hidden layers have 4000 neurons in each one. Finally,
the output layer has 65 neurons, corresponding to eight objects of interest at eight possible
distances from the antenna system for each object and additional output indicating the
presence or absence of an object in a given area. As an activation function, we have chosen
a hyperbolic tangent.

To take into account all of the features of the GPR, the soil material parameters, and
detailed constructions of underground object models, the electromagnetic problem is solved
with the finite difference time domain (FDTD) method.

2.2. Description of Underground Objects

The antipersonnel mine types that are widely disseminated in the Donetsk and
Luhansk regions are simulated as metal-dielectric objects in this work. The model of
the PMN-1 mine has a height of 53 mm and a diameter of 110 mm (see Figure 5). The
body material of the PMN-1 (orange) is bakelite, and its top (gray) is rubber. In addition,
there is an intermediate volume with air, a metal element, and the explosive substance with
electrical characteristics ε = 3.1 and σ = 0.0044 S/m [42,43].
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Figure 5. Schematic image of PMN-1 (on the left) and its cross section (on the right).

The model of the PMN-4 mine depicted in Figure 6 has slightly different dimensions
and structure, but the body materials and electrical characteristics of the explosive are the
same as for PMN-1. For the problem of humanitarian demining, the ability of an analyzing
system to accurately classify an object by its reflected waveform is very important, especially
for real-time identification [44]. We need to reliably identify what is buried immediately
in front of the detection system, either a dangerous mine or harmless clutter (for example,
used cans). Therefore, to approximate a real subsurface sounding situation, we included
some artificial interfering objects, such as used metal tins, with different properties. The
neural network is trained for the classification of these alternate objects as well as for the
specified mine types.

The two most common types of cans in Ukraine were used for the numerical simulation
of the problem. The first of these has a diameter of 10 cm and a height of 3.5 cm. Under the
ground they can be presented in three possible states, named can1, can2, and can3, which
are described and presented in Figure 7a–c. The second can under consideration has the
same configuration, but has a different size: a diameter of 8.5 cm and height of 5 cm. They
can be in the same three states as the first can, where can4 is an open can without a cap
(such as can1), can5 is an open can with a cap attached (such as can2), and can6 is a hollow
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tin with a closed cap (such as can3). With this, we enhanced the simulation, and the ANN
can learn to distinguish an antipersonnel mine from different obstacles such as cans.
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Future research will investigate how our approach works for the detection of mines
having a larger dielectric material content. A suitable candidate for this investigation is the
PFM mine, depicted in Figure 8, which is being used in the Donbas and Lugansk regions. It
is 12 cm long, 2 cm tall and 4.6 cm in height. A comparison of this mine to the PMN-1 and
PMN-4 mines shows that the PFM’s detonation mechanism is much smaller. This leads to a
smaller reflection of the electromagnetic impulse, which complicates detection. In addition,
the permittivity of the other non-metallic components of the mine are quite close to the
ground permittivity, making the PFM mine’s body and explosive material almost invisible
to the radar.

Another complicating factor in identifying the PFM mine is its non-symmetrical form,
in contrast to the PMN-1 and PMN-4 mines and the metal tins, where the symmetry can
be traced in at least one plane. This is an important factor since a totally different form of
the reflected impulse will arrive from the different angles, which can make detection and
identification more complicated. To provide better recognition we decided to calculate the
PFM mine response in two orientations relative to the GPR. These are a cross orientation
and a longitudinal orientation, as shown in Figure 9. This gives the neural network a more
accurate description of the object, at least in two planes.
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Moreover, in order to simulate the conditions of a more realistic subsurface survey, a
white noise is added to the initial four signals but only after the background subtraction [41].
The noise sufficiently decreases the signal quality after the subtraction for the given level of
signal-to-noise ratio (SNR) in the received signals. This occurs because the separation of
the low-energy part of a signal containing useful information about an object significantly
decreases the signal maximum, reducing the SNR.
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This effect is illustrated in Figure 10, where we compare the time shape of the signal
received by one of the four antennas to that of a pre-processed signal. In addition, the
normalization by the square root of its energy is applied. For a given SNR = 25 dB, the
raw received signal only slightly changes its time form, while the pre-processed signal
is seriously distorted by the Gaussian noise, as seen in the last graph in Figure 10 where
SNR = −7.4 dB. Thus, it is difficult for the neural network to extract useful information
from noisy data.

It should be noted that the result of the neural network recognition can significantly
vary with high levels of additive Gaussian noise. These changes do not depend on the
SNR level, but on the random realizations of the noise distribution in every data sample
or on the parameters of the numerical simulations [12]. Therefore, to obtain a statistical
generalization of ANN results we simulated 1000 random realizations of noise with a
constant level of SNR for every testing data sample.
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3. Results and Discussion
3.1. Mine Detection in Simulated Data

Parameters of simulation for the Section 3.1: the sample interval is 10 ps; whole time
window is 7.69 ns; at simulation and data processing the object was placed at Yo = 0; the
sampling time is 10 ps. A whole time window is 7.69 ns; at simulation and data processing,
the object was at Xo = 0 cm and Yo = 0 cm; 5 cm . . . 35 cm. The depth of the object under
the surface of the ground is 1 cm.

The number of recognitions of each object for different distances of the reflected wave
from the PMN-4 mine and for different SNR values is presented in Figure 11. It is seen that
the ANN shows satisfactory noise immunity in detecting the PMN-4 mine at a distance of
Yo = 20 cm (Figure 1). A statistically correct answer can be traced up to an SNR level of 5 dB,
which is a very good if we take into account the conditions of experimental investigations.

The results from using the same positions but with a PMN-1 mine are shown in
Figure 12, where we see that the results are less stable with the presence of noise. In this
case the answer becomes unclear at an SNR level of 10 dB. However, this limitation can be
treated as acceptable for real subsurface surveys.

We have also investigated the neural network performance on the border simulation
positions of the objects, namely, when the object is under the center of the GPR antenna
system (i.e., where the object’s horizontal distance is 0 cm and where the object is at the
maximum possible distance from the radar, which is 35 cm in height). We see that if a
PMN-1 (Figure 13) or PMN-4 (Figure 14) mine is under the antenna system, then at high
noise values the ANN will work better for PMN-1. However, in both cases we see stable
classification results. This may be a consequence of training dataset enrichment with false
objects (cans).

We considered the most distant possible positions of the investigated objects. The
results of the recognition tests are presented in Figures 15 and 16. From these graphs we
see a reliable classification for high SNR levels. The results for noise stability are similar,
but the recognition of the mine is better in the PMN-4 case.
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3.2. Mine Detection in Experimental Data

The next stage of this study was applying this approach to experimental data ob-
tained from a real GPR. The 1Tx + 4Rx antenna system [40] mentioned above (Figure 2)
was installed on the robotic platform, as shown in Figure 17. Principles of action of the
antenna system are described in [45]. In order to increase the radiated signal power, the
overall dimensions of the transmitting antenna were increased 1.5 times with respect to the
transmitting antenna described in the paper.

The frequency band of the current GPR uses a frequency range 0.8 GHz and
1.6 GHz antennas of central frequency 1.2 GHz. Height of the antenna system above
the ground surface at the radar measurements is 32 cm. The objects were buried in the
ground. Thickness of the soil over the objects was about 3 cm. The sampling time is 10 ps.
The whole amount of samples in the A-scan is 512. It means the whole time window is
5.11 ns. The length of the test path (Figure 17) is 2.6 m. The whole path consists of
513 A-scans spaced approximately 0.50 cm along the path. The distance between the objects
was 60 cm.

The time dependence of the excitation voltage is similar to the one used in the numeri-
cal simulations. The pre-processing of the input signals described in paragraph 2.1 was
applied to form the training data set. Metal can and simulants of both PMN-4 and PMN-1
mines were used as objects of interest in the experimental investigation. The objects were
buried in the ground at a depth of 3 cm in a linear path, with a separation of 60 cm between
objects, as shown in Figure 17.
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Figure 17. The robotic platform on the linear test path.

A fully connected neural network (Appendix B, Figure A3) with the structure
1052-500-250-94-SoftMax with neurons with a linear activation function was used to work
with the experimental data. Here the 1052 input neurons correspond to the number of
discrete values of amplitudes of sequentially cross-linked signals from four receiving an-
tennas taken with a constant time step. Finally, 94 classes of mines and their positions of
ANN were output, where the first class corresponds to the position of a metal can directly
under the antenna, and the 2nd–31st classes point to distances of 0–18 cm for the can. The
same enumeration is used to determine the initial classes for the PMN-4 target as classes
32–62 and for PMN-1 as classes 63–93. Class 94 points to the absence of any object. The
SoftMax layer application allows conversion of the numerical values of the source neurons
to the probability of an object being present. All input data were linked to the correspond-
ing distances for the convenience of analyzing the received results. To verify the operation
of the ANN, input data were collected by passing a robotic platform over the objects. The
distance covered in the experiment was 2.6 m.

The input data were modified with Gaussian noise with different SNR ranging from
35 to 10 dB (see Figures 18–23). The distance from the object to the geometrical center of
the antenna system is shown in the figures. The SNR was calculated according to the raw
data, and the addition of noise allows us to assess the stability of the recognition. As a
result, each graph shows the average results for 1000 implementations of noise generation.
The case of SNR = 35 dB is shown in Figure 18. This level of interference corresponds
to the normal mode with little distortion of the input signal. Therefore, all objects were
determined unambiguously. We note the convenience of having the 94th class, which
points to the absence of any object. All values in the graph are normalized to be between
0 to 1, so they can be interpreted as the probability of an object being present at a certain
distance. These illustrations show that successful recognition of the object is unlikely or
impossible at SNR = 10 dB and lower.

Figures 18–23 present the results of ANN testing on experimental data. The network
has 94 output neurons. Signals from these neurons refer to one or another object. For
example, the 94th output in the figures is marked as “Absence”. When it gives a value of
“1”, it means that there is no object of interest in the field of view of our antenna system.
Similarly, outputs 1–31, 32–62, and 63–93 inform about the detection of a specific object at a
specific distance from the geometric center of our antenna system. All values in the graphs
have a value from 0 to 1, which can be interpreted as the probability of detection of this or
that object.
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3.3. The Problem of Recognizing Dielectric Objects in the Sector of Angles

In our previous simulation, we considered the case where the hidden objects were
located only along a straight line corresponding to the direction of the GPR movement.
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However, this is an ideal case which is not common in reality; an object can be located at
different angles relative to the robotic platform. Therefore, we improved the simulation
by adding another dimension in which we place objects at various angles relative to GPR,
as the case is with actual subsurface surveys. We consider a schematic model of the
investigated area for the given problem. A polar coordinate system is superimposed on the
investigation area, the center of which is where the irradiating antenna is (Figure 24). Since
we are only looking for objects in the space in front of the antenna, we limited ourselves to a
sector between 30 to 150 degrees (as defined in Figure 24) with a step size of 20 degrees. The
horizontal radial distance from the antenna to the object (ρ) was taken from the position
of the mine under the radiating antenna (the origin) out to the maximum distance of
35 cm, in steps of 5 cm. The black dots in Figure 24 show the 38 possible positions of the
mine with these two coordinates. In this way, we approximated the survey area, and the
object’s position is visually determined. We note that it is possible to take smaller steps
between the possible object locations. However, this leads to an increase in the number of
simulation data samples and increases the simulation time.
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With this configuration, the problem becomes more complicated than in the previous
linear situation. We therefore chose a more complicated structure for the neural network,
which has a 4500-4000-2000-1000-500-2000-4000-191 layer structure in this case. This ar-
chitecture has been shown to have the best recognition properties for the grid search. The
input data are prepared the same way as in the previous simulation. The training sample
is a sequence of 4500 time points which contains six signals of 750 time points each. It
corresponds to the reflected pulse with a total duration of 7.5 ns and a time step of 0.01 ns.
We obtained 191 sequences with the following considerations. There are five objects under
investigation, namely a metal can, a PFM mine with longitudinal orientation, a PFM mine
of with cross orientation, a PMN-1 mine, and a PMN-4 mine. We can see from Figure 24
that there are 38 possible positions for each object. So, 38 × 5 = 190, and an additional
output is needed for the case where the object is absent. Each of the 191 output neurons
shows the presence of an object, the object type, distance to the object, and its direction
in polar coordinates. We were also motivated to use only one can instead of six. We saw
from previous simulations that cans with the cut slot interfere the most with reliable mine
detection. Thus, using only this model of can was advantageous for two reasons. The first
was that using the most complicated case in the simulation gave us confidence that the
neural network could deal with this type of can as well as the easier types. The second is
that using only one can instead of six greatly decreases the number of training samples
needed and saves calculation time.

Below we illustrate the effect of adding noise to the ANN input data. We can clearly
see in Figure 25 the distortion of the waveforms for different signal-to-noise ratios (SNR).
In each case we have six stitched pre-processed signals. Purple lines show the data with
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no noise applied while the black curves show the same signal but with added noise with
different SNR values.
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the noise. Black lines designate the data samples with additive noise.

The efficiency of the object detection by the trained neural network from the noisy
input data of different SNRs is outlined below. The recognition results are presented in
the form of the model of the studied space, which is defined in Figure 24. The detection
results of PMN-4 and PFM from noisy input data are represented in Figures 26 and 27,
respectively, where colors denote the type of object, and the size of the circle symbolizes
the probability of the object being present.

For each recognition problem there were 1000 noise realizations. The statistical dis-
tribution of the ANN results is shown in Figures 26 and 27. The radius of the circle
shows the sum of the ANN corresponding outputs for a given specific position from all
1000 recognition attempts. The legend contains statistics concerning all objects as a percent-
age of the 1000 answers obtained by the ANN. Further, 0% means that this type of object is
absent in the study, and 100% means that this type of object definitely present. Data in the
frame of Figure 26 shows that PMN-4 is definitely presented at the place and other objects
(can, PFM cross, and others) are definitely absent at the place. Intermediate values mean
probability of detection of corresponding object. Thus, the radius shows the calculated
probability of the object being present.

This statistical result simulates the real-time recognition where the GPR irradiates the
ground with impulses having a certain step in time. This approach provides an opportunity
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to assess the resilience of the system to artificial interference. Thus, our approach should
have practical value.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 39 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 26. Results of the recognition of the PMN-4 mine for a distance 20 cm and angle 90° with 
SNR levels of (a) 30 dB, (b) 20 dB, (c) 15 dB, (d) 10 dB. 

Figure 26. Results of the recognition of the PMN-4 mine for a distance 20 cm and angle 90◦ with SNR
levels of (a) 30 dB, (b) 20 dB, (c) 15 dB, (d) 10 dB.



Remote Sens. 2022, 14, 4421 19 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 39 
 

 

 
(a) 

 
(b) 

Figure 27. Results of the recognition of the PFM mine with cross orientation located at a distance 20 
cm and angle 90° with the following SNR: (a) 30 dB, (b) 20 dB 

For each recognition problem there were 1000 noise realizations. The statistical dis-
tribution of the ANN results is shown in Figures 26 and 27. The radius of the circle shows 
the sum of the ANN corresponding outputs for a given specific position from all 1000 
recognition attempts. The legend contains statistics concerning all objects as a percentage 
of the 1000 answers obtained by the ANN. Further, 0% means that this type of object is 
absent in the study, and 100% means that this type of object definitely present. Data in the 
frame of Figure 26 shows that PMN-4 is definitely presented at the place and other ob-
jects (can, PFM cross, and others) are definitely absent at the place. Intermediate values 
mean probability of detection of corresponding object. Thus, the radius shows the calcu-
lated probability of the object being present. 

This statistical result simulates the real-time recognition where the GPR irradiates 
the ground with impulses having a certain step in time. This approach provides an op-
portunity to assess the resilience of the system to artificial interference. Thus, our ap-
proach should have practical value. 

We see from Figure 26 that the recognition of a PMN-4 mine becomes worse at a 
noise level of SNR = 10 dB. However, we obtain a good approximation of the responses of 
the neural network around the correct position, i.e., ρ = 20 cm, phi = 70, 90, 110 degrees. In 
addition, the neural network is still 45% confident that the PMN-4 is located in front of 
the radar. Although we see that the correct object position response is beginning to de-
viate, incorrect answers begin to prevail. For the PFM mine, the results are worse. De-
termination of the correct position of this mine becomes almost impossible at an SNR of 
20 dB, although at the same time the neural network is still 58% confident that it is some 
spatial form of the PFM mine. A weaker impulse reflection from a dielectric mine such as 
PFM complicates its recognition, but it is still possible for lower SNRs. 

We decided not to merge the PFM spatial positions into one class, which would be a 
logical approach at first glance. However, this would cause a class imbalance in the 
training dataset. To avoid this, we have expanded the training set and divided the pro-
visions of the PFM into two different classes. 
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We see from Figure 26 that the recognition of a PMN-4 mine becomes worse at a noise
level of SNR = 10 dB. However, we obtain a good approximation of the responses of the
neural network around the correct position, i.e., ρ = 20 cm, phi = 70, 90, 110 degrees. In
addition, the neural network is still 45% confident that the PMN-4 is located in front of the
radar. Although we see that the correct object position response is beginning to deviate,
incorrect answers begin to prevail. For the PFM mine, the results are worse. Determination
of the correct position of this mine becomes almost impossible at an SNR of 20 dB, although
at the same time the neural network is still 58% confident that it is some spatial form of the
PFM mine. A weaker impulse reflection from a dielectric mine such as PFM complicates its
recognition, but it is still possible for lower SNRs.

We decided not to merge the PFM spatial positions into one class, which would be a
logical approach at first glance. However, this would cause a class imbalance in the training
dataset. To avoid this, we have expanded the training set and divided the provisions of the
PFM into two different classes.

We next consider the neural network approximation in more detail and apply it to
the test data for which it was not trained. These testing samples were obtained as follows:
a training position for the mines was fixed at ρ = 20 cm and ϕ= 90 degrees. From here it
was adjusted in space in several possible ways, for example with an offset to the right or
left, or with self-rotation at some angle. Thus, a variety of new positions were selected for
which the ANN had not been trained before. The simulation was then performed for the
PMN-1, the PMN-4, and the cross orientation of the PFM. These training cases represent the
range of real conditions of an ordinary subsurface survey, where the mine is not necessarily
located at our discretized nodes in the investigated space.

The neural network was only partially successful in recognizing buried mines that
were rotated at an angle relative to their training position. However, a mine displaced to
the side was recognized perfectly, as we show below.

The circles in Figure 28 illustrate the recognition of the PMN-4 mine, which has been
translated 3 cm to the left (toward the angle 110 degrees) from the position ρ = 20 cm,
ϕ= 90 degrees:
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We see that for large values of the SNR, the ANN is more certain in object identification
at the node at ρ = 20 cm, but it makes small errors in angles. However, with the addition of
larger noise levels, we can trace interesting dynamics in the approximation of the response,
i.e., the radii of the large circles begin to equalize. This indicates that the total number of
responses of these most active output neurons of the neural network are also beginning to
equalize. From Figure 28e we estimate a roughly equal likelihood of identification of that
mine at ρ = 20 cm, ϕ = 90◦ or at ρ = 20 cm, ϕ = 110◦.

In Figure 29, P is the point that represents the ρ = 20 cm, ϕ = 90◦ node in our space
discretization, P1 is the point at ρ = 20 cm, ϕ = 110◦, O is the point under the irradiating
system, namely ρ = 0 cm, and P_test is the actual mine location. Thus, in this test case
the PMN-4 mine (P_test) is at a distance of X = 3 cm from the position of ρ = 20 cm,
ϕ = 90◦ (point P) and is at a distance of z = 4.025 cm from ρ = 20 cm, ϕ = 110◦ (point P1),
i.e., it is almost equidistant. Therefore, the evenly split response of the ANN in the two
positions in Figure 29 at a large SNR value can be interpreted as the position in the middle
between the two most active neurons. It is an ideal ANN response which corresponds to
the intermediate position in this test case.
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with the following SNR: (a) 35 dB, (b) 30 dB, (c) 25 dB, (d) 20 dB, (e) 15 dB, (f) 10 dB.

We also note that the spatial deviation of 3 cm in the test data was a maximum. Smaller
values of the deviation of the mine from the starting position at ρ = 20 cm, ϕ = 90◦ are
classified by the neural network as ρ = 20 cm, ϕ = 90◦ without adding noise. However, the
addition of noise shifts the points of recognition.

3.4. Improvement of the Data Processing Algorithm with a Neural Network Ensemble

As described above, we improved our investigation of the target area using approxi-
mately real conditions of a subsurface survey, but we need to improve our machine learning
approach as well. In our three previous simulations we used a fully connected neural
network. This is a good choice for simple tasks, but with our more complex simulation
conditions and more complex testing cases, our machine learning approach also needs to
be improved. There are a number of modern approaches for artificial intelligence problems.
For example, we can compare our results with the ensemble learning technique.

We first define the input and output layers for all networks from the ensemble. For
an input we can still use our previous pre-processing algorithm since it was sufficiently
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successful in our previous simulations. For the output of the neural network, we have
13 neurons, 12 of which signal information about the object at a certain distance. We have
three objects: the metal can (with cut slot), the PMN-1, and the PMN-4 at four training
distances: 0, 10, 20, and 30 cm. There is also a neuron which indicates the absence of an
object in the investigated area.
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We now consider the structure of the ANN ensemble (Appendix B) for this simulation.
All the neural networks can be divided into two levels, as shown in Figure 30. Each network
in the first level takes the data sample and outputs its result independently of the others.
The “Supreme” network of the second level receives the answers of the previous networks,
and it forms the final answer of the whole ensemble. This is a classical stacking method.

In the first level we see a fully connected neural network (Figure A3). It has the
structure 4614-1024-512-256-13 and the ReLu activation function (Figure A4). A Recurrent
Neural Network (RNN), Gated Recurrent Units (GRU) and Long Short-Term Memory
(LSTM) networks were also used. Each of these has a layer structure of 4614-512-512-13
and uses the hyperbolic tangent as an activation function. The supreme network is fully
connected and also has a simple structure, namely 4-512-256-13. The supreme network has
a ReLu activation function as well. The input size is four because the transformation from
category to units is made. That is, each categorical response of the 13 values of the output
neurons of the first-level networks is transformed into a specific class called a unit. Since
we have four networks, we have four answers that are input into the second-level network.
The output of the supreme network gives the final answer.

The training of this ANN ensemble has interesting features. Since one of the purposes
of this work was to check the noise immunity of the machine learning approach, for this
ensemble we artificially altered the data by adding noise with certain levels to the calculated
ideal time dependences. This is classic data augmentation and solves two problems at once.
The first is the inability to control ANN learning and validate results, and the second is the
lack of training data. Due to the random nature of noise, we acquire unique examples for
use in the learning procedure. Additionally, this approach is expected to increase the noise
immunity of the ensemble, since a sufficient number of training samples were generated
and good validation accuracy (about 90%) was obtained. It demonstrates the ability of the
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ANN to generalize the noisy data. As a result, there are 1000 examples with a noise level
distribution of 35–15 dB for each class.
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Figure 30. Structure of our stacking ensemble.

The training of the supreme network was realized separately. An input dataset for it
consisted of the recorded responses from the first-level networks on data having different
noise levels (from 35 to 15 dB). After receiving good validation results, the networks could
be connected as shown in Figure 30, so that the ensemble was ready for testing.

For a qualitative check on the functioning of the ensemble, it is necessary not only to
see the final answer but also the answers from the first-level networks. The main purpose of
ensemble building is to illustrate the advantages of the collective approach in comparison
with the single answers from the first-level networks (Appendix C).

We calculated 500 or 1000 realizations of recognition for each test case to obtain a
reliable statistical answer in our previous simulations. However, in this analysis we decided
to increase the number of implementations to 10,000, since it gives even more reliable and
statistically precise results. One can estimate the relative quality of recognition and a
statistical scatter of the answers for each of the networks in Figures A5–A10 with the help
of a color bar. For accurate estimations, the number of hits for each neuron in each network
is displayed in each cell.

Figures A5 and A6 show a comparison of the results of PMN-1 and PMN-4 mine
detection at a distance of 30 cm from the GPR system. First, we see that data augmentation
for this problem is justified, since Figure A5 shows a fairly clear answer for PMN-1 up to
SNR = −5 dB, while for the PMN-4 mine in Figure A6 the limit is SNR = 5 dB. This is a rather
successful improvement in the noise immunity, which we did not achieve in our previous
simulations. It should also be noted that this tendency is observed for all recognition results
for any object (Appendix C). In viewing the main tendency of the responses of all neural
networks in Figure A5, there is an evident predominance of supreme network performance.
We see that even at the extremely high noise level of −5 dB, it has the biggest number of
hits in the correct neuron.

In addition, one can consider the deviation of the answers for all networks, especially
the neurons that correspond to the metal cans at all distances. It is clear that the supreme
network is the least prone to the most undesirable responses, such as the metal can, and
it is less accurate in determining distances and identifying other mines, which is not
as critical. This result can certainly be considered successful since it justifies the use of
the ensemble.

However, a less successful result is shown in Figure A6 for the PMN-4 mine recognition.
Here the performance of the supreme network equals the performance of FCNN and RNN.
Additionally, the noise immunity was slightly weaker than in the results presented in
Figure A5. However, in general, the spread of incorrect answers from the supreme network
is still more focused on the less-undesirable cases compared to the answer spread seen
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for the first-level networks. This confirms the better performance of the neural network
ensemble compared to a single network.

The results from the recognition of PMN-1 and PMN-4 mines at a distance of 10 cm
are presented in Figures A7 and A8. One notices that in some cases the supreme network
loses in performance and accuracy compared to the networks in the first level. However,
there is still obvious resistance to the more critical cases of can recognition instead of mines.
This is especially evident in Figures A7c and A8c.

Previously, we did not investigate the performance of the ANN with an empty area,
and it is important to determine a noise threshold for which detection can be considered
reliable. However, it is first necessary to investigate the reaction of the ensemble to the
presence of the metal can in the investigated area and, secondly, to investigate the results
for the case of no object present.

First, we consider the recognition of the metal can at a 20 cm distance from the GPR,
as presented in Figure A9. The metal can has the strongest reflection of the electromagnetic
field, and it is more easily detectable in the received signals than the other investigated
objects. However, the noise immunity in this case is similar to that of mine detection
(Figures A5–A8). This implies that the neural network processes these time dependences
not just on the signal level, but also on its unique features. Weak reflection from an object
with a higher content of dielectric components usually complicates recognition due to the
weaker reflection, but the structure of our neural network ensemble is chosen so that this
complexity is addressed.

Next, we consider the case of an empty investigated volume with no objects present.
The recognition results are shown in Figure A10. For a noise level of 20 dB, we observe a
tendency toward identifying the correct neuron. However, at the level of 10 dB, the ANN
produces only a uniform distribution of responses across all neurons, and the recognition
ability is lost in this case. However, this result has a very interesting application. If we look
at the neural network performance for a noise level of 10 dB for the case where some object
is present, then we do have a clear detection of an object being present in the investigated
area. This result can be interpreted as follows. During a real subsurface survey, noise of
approximately this same level is an integrated part of the received signal. If we do not
obtain a clear answer for the recognition with this level of noise present, then this reliably
indicates that there are no objects in front of the irradiating system, because according to
the results in Figures A5–A9 we should obtain some definite indication of some object
being present. Therefore, we can conclude that our approach is quite successful in detecting
the presence of objects.

4. Conclusions

The use of an artificial neural network for GPR object recognition makes possible the
detection and classification of subsurface objects. In the paper we demonstrated good noise
immunity for different trial object distances from the antenna system. Using the neural
network as an analyzing system leads to stable results in terms of antipersonnel mine
detection, in spite of the pre-processed data being highly noised.

Probabilities of detection and false alarm depend on the threshold that we choose
to declare a detection. Quantitative estimation can be performed using the figures in
the paper.

For object positions that are between discretized spatial points, the neural network
has demonstrated the ability to approximate the real position with multiple responses
around the actual object position. This ensemble learning gave promising results with the
reduction of false positives.

The meta network acted as a kind of smoother for the responses of the other networks
since it was less accurate in some cases, but the spread of responses was more optimal.

Using the 1Tx + 4Rx antenna system in a UWB pulse GPR to collect data for an ANN
and stitching combinations of sums and differences of signals to use as data for the ANN
have significantly improved the noise immunity of the neural networks. As a result, the
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noise threshold at which the detection of objects can be considered reliable is determined
in our experimental analysis. This will be valuable when using our approach in actual GPR
surveys. This work also provides some guidance on how to improve the machine learning
approach to the problem of underground object detection.
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2 hidden layers, 500, 250, 94 neurons
ReLu activation functions:
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Appendix C

The data in Figures A5–A10 are shown in such a way that we can observe the whole
matrix of answers at once. The OX axis depicts 4 networks of the first level and the supreme
network. The OY axis shows the neurons for each network, including the supreme network.
In addition, the correct answer in Figures A5–A10 is enclosed by a green frame.

Remote Sens. 2022, 14, x FOR PEER REVIEW 30 of 39 
 

 

Appendix C 
The data in Figures A5–A10 are shown in such a way that we can observe the whole 

matrix of answers at once. The OX axis depicts 4 networks of the first level and the su-
preme network. The OY axis shows the neurons for each network, including the supreme 
network. In addition, the correct answer in Figures A5–A10 is enclosed by a green frame.  

 
(a) 

 
(b) 

Figure A5. Cont.



Remote Sens. 2022, 14, 4421 29 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 31 of 39 
 

 

 
(c) 

 
(d) 

 
(e) 

Figure A5. Matrix of output neuron answers of each network from the ensemble for the recognition 
of a PMN-1 mine at a 30 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB (d) SNR = 
0 dB (e) SNR = −5 dB. 

Figure A5. Matrix of output neuron answers of each network from the ensemble for the recogni-
tion of a PMN-1 mine at a 30 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB
(d) SNR = 0 dB (e) SNR = −5 dB.



Remote Sens. 2022, 14, 4421 30 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 32 of 39 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure A6. Matrix of output neuron answers of each network from the ensemble for the recognition 
of a PMN-4 mine at a 30 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB. 

Figure A6. Matrix of output neuron answers of each network from the ensemble for the recognition
of a PMN-4 mine at a 30 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB.



Remote Sens. 2022, 14, 4421 31 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 33 of 39 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure A7. Matrix of output neuron answers of each network from the ensemble for the recognition 
of a PMN-1 mine at a 10 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB. 

Figure A7. Matrix of output neuron answers of each network from the ensemble for the recognition
of a PMN-1 mine at a 10 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB.



Remote Sens. 2022, 14, 4421 32 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 34 of 39 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure A8. Matrix of output neuron answers of each network from the ensemble for the recognition 
of a PMN-4 mine at a 10 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB. 

Figure A8. Matrix of output neuron answers of each network from the ensemble for the recognition
of a PMN-4 mine at a 10 cm distance for (a) SNR = 15 dB, (b) SNR = 10 dB, (c) SNR = 5 dB.



Remote Sens. 2022, 14, 4421 33 of 37Remote Sens. 2022, 14, x FOR PEER REVIEW 35 of 39 
 

 

 
(a) 

 
(b) 

 
(c) 
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