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Abstract: Plumas National Forest, located in the Butte and Plumas counties, has experienced devas-
tating wildfires in recent years, resulting in substantial economic losses and threatening the safety
of people. Mapping damaged areas and assessing wildfire susceptibility are necessary to prevent,
mitigate, and manage wildfires. In this study, a wildfire susceptibility map was generated using a
CNN and metaheuristic optimization algorithms (GWO and ICA) based on images of areas dam-
aged by wildfires. The locations of damaged areas were identified using the damage proxy map
(DPM) technique from Sentinel-1 synthetic aperture radar (SAR) data collected from 2016 to 2020.
The DPMs’ depicting areas damaged by wildfires were similar to fire perimeters obtained from
the California Department of Forestry and Fire Protection (CAL FIRE). Data regarding damaged
areas were divided into a training set (50%) for modeling and a testing set (50%) for assessing the
accuracy of the models. Sixteen conditioning factors, categorized as topographical, meteorological,
environmental, and anthropological factors, were selected to construct the models. The wildfire
susceptibility models were evaluated using the area under the receiver operating characteristic (ROC)
curve (AUC) and root mean square error (RMSE) analysis. The evaluation results revealed that the
hybrid-based CNN-GWO model (AUC = 0.974, RMSE = 0.334) exhibited better performance than the
CNN (AUC = 0.934, RMSE = 0.780) and CNN-ICA (AUC = 0.950, RMSE = 0.350) models. Therefore,
we conclude that optimizing a CNN with metaheuristics considerably increased the accuracy and
reliability of wildfire susceptibility mapping in the study area.

Keywords: wildfire; Plumas National Forest; damage proxy map (DPM); metaheuristic optimization;
susceptibility map

1. Introduction

A wildfire is any uncontrolled fire that spreads through vegetative fuels and threatens
to destroy life, property, or resources [1]. In California, wildfires are one of the most
common natural disasters and have caused significant harm to the environment, society,
and economy in recent years [2]. Particularly in the last two decades, climate change and
land utilization for human activities have exacerbated wildfires [3]. In addition, sustained
population growth and rapid social development have led to the expansion of areas of the
wildland–urban interface (WUI) and have seriously increased the number of individuals
and buildings affected by wildfires, which has further exacerbated their negative impact
on human life [4]. The number of acres burned, number of fires, and amount of property
damaged due to wildfires have not substantially decreased in California, despite significant
administrative investment in wildfire suppression and management, according to the
Wildfire Redbook published by the California Department of Forestry and Fire Protection
(CAL FIRE).
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According to wildfire activity statistics from CAL FIRE in 2020, wildfire agencies
responded to an average of 8198 fires that burned 7263 km2 per year from 2016 to 2020 [1].
Three of the deadliest, largest, and most destructive California wildfires occurred in Butte
and Plumas County [5]. The Dixie Fire was caused by powerlines and burned 3898 km2,
killing one person and damaging 1329 structures in July 2021. The North Complex Fire
was caused by lightning and burned 1291 km2, took 15 lives, and destroyed 2352 structures
in August 2020. Another devastating wildfire that occurred in November 2018 was the
Camp Fire, which burned 621 km2, claimed 85 lives, and destroyed 18,804 structures. The
secondary effects of wildfires include health problems, reduced air quality, and economic
losses due to wildfire evacuation [6–8]. In terms of long-term impacts, wildfires discharge
aerosols and produce carbon emissions that affect the climate and climate change-related
phenomena that drive even more wildfires [9].

Taking into account the various impacts caused by the burning and spreading of wildfires,
collecting data on past and current wildfires, including their start date, location, amount of
area burned, and duration, serves as valuable information for developing planning programs
for the prevention and response to wildfires [10]. These inventories are an essential source of
information for creating a hazard, risk, and susceptibility map. The identification of wildfire-
prone areas can be achieved through susceptibility mapping [11–13]. Susceptibility is the
likelihood of a wildfire in the future in the spatial dimension, with the predisposition to burn
for each spatial unit (grid cell) assessed based on terrain, meteorological, and anthropogenic
features such as topography and land cover, with the risk ranked from low to high [10]. This
study evaluated past and recent wildfires in particularly damaged areas and determined the
anthropogenic and geo-environmental predisposing factors that increase wildfire risk.

Providing accurate data regarding the location of previous wildfires is a critical initial
step in susceptibility mapping. Wildfire inventory maps can be generated by several
methods, including extensive global positioning system (GPS) field surveys [12,14] or
remote sensing data [11,15]. Moderate-resolution imaging spectroradiometer (MODIS)
products are freely accessible and are widely employed for generating datasets for wildfire-
affected areas [11,14–16]. However, the spatial resolution of the hotspot used for identifying
wildfires is 1 km. Sulova et al. (2020) combined a MODIS dataset and a Sentinel-2 mission
to obtain the locations of wildfires with a spatial resolution of 20 m. Sentinel-2 is an
optical satellite with 13 spectral bands that can be utilized for fuel condition mapping (e.g.,
vegetation greenness, fuel moisture) and burn severity mapping. However, its function
depends on the atmospheric conditions of the areas studied. Radar satellite has several
advantages over optical sensors: clouds and smoke are transparent to radar signals; radar
does not require sunlight; and due to its coherent character, radar signal has the ability to
detect minor alterations in surface property changes. The potential of synthetic aperture
radar (SAR) images for mapping burnt areas lies in the sensitivity of SAR backscattering to
vegetation structure and biomass, and the changes in scattering modes caused by fire events.
The InSAR technique can make a direct measurement on the decorrelation among different
acquisition dates by integrating both amplitude and phase information [17]. For these
reasons, this study utilized the SAR dataset and the damage proxy map (DPM) method to
identify areas of Plumas National Forest that have been likely damaged by wildfires and to
generate an inventory dataset. The DPM method was developed by a joint project between
the California Institute of Technology and the Jet Propulsion Laboratory (JPL), known as
the Advanced Rapid Imaging and Analysis (ARIA) program. Using the DPM method is
beneficial for damage mapping following natural disasters and has been applied to events
including the 2017 Pohang earthquake in South Korea [18], Typhoon Hagibis in Japan [19],
and the 2014 eruption of the Kelud volcano in Indonesia [20].

Various probabilistic and statistical approaches have been used to assess wildfire
susceptibility in recent decades, including the frequency ratio (FR) [21,22], Bayesian
theory [23,24], analytic hierarchy process (AHP) [25,26], and logistic regression (LR) [27,28].
Machine learning has also gained popularity for generating wildfire susceptibility maps,
including artificial neural networks (ANNs) [29], support vector machines (SVMs) [30,31],
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decision tree-based algorithms [12], and random forests [11,13]. These machine learning
methods show great potential for evaluating non-linear and multivariate datasets. How-
ever, previous machine learning methods could not uncover more representative features
from the input data to increase the precision of the forecasting process. Therefore, a new
robust method has been developed to address this limitation by generating wildfire sus-
ceptibility mappings using deep learning algorithms, for instance, deep neural networks
(DNNs) [32] and convolutional neural networks (CNNs) [33,34]. The CNN algorithm has a
greater ability to recognize high variability patterns compared with other deep learning
algorithms [35]. However, the choice of parameter settings has a substantial impact on
the learning process, impacts the prediction results, and potentially leads to problems of
overfitting or underfitting. Metaheuristic optimization based on iterative simulation is a
widely used technique for addressing these problems; by optimizing the hyperparameters,
it exhibits better performance than standalone machine learning and has been employed in
the analysis of disasters such as landslides [36], subsidence [37], and floods [38].

This study aimed to produce wildfire susceptibility maps for Plumas National Forest
by combining SAR data and deep learning methods based on CNN with metaheuristic
optimization algorithms. Firstly, we generated DPMs after past wildfires occurring from
2016 to 2020, based on the Sentinel-1 SAR dataset as a dependent variable. The independent
variables in the analysis were 16 conditioning factors from four categories: topographical,
meteorological, anthropological, and environmental. Deep learning and metaheuristic
optimization approaches were used in the analysis. Model performance was evaluated
using root mean square error (RMSE) analysis and area under the receiver operating
characteristic curve (AUC) analysis. Finally, high-risk and safe areas in Plumas National
Forest were identified by creating maps based on the model.

2. Materials and Methods

Figure 1 shows the overall method that has been summarized in a graphical illustration.
The first step is generating wildfire inventory utilizing the DPM and SAR datasets. The
DPM-derived wildfire inventory data were then randomly separated into training (50%)
and testing (50%) sets. After that, a spatial database was produced and then assessed
employing spatial correlation analysis using the generated wildfire inventory and layers of
the related factors.

Figure 1. Flowchart of the overall methodology.
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Next, the hyperparameters of CNN were optimized using GWO and ICA metaheuristic
optimization algorithms and wildfire susceptibility models were produced. Finally, the
wildfire susceptibility maps were compared and evaluated using RMSE and AUC analysis.

2.1. Study Area

Plumas National Forest resides in 4638 km2 of mountain lands in the north of Sierra
Nevada. Approximately 85% of the forest sits in Plumas County and the rest extends
into Butte County, CA, USA, as shown in Figure 2. The forest was named after its main
watershed, the Rio de las Plumas or Feather River. This area has a Mediterranean climate
with hot, dry summers and cool, wet winters. Plumas National Forest has a complex
topography and heterogeneous and dense vegetation (92.62% of its surface is covered by
forests).

Figure 2. The land use of the study area located in California, United States of America, and the
distribution of historical wildfires from 2016 to 2020 in Plumas National Forest.

The Fire and Resources Assessment Program (FRAP) created fire perimeters and
established a database to represent a comprehensive digital record of fire perimeters in
California [1]. Figure 2 shows the distribution of historic fires in Plumas National Forest
from 2016 to 2020. There were 77 wildfires in Plumas National Forest from 2016 to 2021,
with an average of 13 wildfires burning 115,711 ha per year. Figure 3 shows the number of
wildfires and burned areas from 2016 to 2021. The greatest number of wildfires occurred in
2020, with 23 fires, while the largest total burned area was 433,100 ha in 2021. Although the
number of wildfires in Plumas National Forest is uncertain, the burned area is widening
every year. In general, the peak season for wildfires in Plumas National Forest is late
summer and early autumn. In term of frequency, from 2016–2020, the wildfire season
started in April and the most frequent occurrence was observed in August.

CAL FIRE [1] also investigated and recorded the causes of wildfires and found that
human causes (direct or indirect) ignited 38.57% of the wildfires in Plumas National Forest
(as shown in the statistical summary in Table 1). Therefore, anthropological factors should
be considered in constructing a wildfire susceptibility map. According to the report, the
unknown ignition cause describes a fire that has been investigated and has insufficient
information to classify further, a fire that is under investigation, or a fire that has not yet
been investigated.
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Figure 3. (a) Yearly frequency of wildfires and burned areas and (b) fire frequency by month in
Plumas National Forest from 2016 to 2021.

Table 1. Statistical summary of wildfire ignition causes in Plumas National Forest from 2016 to 2020.
(2021 wildfires are under investigation).

Causes Lightning
Human-Caused

Miscellaneous Unknown
Transportation Human Activity Construction

Number of wildfires 25 3 18 6 8 10
Percentage 35.71 4.29 25.71 8.57 11.43 14.29

2.2. SAR Datasets

SAR is beneficial compared to other types of remote sensing because its radar transmis-
sion in the microwave spectrum is not affected by day and night visibility and weather con-
ditions, including cloud cover or smoke from fires [17]. Sentinel-1 SAR C-band data (5.5 cm
wavelength) from the European Space Agency (ESA) were utilized to depict damaged areas
after a wildfire in Plumas National Forest. Plumas National Forest is located on path 42
and frame 462. We collected Sentinel-1 single look complex (SLC) data with interferometric
wide-swath (IW) mode and vertical transmission and vertical return (VV) polarization.
We collected three scenes of Sentinel-1 SLCs for each wildfire of more than 300 ha acres.
Two images were obtained before the wildfire and one after the wildfire was contained. In
total, we collected 33 scenes to depict the damaged areas after wildfires from 2016 to 2020
in Plumas National Forest (Table 2). The Sentinel-1 SLC level-1 data were downloaded
from the Alaska Satellite Facility (ASF) where each scene was pre-processed in Gamma
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2021 software, (https://www.gamma-rs.ch/uploads/media/upgrades_info_20211201.pdf
(accessed on 12 July 2022)). Each scene was updated through orbit information update to
reduce orbit error.

Table 2. Wildfire information and Sentinel-1 SAR data used in this study.

Fire Name Alarm Date
(MM/DD/YYYY)

Burned Area (ha)
Pre-Event Post-Event

Flight Direction
1 2 3

North Complex 08/17/2020 129,004 08/01/2020 08/13/2020 09/06/2020 Desc
Sheep 08/17/2020 11,967 08/01/2020 08/13/2020 08/25/2020 Desc

Loyalton 08/14/2020 19,032 08/01/2020 08/13/2020 09/06/2020 Desc
Walker 09/04/2019 22,107 08/20/2019 09/01/2019 09/13/2019 Asc
Camp 11/08/2018 62,053 10/23/2018 11/04/2018 11/16/2018 Desc

Cascade 10/08/2017 4042 09/10/2017 10/04/2017 10/16/2017 Desc
Cherokee 10/08/2017 3406 09/10/2017 10/04/2017 10/16/2017 Desc
Ponderosa 08/29/2017 1625 08/06/2017 08/18/2017 09/11/2017 Asc
Minerva 5 07/29/2017 1744 07/01/2017 07/13/2017 08/06/2017 Asc

Wall 07/07/2017 2441 06/18/2017 06/30/2017 07/12/2017 Desc
Saddle 09/05/2016 344 080/5/2016 08/29/2016 09/22/2016 Asc

2.3. Wildfire Conditioning Factors

Selecting independent variables, also known as predictors, predisposing, or condition-
ing factors, is vital in predictive modeling. Based on prior studies in California [2,39,40],
16 factors related to wildfire susceptibility were selected and categorized into four categories
as shown in Table 3: topographical, meteorological, environmental, and anthropological. The
topographical factors included aspect, altitude, slope, and plan curvature; the meteorological
factors included precipitation, maximum temperature, solar radiance, and windspeed; the
environmental factors included distance to stream, drought index, soil moisture, NDVI, and
topographic wetness index; and the anthropological factors included land use, distance to
road, and distance to settlement. The 16 factors used for the wildfire susceptibility analysis
are shown in Figure 4. All factors were organized into a raster-based spatial database with a
spatial resolution of 30 m. Continuous (numeric) data were reclassified into five classes using
the quantile method to identify and analyze the effect of wildfires.

Table 3. The list and description of wildfire conditioning factors.

Category Factors Scale/Resolution Source of Data References

Topography

Aspect

30 m Copernicus DEM

[2]
Altitude [40]

Slope [16]
Plan curvature [14]

Meteorological

Precipitation
800 m PRISM

[2]
Maximum temperature [39]

Solar radiance 4 km NREL [41]
Windspeed 100 m Global Wind Atlas [42]

Environmental

Distance to stream 1:5000 California State Geoportal [16]
Drought index

4 km Terra Climate
[43]

Soil moisture [44]
NDVI 375 m MODIS [39]

Topographic wetness index 30 m Copernicus DEM [40]

Anthropological
Land use

30 m USGS
[2]

Distance to road [14]
Distance to settlement [41]

https://www.gamma-rs.ch/uploads/media/upgrades_info_20211201.pdf
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Figure 4. Cont.
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Figure 4. Wildfire conditioning factors used in this study categorized as (a–d) topographical,
(e–h) meteorological, (i–m) environmental, and (n–p) anthropological factors.
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The topographic conditioning factors were altitude, aspect, slope, and plan curvature,
derived from the Copernicus digital elevation model (DEM) with a spatial resolution
of 30 m. The Copernicus DEM is a product of radar satellite data collected during the
TanDEM-X mission. Altitude is an important factor affecting the spread and severity of a
wildfire and is associated with local climate variations, vegetation distribution, composition,
and flammability [14,45]. Increasing the degree of inclination can increase the rate of fire
spread. Fire can spread quickly into steep areas and less quickly down steep areas [11].
Aspect shows the direction the slope is facing and affects the amount of solar radiation
received [15,40]

The meteorological conditioning factors were the mean values of precipitation, maxi-
mum temperature, solar radiation, and wind speed. These factors control the life cycle of
flora and fauna, which contribute to producing fuels, drying fuels for ignition, or spreading
wildfires [15]. Solar radiation was collected from the National Renewable Energy Labora-
tory (NREL) with a spatial resolution of 4 km [46]. Increasing solar radiation can reduce
soil moisture and increase temperature, thus increasing wildfire risk [47]. Precipitation
and maximum temperature were collected from parameter-elevation regressions on in-
dependent slopes model (PRISM) managed by Oregon State University’s PRISM Climate
group. Precipitation affects the moisture level and vegetation pattern that influence the
speed of fire distribution [48]. There is a direct correlation between increases in temperature
and wildfires [14,41]. Windspeed was obtained from the Global Wind Atlas with a spatial
resolution of 100 m. Windspeed is related to wildfires, as wind affects their speed and
severity [49]. The rasters were generated from images collected from 2016 to 2020 using the
mean statistic function [43].

The environmental factors were the distance to stream, soil moisture, drought index,
NDVI, and topographic wetness index (TWI). Stream data were acquired from California
State Geoportal. The distance to stream has a direct role in forest health, with the stream
serving as a water resource [14,50]. The soil moisture and drought index were collected from
the Terra Climate 2016–2020 dataset with a spatial resolution of 4 km. This monthly dataset
for global terrestrial surfaces uses the interpolated time-varying anomalies from CRU Ts
4.0/JRA55, with high-spatial climatological normal obtained from the WorldClim dataset
to create a high-spatial resolution dataset that covers a broader temporal record [51]. The
drought index, based on the Palmer Drought Severity Index (PDSI), measures agricultural
drought calculated by adding precipitation to the top two layers of the soil and employing
a temperature-driven evapotranspiration algorithm to remove moisture [13]. Soil moisture
directly influences the dryness of fuels and affects the dead fuels generally found in the
ground; thus, it acts as a proxy for drought [52]. The normalized difference vegetation
index (NDVI) was collected from MODIS/Terra with a spatial resolution of 375 m. Instead
of using the mean NDVI, we calculated the median NDVI from 2016 to 2020 on a pixel-
by-pixel basis to avoid bias introduced to the mean value by the greenness loss after
wildfire [53]. NDVI displays the health status of vegetation. A reduction of the NDVI
indicates dry grass or trees affecting the water stress and increasing the risk of fire [54]. The
topographic wetness index (TWI) was generated from the Copernicus DEM and calculated
with the relevant equation from Hong et al. [55]. TWI defines the aspect of steady-state soil
wetness [56].

The anthropological factors were land use, distance to road, and distance to settlement.
Land use and distance to settlement were acquired from the United States Geological Survey
(USGS) national land cover database (NLCD-2019) with a spatial resolution of 30 m. Land
use describes the landscape features of the study area. The different characteristics, such as
the load and moisture content of the distinct land use types, can influence the ignition and
spread of fires [11]. The distance to settlements and roads quantifies access to forest areas
and, in many cases, plays an essential role in the ignition of wildfire incidents [15,41,50].
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2.4. Damage Proxy Map (DPM)

To help identify damaged areas after wildfires, DPMs were produced by comparing
pre- and co-event SAR images. The method depends on the decrease in the coherence of
the signal scattering between SAR images taken prior and following the event to determine
irregular changes in ground surface properties [57]. Coherence assesses the alteration
in backscatter signal as a proxy for the ground-surface property alteration [58]. A high
coherence implies little or no alteration to the ground surface reflecting the SAR radiation.
Alterations can be caused by damage to the ground surface itself or damage to structures
by wildfires.

Interferometric coherence is a quantification of resemblance between two radar signals
that have been employed to assess the quality of the InSAR product. This statistical quantity
is computed as [19]:

γ =
|〈c1c∗2〉|√〈
c1c∗1

〉〈
c1c∗2

〉 , 0 ≤ γ ≤ 1 (1)

where c1 and c2 represent the values of complex pixels of two SAR scenes and * indicates the
complex conjugate. The resulting coherence ranges from 1 (coherent) to 0 (incoherent). If the
two images’ observations are identical, then the coherence is equal to 1 due to stable objects
in the scenes, such as buildings. However, the DPM method is not limited to building
damage. As long as the predamage (reference) InSAR pair maintains reasonable coherence,
this approach can be applied to any anthropogenic or natural damage that causes serious
surface property changes, such as those caused by a wildfire. Major damage after a wildfire
significantly intensifies the interferometric phase dissimilarity. This alteration appears as a
decrease in coherence or decorrelation.

The process started with image co-registration with subpixel accuracy utilized to
match scenes to one another. Three radar images were then employed to generate two
pairs of interferometric coherence maps to produce a DPM: one pair prior to the damage
(pre-event) and the other pair spanning the damage (co-event). The pre-event coherence
pair delineated changes unrelated to the event and was expected to be the background
value. In ArcGIS 10.4 software, we obtained the coherence difference (COD) by subtracting
γpre-event and γco-event. The results were transformed into a georeferenced coordinate
system employing the Copernicus DEM, resulting in pixels approximately 30 m across.
The threshold for sufficient coherence loss was adjusted by comparing observed COD with
reported damage and the area where there was no damage [58–60]. Here, the coherence
loss threshold for DPM was chosen by considering wildfire perimeters from CAL FIRE.
The fire perimeter was obtained using various collection methods, such as GPS ground,
GPS air, infrared, photo interpretation, hand-drawn, and mixed collection methods.

2.5. Spatial Correlation Analysis

Variable selection is particularly important in the prediction of wildfire susceptibility.
The high dimensionality of the training dataset may complicate the prediction process
and decrease the prediction accuracy. In this study, the information gain ratio (IGR) and
multicollinearity analysis were selected to evaluate the wildfire conditioning factors.

In addition, Pearson correlation analysis was applied to identify linear correlation
relationships between pairs of variables. The Pearson correlation coefficient allows mea-
surement of the association between variables. When a correlation is present, a change in
the magnitude of one variable is associated with a change in the magnitude of the other
variable, either in the same direction (positive coefficient) or in the opposite direction
(negative coefficient). This coefficient is scaled and takes values between −1 and 1, where 0
is equivalent to the case in which no correlation exists [61]. A correlation coefficient greater
than or equal to 0.7 is considered a correlation indicator that can lead to distortion of the
modeling process and affect future predictions [62].

For the IGR method, the factor with a higher IGR value indicates a stronger predictive
ability of the model. However, factors with IGR values equal to or less than 0 indicate
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a “null” contribution to the forest fire susceptibility model and should be excluded from
further analysis [34].

The tolerance (TOLs) and variance inflation factors (VIFs) were computed to discover
whether multicollinearity existed [63]. Multicollinearity occurs between variables if they
have a close linear association in a regression model, which may decrease the model’s
performance [64,65]. The TOL and VIF were calculated using the following equations:

TOL = 1− R2
j (2)

VIF =
1

1− R2
j

(3)

where R2
j denotes the regression value of j on different variables in a dataset. Thus,

multicollinearity issues generally occur if the TOL score is smaller than 0.10 and the VIF
score is greater than 10 [66,67].

Using the frequency ratio (FR) method, spatial relationships among the distribution of
wildfire damage locations (71,371 points) and class of wildfire conditioning factors were
analyzed. After classifying the numeric factors into five classes, tabulate area tools in
ArcGIS 10.4 were used to handle dependent data (wildfire location) with classified factors
for obtaining tabulate area cell counts indicating the number of wildfire occurrences in
each class. Therefore, the FR value can be acquired by calculating the ratio between the
percentage of pixels wildfire occurrence/event in each class with the percentage of pixels
area of each class. If a specific class of the factor obtained a FR value greater than 1, then
the class has a high probability of wildfire occurrence, high degree of damage by wildfire,
and will have a substantial impact on wildfire susceptibility [68]. The FR value of each
class factor was computed using the following equation:

FR =
% Pixel o f wild f ire occurrence

% Pixel class o f wild f ire f actors
(4)

The FR value of each class of wildfire conditioning factors was utilized to produce
wildfire susceptibility maps using deep learning algorithms based on CNN, CNN-GWO,
and CNN-ICA.

2.6. Convolutional Neural Network (CNN)

Classification and prediction using CNNs have been increasingly applied recently in
numerous disciplines as well as earth sciences [69–71]. CNN is one of the deep learning
approaches differentiated from a traditional neural network by using multiple layers such
as pooling, mutual weights, and local connections [72]. Generally, the CNN architecture is
constructed of convolutional layers (CLs), activation process (AP), pooling layers (PLs), and
fully connected layers (FCLs). The CLs continuously identify the connection between each
feature class by extracting new features from the input images [73]. Next is AP, which chooses
a rectified linear unit due to the unit having the ability to handle non-linear results from CLs
and enhance the non-linear properties of the neural network [35,74]. PLs allow for stable
conversion to prevent overfitting and upgrade computational performance by decreasing the
number of feature class structures through the down-sampling approach [75]. Last are FCLs,
which combine data in the neural network and generate the final output [73,76].

2.7. Metaheuristic Optimization Algorithms
2.7.1. Grey Wolf Optimization (GWO)

A metaheuristic algorithm was developed by mimicking the hierarchy of command
and hunting strategy of grey wolves (Canis lupus) in nature [77]. The hierarchical structure
of the grey wolf pack is based on four levels: alpha, beta, delta, and omega. Alpha (α) is
the leader that controls all activities of the pack, such as resting, migration, feeding, and
hunting. Beta (β) assists the leader in making judgements and establishing the order of
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the pack. Deltas (δ) act as hunters, sentinels, and watchers. Omegas (ω) are the weakest
relations and care for the young; internal fights and other issues in the pack are noticed
without them [78]. There are three main steps in hunting: seeking prey, surrounding the
prey, and striking the prey [36]. The alpha (α) is considered the highest-fitted solution,
followed by β, δ, and ω, based on Equations (5)–(8) [77]:

→
Dα = |

→
C1 ·

→
Xα −

→
X|,

→
Dβ = |

→
C2 ·

→
Xβ −

→
X|,

→
Dδ = |

→
C3 ·

→
Xδ −

→
X|,

→
C = 2×→r2 (5)

→
X1 =

→
Xα −

→
A1 × (

→
Dα),

→
X2 =

→
Xβ −

→
A2 × (

→
Dβ),

→
X3 =

→
Xδ −

→
A3 × (

→
Dδ), (6)

→
A = 2×→a ×→r1 −

→
a (7)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(8)

where for the iteration time t,
→
D is the vector that suggests a new position and

→
X denotes

the position of the wolf;
→
A and

→
C are coefficient vectors and components of

→
a , which are

linearly diminished between 0 and 2 in each iteration; and
→
r1 and

→
r2 are random vectors

generated for the range [0, 1]. The hunting process is completed when
→
A takes values

between −1 and 1, when an attack occurs [78].

2.7.2. Imperialist Competitive Algorithms (ICA)

ICA is one of the metaheuristic optimization algorithms imitating imperialistic compe-
tition and addresses various optimization problems [79]. ICA begins with a population of
randomized solutions, where each solution is considered as a country. The population is
separated into two categories: imperialist and colonies. Each imperialist initially controls
a group of colonies and then competes to attract and take possession of others through
its authority and influence, forming the core of the ICA algorithm [80]. The positions of
imperialist countries and colonies can be exchanged if the colonies become more powerful.
If an empire cannot increase its strength through interactions with other countries, it will
be gradually eliminated during the competition. Thus, fragile empires lose their colonies,
while substantial empires occupy more colonies, further increasing their strength. Ulti-
mately, imperialistic competition leads to the elimination of all but one empire, which gains
control of all other countries [81]. The algorithm terminates after the maximum number of
iterations or when a predefined number of empires remain.

2.8. Accuracy Assessment

Evaluation is an essential step in assessing the accuracy of predictions of a model to
support the scientific validity of a study [82]. This study used the area under the receiver
operating characteristic (ROC) curve analysis for model assessment, which is a common
way of evaluating wildfire probability models [11,15,59,83,84]. The AUC represents the
performance, evaluation, utilization, and compression of model predictions [85–87]. This
measure of accuracy ranges between 0.5 and 1 (perfect forecasting), with values near
1 indicating excellent performance and values near 0.5 denoting very poor prediction
accuracy [69]. We applied this method using the testing dataset from wildfire inventory
pixels (see Section 3.1) which were not used to train the applied deep learning approaches.
A ROC curve is a plot of specificity (i.e., false positive on the x axis) versus sensitivity
(i.e., true positive on the y axis). In wildfire modeling, sensitivity and specificity refer to
the proportion of correctly predicted fire pixels and the proportion of correctly predicted
non-fire pixels, respectively.
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This study also used the mean square error (MSE) and root mean squared error
(RMSE) approach as a second evaluation metric and as a cost function for optimizing CNN
parameters as follow:

MSE =
1
n ∑n

i=1(yi − ti)
2 (9)

RMSE =

√
1
n ∑n

i=1(yi − ti)
2

where y and t are the predicted and actual wildfire inventory values, respectively, and n
denotes the number of samples. Metaheuristic algorithms were used to minimize the MSE
and RMSE values through optimization of model hyperparameters. Smaller values of MSE
and RMSE indicate a better performance of the models and the effectiveness of metaheuris-
tic optimization. In addition, a wildfire susceptibility map with higher performance will be
compared with recent wildfires in 2021 to evaluate the model’s predictive performance.

3. Results
3.1. Wildfire Damage Inventory Map

Most wildfires in Plumas National Forest occur during the summer or fall when
most of the leaves have fallen. Thus, InSAR coherence measurements collected before a
wildfire can maintain reasonable coherence, and the DPM technique can be applied to
depict damaged locations after wildfires in Plumas National Forest.

DPMs were generated depicting areas in Plumas National Forest that were likely
damaged by wildfires. Figure 5 reveals the DPM results after wildfires in Plumas National
Forest, including the Camp Fire, Walker Fire, North Complex Fire, and Sheep Fire. Areas
that experience an increase in COD are indicated by pixels with colors that stretch from
yellow to red. Enlarged DPM pixels opaqueness represents significant ground or building
alteration or possible damage due to wildfire. Regions where decorrelation did not alter
significantly over wildfires during the period are set to be transparent, indicating no
destruction. The DPMs were geocoded to the Copernicus DEM with a corresponding
spatial resolution of approximately 30 m.

Figure 5. DPM depicting damage area after Camp Fire, Walker Fire, North Complex Fire, and Sheep
Fire wildfires. Image from Sentinel-2 data acquired on 17 July 2021, during the Dixie Fire.
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This study compared the distribution of coherence loss areas with the fire perimeter
from CAL FIRE which showed similar damage areas after wildfires throughout Plumas
National Forest from 2016 to 2020. The scattered pixels were removed using a fire perimeter
to generate precise wildfire-affected areas. The combination of both sources resulted in a
more accurate and dependable inventory dataset depicting the location of damage after
wildfires. The total number of wildfires mapped was 11, which translated to 71,371 pixels of
30 m wildfire cell size as wildfire occurrence data. These data were then randomly divided
into a 50% training and 50% testing dataset. In the context of deep learning, the creation
of a wildfire susceptibility map required data of areas without wildfires. In this study, the
same number of non-wildfire location data (71,371 points) were sampled through random
selection by comparing the area with no prior wildfire and the very low probability class
identified with the frequency ratio method. The analysis of zero data based on these results
was an efficient way to aid the interpretation of the area [35]. The non-wildfire data were
also divided into a training (50%) and testing (50%) dataset. The 50% training datasets for
wildfire-occurrence and non-wildfire-occurrence location were then merged to generate
wildfire susceptibility maps, with the remaining 50% of testing data from both datasets
merged for evaluation of the performance [59,84,85].

3.2. Relationship between Damage Area and Related Factors

Figure 6 shows the results from the Pearson correlation analysis for all the conditioning
factors. According to the pairwise correlation matrix, none of the correlation values among
each conditioning factor were within the safe threshold. The highest correlation value
was computed between solar and maximum temperature (0.63). The results suggested
that there is no need to eliminate any conditioning factors and all factors would not cause
distortion in the modeling process.

Figure 6. Pearson correlation between wildfire conditioning factors.

Based on the evaluation of the IGR analysis, all 16 conditioning factors considered
in this study had predictive capabilities for wildfire modeling and contributed to the
occurrence and extent of wildfires (IGR > 0), as shown in Table 4. Table 4 shows that the
factor with the highest IGR value was land use (IGR = 0.39); thus, land use was the most
effective wildfire conditioning factor in this study, followed by drought index (0.25) and
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maximum temperature (0.18). Furthermore, windspeed was found to be the least important
wildfire conditioning factor with an IGR value of 0.03.

Table 4. IGR and multicollinearity results for the conditioning factors.

Factor IGR
Collinearity Statistics

TOL VIF

Altitude 0.17 0.17 5.91
Aspect 0.06 0.98 1.02

Distance to stream 0.06 0.99 1.01
Distance to road 0.14 0.97 1.03

Distance to settlement 0.03 0.68 1.47
Land use 0.39 0.39 2.55

NDVI 0.08 0.71 1.40
Drought index 0.25 0.24 4.13
Plan curvature 0.04 0.83 1.20
Precipitation 0.04 0.39 2.57

Slope 0.16 0.30 3.31
Soil moisture 0.18 0.27 3.66

Solar 0.12 0.41 2.49
Maximum temperature 0.18 0.22 4.63

TWI 0.16 0.53 1.90
Windspeed 0.03 0.81 1.22

An assessment of multicollinearity was conducted to investigate the correlation be-
tween wildfire conditioning factors, as shown in Table 4. All wildfire conditioning factors
had VIF scores lower than 10 and tolerance scores >0.1. The ranges of VIF and TOL were
within the permissible threshold; therefore, there were no multicollinearities observed
between the wildfire conditioning factors, thereby avoiding the risk of deteriorating model
performance. The maximum VIF score was 5.91 for altitude and the lowest tolerance score
was 0.18 for maximum temperature. The range of TOL was 0.17 to 0.99. Given that the
Pearson correlation analysis, IGR, and multicollinearity values were all within their critical
value, all of the conditioning factors can be used for creating a wildfire susceptibility map.

FR values can provide information about the connection between the location of
damage caused by wildfires and classes of conditioning factors. The results of the FR
calculation in this study are shown in Table 5. The slope aspect showed that wildfire
occurrence is concentrated in the northeast, southeast, south, southwest, west, and flat
portions of Plumas National Forest. The fact that south-facing aspects receive more solar
radiation, which increases fuel temperature, and low fuel moisture in the North Hemisphere
led to wildfire occurrence [50,88]. The areas of 13–272 and 272–1216 m in altitude had high
FR values of 1.03 and 1.54, respectively, indicating that low-altitude areas in the study area
are more susceptible to wildfire occurrence and implying vegetation is more burnable due
to high temperature and dry weather during summer [10,50]. The high degree of slope
causes wildfires to spread more quickly up the steep areas, as shown by the two classes of
7.22–12.89 and 20.37–65.75 having FR values of 1.06 and 1.44, respectively. Higher distance
to road indicates a higher probability of wildfire occurrence, with the three highest classes of
152–301, 301–595, and 595–4260 m having FR values of 1.19, 1.14, and 1.27, respectively. The
further away the road is, the more difficult it is for firefighters to access and extinguish the
wildfire area [15]. Portions of landscape with maximum temperature > 65.67 ◦C, a higher
drought index of −0.09, and precipitation between 25–43.35 mm were predestined places
for wildfires, encompassing 52.88% (Tmax > 65.57 ◦C), 53.20% (drought > −0.09–0.89), and
47.44% (25–43.35 mm precipitation). High NDVI classes, namely 0.46–0.61, 0.61–0.76, and
0.76–1, had FR values of 1.04, 1.10, and 1.14, respectively, implying wildfire occurrence
in high greenness and the moisture content of vegetation. The reverse trends were found
for distance to settlement, with the low classes showing high FR values of 1.28 and 1.30
for distance to settlement of 287–1148 and 1148–2679 m, respectively. A closer distance to
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stream, namely 0–997, 997–2160, and 2160–3573 m, had high FR values of 1.17, 1.19, and
1.05, respectively. Streams cater for entertaining human interests such as tourist camps. The
closer the distance to settlements and streams relating to high levels of human activity, the
greater the risk of wildfire ignition [2,14]. For land use factors, herbaceous, evergreen, and
mixed forest classes, with the highest FR values, experienced the highest wildfire occurrence
and served as a fuel for wildfires [10,14]. Based on their FR values, plan curvature with
concave and convex were associated with a high occurrence of wildfires, which is in
agreement with other findings that suggest the probability of fire occurrence may be lower
on flat terrain and higher on concave slopes [24]. Topographical and anthropological
features also swamped the effect of soil moisture, TWI, and windspeed, all of which did not
show any pattern or specific class that is strongly associated with the presence or absence
of wildfires. The wildfire occurrence for TWI and windspeed features tended to be high
in most classes, although our windspeed variable was intended to reflect the outcome of
providing fresh oxygen and a greater potential for drying potential fuels and propelling
fire across land at a faster rate.

Table 5. Frequency ratio of wildfire conditioning factors.

Factor Class Total % Event % Frequency Ratio

Aspect North 1.85 0.00 0.00
Northeast 10.30 10.58 1.03

East 9.74 5.77 0.59
Southeast 11.31 12.82 1.13

South 12.56 13.78 1.10
Southwest 14.31 16.03 1.12

West 14.70 15.38 1.05
Northwest 13.99 13.14 0.94

Flat 11.25 12.50 1.11

Altitude (m) 13–272 19.83 20.51 1.03
272–1216 20.13 31.09 1.54
1216–1525 19.43 16.99 0.87
1525–1773 20.46 16.99 0.83
1773–2549 20.15 14.42 0.72

Distance to Road (m) 0–60 21.26 16.35 0.77
60–152 20.13 13.46 0.67
152–301 19.70 23.40 1.19
301–595 19.47 22.12 1.14

595–4260 19.44 24.68 1.27

Distance to
Settlement (m)

0–287 17.90 12.82 0.72
287–1148 22.34 28.53 1.28
1148–2679 20.25 26.28 1.30
2679–5646 20.08 16.67 0.83

5646–24,404 19.42 15.71 0.81

Distance to stream
(m)

0–997 19.41 22.76 1.17
997–2160 20.14 24.04 1.19
2160–3573 20.98 22.12 1.05
3573–5651 19.75 15.71 0.80

5651–21,192 19.72 15.38 0.78

Land use Open water 2.19 0.08 0.04
Developed, open space 1.80 1.07 0.59

Developed, low intensity 0.84 0.44 0.52
Developed, medium intensity 0.61 0.22 0.37

Developed, high intensity 0.18 0.06 0.32
Deciduous forest 0.48 0.20 0.41
Evergreen forest 52.09 56.72 1.09

Mixed forest 0.24 0.24 1.00
Shrub/scrub 19.34 18.02 0.93
Herbaceous 9.35 22.86 2.44

Cultivated crops 10.51 0.01 0.00
Woody wetlands 0.50 0.07 0.14

Emergent herbaceous wetlands 1.55 0.02 0.01
Barren land 0.06 0.00 0.00

Hay/pasture 0.26 0.00 0.00
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Table 5. Cont.

Factor Class Total % Event % Frequency Ratio

Drought index −1.88–−0.83 19.46 18.91 0.97
−0.84–−0.32 20.38 18.59 0.91
−0.33–−0.08 19.73 9.29 0.47
−0.09–0.21 21.15 26.60 1.26
0.21–0.89 19.28 26.60 1.38

NDVI 0–0.25 20.00 17.63 0.88
0.25–0.46 20.00 16.67 0.83
0.46–0.61 20.01 20.83 1.04
0.61–0.76 20.00 22.12 1.10

0.76–1 19.98 22.76 1.14

Plan curvature
Concave 33.85 38.14 1.13

Flat 16.10 11.86 0.74
Convex 50.05 50.00 1.00

Precipitation (mm) 13.93–25.21 20.01 17.31 0.87
25.21–33.72 20.00 24.68 1.23
33.72–43.35 20.00 22.76 1.14
43.35–67.25 20.00 19.55 0.98
67.25–116.10 19.99 15.71 0.79

Slope (degree) 0–1.80 19.78 12.18 0.62
1.80–7.22 20.59 18.59 0.90

7.22–12.89 19.97 21.15 1.06
12.89–20.37 19.84 19.55 0.99
20.37–65.75 19.82 28.53 1.44

Soil moisture (mm) 22.00–95.29 19.76 21.79 1.10
95.29–184.29 20.16 12.82 0.64

184.29–252.35 19.98 15.71 0.79
252.35–348.33 19.50 25.32 1.30
348.33–467.00 20.60 24.36 1.18

Solar 6.14–6.38 21.09 27.24 1.29
6.38–6.55 21.23 27.88 1.31
6.55–6.72 21.00 19.55 0.93
6.72–6.84 18.50 12.50 0.68
6.84–7.27 18.05 12.82 0.71

Tmax (◦C) 52.07–59.07 20.06 12.82 0.64
59.07–61.84 20.01 15.71 0.78
61.84–65.67 20.01 18.59 0.93
65.67–74.11 19.97 30.13 1.51
74.11–76.06 19.95 22.76 1.14

TWI 3.29–5.52 18.18 21.15 1.16
5.52–6.25 20.05 22.12 1.10
6.25–7.27 20.88 21.47 1.03
7.27–9.20 21.05 24.36 1.15

9.20–26.31 19.84 10.90 0.55

Windspeed (m/s)
0.99–3.93 20.00 20.51 1.03
3.93–4.67 20.00 21.15 1.06
4.67–5.29 20.00 20.19 1.00
5.29–5.84 20.00 22.12 1.11

5.84–11.89 20.00 16.03 0.80

3.3. Wildfire Susceptibility Map

The construction of the database has been performed, including: (i) the dependent
variables (i.e., damage location by wildfire derived by the DPM method and Sentinel-
1 product) and (ii) the independent variables (based on topographical, meteorological,
environmental, and anthropological). The creation of wildfire susceptibility maps utilizing
the training dataset were compiled employing the damage inventory database from the
DPM of the wildfires from 2016 to 2020 and applying deep learning with metaheuristic
optimization approaches, as discussed above. The wildfire susceptibility maps depict an
assessment of the likelihood of experiencing a wildfire in a study area built upon the 16
conditioning factors considered. Figure 7 shows the wildfire susceptibility maps from
the CNN, CNN-GWO, and CNN-ICA models. Using the quantile method, we classified
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the regions of the wildfire susceptibility maps into five predicted classes: very low, low,
moderate, high, and very high [89,90].

Figure 7. Wildfire susceptibility maps generated using 2016–2020 wildfire inventory and the (a) CNN,
(b) CNN-GWO, and (c) CNN-ICA algorithms.

The distribution of pixels in each wildfire susceptibility map was also analyzed and
is shown in Figure 8. Overall, most of the study area is prone to wildfire occurrences,
especially in the western part of Plumas National Forest and expanded to the center of
the forest, and makes the study area a wildfire hot-spot region in California. Generally,
about 40% of the study area located in areas with flat curvature and low altitude has a
low to very low wildfire susceptibility, 20% of the study area has a moderate wildfire
susceptibility, and 40% of the study area located in a high degree of slope has a high to very
high susceptibility to future wildfire occurrence. In the CNN-ICA model, the moderate class
was more distributed throughout the study area than in the other models. The distribution
of pixels of standalone CNN and hybrid CNN-GWO showed similar results compared
with those of CNN-ICA. CNN-ICA showed the smallest percentage of the very high class
and the greatest percentage of the low wildfire susceptibility class.
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Figure 8. The distribution of wildfire susceptibility levels in the CNN, CNN-GWO, and CNN-ICA models.

3.4. Model Evaluation

A critical step in generating wildfire susceptibility models is the evaluation of the
predicted models to ensure that they provide accurate and reliable wildfire susceptibility
assessments. The performance of the models was evaluated and compared to assess the
reliability of the wildfire susceptibility maps obtained with each algorithm. Figure 9 has
two parts: errors versus number of samples and frequency versus errors. The error part of
Figure 9 specifies the values of MSE and RMSE; the frequency versus errors depicts the
values of the error mean and standard deviation (StD).

Figure 9. Analysis errors based on MSE, RMSE, error mean, and error StD using a testing dataset for:
(a,d) CNN, (b,e) CNN-GWO, and (c,f) CNN-ICA models.

The results revealed that in the testing phase using the standalone CNN model, the
values of MSE, RMSE, error mean, and error StD are 0.609, 0.780, −0.076, and 0.778, respec-
tively. In the CNN-GWO model, the values of MSE, RMSE, error mean, and error StD are
0.334, 0.112, −0.014, and 0.335, respectively. Moreover, in the CNN-ICA model, the values
of MSE, RMSE, error mean, and error StD are 0.129, 0.351, 0.071, and 0.344, respectively. In
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addition, the range of error in CNN alone was much broader (−2 < error < 2) than that in
CNN-GWO and CNN-ICA (−1 < error < 1).

Figure 10 shows the ROC curves, with AUC values of 0.934, 0.950, and 0.974 for CNN
(red line), CNN-GWO (blue line), and CNN-ICA (green line), respectively. The results
of AUC were in agreement with the results of the model evaluation using MSE, RMSE,
error mean, and error StD values in the testing phase. Therefore, the predictive ability of
CNN-GWO was better than that of CNN and CNN-ICA, as indicated by lower values of
MSE and RMSE and a higher value of AUC. This finding is in accordance with the results
of other studies [35,91].

Figure 10. The ROC curves and AUC values of CNN (red line), CNN-GWO (blue line), and CNN-ICA
(green line) for wildfire susceptibility models using a testing dataset.

4. Discussion

Wildfire inventories are crucial for accurate wildfire susceptibility creation. The
application of remote sensing SAR imagery is suitable for obtaining data inventories of
locations damaged by wildfires due to their wide availability, independence from fieldwork,
time and cost efficiency, frequent repeatability over time, cloud and sunlight independence,
and high precision and sensitivity [37]. Combined with the fire perimeter generated from
CAL FIRE, a more precise and reliable inventory dataset depicting the location of damage
and the area of wildfires was obtained. In this study, the DPM technique was employed to
determine the areas damaged by wildfires in Plumas National Forest to form inventory
data utilized for training and testing the wildfire susceptibility models.

The ARIA team also created a DPM after the Camp Fire wildfire and found similar
results [86]. Therefore, using SAR imagery, the DPM method can be an alternative tool to
map damaged areas. However, scattered small-colored pixels were spotted outside the
perimeter and may be false positives but do not necessarily mean no damage occurred.
Our study revealed that the DPM technique is not limited to detecting damage to buildings
after an earthquake [57,92], volcano [20], or typhoon [19]. The DPM method can be applied
to any natural or anthropogenic damage that causes a substantial change in the surface
property as long as a predamage (reference) InSAR pair preserves reasonable coherence.
Tay et al. (2020) employed aerial imagery, obtained from the Japan Geospatial Information
Authority (GSI), after Typhoon Hagibis. Nur et al. (2021) used a damage area report from
the Korea Meteorological Agency (KMA) report of the Gyeongju and Pohang earthquakes.

Important conditioning factors for detecting wildfire-prone areas were identified and
collected based on the literature and data availability. Spatial correlation analysis has been
performed by calculating the VIF and TOL for multicollinearity analysis and the FR and
IGR techniques to evaluate the relationship and influence of the factors. Similar results
were acquired by [93], who indicated a higher VIF score for the altitude factor. This is
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due to the fluctuation of most factors, such as maximum temperature, drought index, and
soil moisture, being consistent with the altitude. The output showed that no significant
multicollinearity existed, with all factors used in this study having a considerable effect
on wildfire susceptibility in Plumas National Forest. FR results clearly showed that the
spatial relationship between each category of conditioning factors and wildfire location is
not randomly distributed across Plumas National Forest and that the likelihood of wildfires
is highly dependent on the characteristics of the landscapes. Although some variables were
not shown to have a significant effect on wildfire occurrence when evaluated separately, as
shown in other studies, we were able to identify fire-prone areas in the study area with the
help of these conditioning factors. Areas with a high probability of wildfires were associated
with land use, drought index, and maximum temperature. These were consistent with
many studies that cite temperature, drought index, and precipitation as critical parameters
affecting the relative likelihood of wildfire occurrence [14,29], presumably because fuel
moisture content is largely a function of temperature, drought index, and precipitation [94].
This study also confirms previous results that found wind is the most unpredictable variable
for forecasting wildfire occurrence [24].

Land cover describes the vegetation type, structure, amount, and continuity, with the
fuel properties of vegetation and fuel breaks being factors that influence the characteristics
of wildfires, such as their likelihood, spread, frequency, and severity, by providing different
fuel abundance and settings for different time intervals. In addition, land uses such as
urbanization, agriculture, and grazing and land covers such as barren land, open water,
and wetland in Plumas National Forest may stop wildfires from spreading because there
is insufficient continuous vegetation to carry them. The land use factors in the study
area contributed to wildfires, especially in herbaceous areas with the highest FR value
and evergreen forest areas with the highest wildfire occurrence. Herbaceous vegetation
area is more susceptible to wildfires when the climate is drier, producing fuel, igniting
fires, or spreading frequent surface fires [95]. In the forest area, tree leaf litter can also
provide fuel when herbaceous groundcover fails to develop a wildfire. The combination
of herbaceous vegetation and evergreen forest areas were the primary wildland classes
that carried wildfires in the U.S. [96]. In recent decades, the western U.S. has warmed and
the frequency and severity of heatwaves and droughts have increased [97]. Based on the
National Oceanic and Atmospheric Administration (NOAA), temperatures in California
have increased by approximately 3 degrees Fahrenheit (1.67 ◦C) since the start of the
20th century, with the 2015–2020 period being the warmest, with the highest number of
extremely hot days [98]. High temperatures have caused the air to dry out. Fire seasons
start earlier and end later each year. Meanwhile, snowpacks are shrinking, causing an
earlier spring and an intense and longer dry season. These drier and warmer conditions
are also exacerbating wildfires in the western U.S. [9].

In this study, a CNN deep learning algorithm and hybrid models, namely CNN-GWO
and CNN-ICA, were used to determine the areas susceptible to wildfires. All proposed
models showed good results with AUC values greater than 0.9 and yielded maps of wild-
fire susceptibility in the study area. The performance of CNN-GWO was the best, with
AUC = 0.974 and RMSE = 0.334, followed by CNN-ICA (AUC = 0.950, RMSE = 0.351) and
standalone CNN (AUC = 0.934, RMSE = 0.780). In general, the predictive ability of deep
learning algorithms can vary depending on the model structure, input selection, dataset
quantity and quality, and optimization of model parameters [35]. The hyperparameter
adjustment of the CNN model using a metaheuristic algorithm affected the prediction
performance of the model. The hybrid models obtained better results than the standalone
models. Therefore, hybrid models are important techniques for improving the prediction
capacity of basic classification to reduce bias and avoid the problem of overfitting. Fur-
thermore, from the literature reviews, the GWO algorithm has a simple structure and the
ability to converge quickly due to the continuous reduction of the search space and fewer
tuning variables than other algorithms [77]. Therefore, GWO was both faster and had
higher prediction accuracy.
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Figure 11 shows the CNN-GWO models which performed better with wildfires that
occurred in 2021, including the Beckwourth Complex Fire, Dixie Fire, Gunnison Fire, and
Park Fire. The RMSE value for the wildfire susceptibility map from the CNN-GWO model
with recent wildfires was 0.511, which was lower than the standalone CNN (0.678) and
CNN-ICA (0.514).

Figure 11. Comparison of the CNN-GWO model with wildfires that occurred in 2021.

Gunnison Fire and Park Fire burned 222 ha and 163 ha, respectively. Both wildfires
were located in very high wildfire susceptibility areas. The Beckwourth Complex Fire
burned 42,700 ha located outside wildfire-prone areas. This is because the model had
difficulty predicting the location of wildfires where the area did not meet the required or
similar conditions to high-risk areas. Additionally, the area has no history of wildfires.
According to the Beckwourth Post-Fire BAER Assessment Report, the cause was lightning.
The Dixie Fire burned 389,800 ha, killed one person, and damaged 1329 structures in
July 2021. According to the Fire Information for Resource Management System (FIRMS)
data, the initial fire was located in an area of very high wildfire susceptibility in the center
of the study area (darker purple area in Figure 11). Therefore, our models managed to
predict the occurrence of most wildfires in the study area.

This study has the limitation of depicting damaged areas in areas of low coherence before
wildfires occurred. Although most wildfires occurred in summer and fall, some forest areas
still had dense leaves showing incoherence. Other data should be combined with the DPM
and fire perimeter from CAL FIRE to map more precise locations of areas damaged by wildfire.
The normalized burn ratio (NBR) from Sentinel-2 imagery with 10 m resolution can reflect
the burn severity level. Another limitation is the use of NDVI, solar radiance, drought index,
and temperature data. NDVI was computed from MODIS images with 375 m resolution.
The NDVI data were influenced by clouds and had certain spatial and temporal limitations.
Future study should include the soil adjusted vegetation index (SAVI) and the normalized
difference moisture index (NDMI) for more accurate analysis of the vegetation composition in
Plumas National Forest [99]. The solar radiance, drought index, and soil moisture data were
acquired from Terra Climate images with low resolution. Therefore, the actual climate change
in the study area has not been well described, thus introducing uncertainty in the generation
of wildfire susceptibility maps. Future study will integrate the capability of Sentinel-1 and
Sentinel-2 for better and accurate wildfire mapping.
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Along with wildfire susceptibility maps, emergency treatments and activities must be
designed to decrease possible impacts on valued resources in the wildfire area, such as life
and safety, property, critical natural resources, and cultural resources.

5. Conclusions

Wildfire susceptibility maps in Plumas National Forest were created for the first time
by integrating SAR data using the DPM method with deep learning based on CNN with
metaheuristic optimization algorithms. Identifying areas with very high and high suscepti-
bility provides information that can be applied to risk management and the development
of innovative responses to future wildfires. The Sentinel-1 SAR dataset and the DPM
technique created a wildfire inventory of the study area with high accuracy and precision
as well as low cost and reproducibility. CNN deep learning with metaheuristic optimiza-
tion algorithms, namely GWO and ICA, were employed to model wildfire susceptibility
in Plumas National Forest, California, USA. The results showed that CNN-GWO had a
lower RMSE (0.334) and a higher area under the ROC curve value (0.974) than CNN-GWO
and CNN alone. In conclusion, the results revealed the applicability of the CNN deep
learning algorithm to wildfire susceptibility mapping and the effectiveness of the hybrid
approach using metaheuristic optimization algorithms. Furthermore, the methodology
is reproducible and applicable to other areas with different conditioning factors. Further
study to compare the forecast accuracy of other deep learning methods and metaheuristic
optimization algorithms is warranted.
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