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Abstract: Extreme precipitation events can lead to severe mountain hazards, and they have therefore
received widespread attention. The study of extreme precipitation can be hindered by the insufficient
number and uneven distribution of rain gauge stations, especially in mountainous areas with complex
terrain. In this study, the daily precipitation data of three gridded precipitation products (Integrated
Multi-satellite Retrievals for GPM, IMERG; Multi-Source Weighted-Ensemble Precipitation, MSWEP;
and Tropical Rainfall Measuring Mission, TRMM) were compared with rain gauge observations at
62 ground stations from 2001 to 2016 over the Hengduan Mountain region in China. Deviations
between the gridded and ground precipitation datasets were compared using four daily heavy
rainfall sequences. Various extreme precipitation indices were used to evaluate the performance of
selected precipitation products. The results show that IMERG and TRMM are better than MSWEP
in characterizing extreme precipitation. The accuracy of these three products in detecting heavy
precipitation varied with altitude gradient. All products provided more accurate estimates of heavy
precipitation in higher-altitude areas than in lower-altitude areas. Notably, they are more applicable
for heavy precipitation detection in subalpine or alpine regions, and there are still uncertainties in
capturing the accurate characterization of extreme precipitation at low (<1000 m) altitudes in the
Hengduan Mountain region. These precipitation products should be used with caution in future
applications when analyzing extreme precipitation at low elevations.

Keywords: extreme precipitation; altitude gradient; Hengduan Mountains region; IMERG; TRMM

1. Introduction

Extreme precipitation is the amount of precipitation that exceeds a certain threshold [1],
and it can trigger a series of natural disasters that can cause severe damage to human life
and the natural environment [2,3]. With global climate change, the accelerated rate of
the water cycle has caused striking variation in precipitation frequency distributions [4,5].
Consequently, extreme rainstorm events are becoming more intensive [6,7], leading to fre-
quent landslides, mudslides, and other mountain disasters [8,9]. The Hengduan Mountains
region (HMR) in China is a mountainous, hazard-prone area [10]. Extreme precipitation
is the main trigger for mountain hazards [11], the incidence of which is increasing in the
HMR [12–14]. However, achieving finer spatial and temporal resolution observations
for extreme precipitation analysis in mountainous regions is challenging, because of the
sparse and uneven spatial distribution of ground observation stations [15,16]. Gridded
precipitation products, which are mainly based on passive microwave (PMW) and cali-
brated infrared (IR), have the advantages of high spatial and temporal resolutions and wide
coverage [17]. Therefore, there is a pressing need to improve the understanding of extreme
precipitation events using gridded precipitation products in the HMR, and assessing the
applicability of gridded precipitation products is a prerequisite for product selection.
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The spatiotemporal variation in precipitation is closely related to the topography [18].
Elevation gradients of precipitation are common in mountainous areas [19,20]. On a
regional scale, the distribution of heavy rainfall presents a significant pattern of spatial
heterogeneity owing to the complex topography of mountainous regions [21,22]. On a
larger spatial scale, airflow rises under the action of uplifted terrain and, consequently,
water molecules converge, condense, and form a precipitation peak [23]. Guo et al. (2020)
found a significant relationship between extreme precipitation indices and altitude in the
HMR [24]. The results of spatial regression models in Taiwan suggest that terrain plays a
primary role in extreme precipitation fluctuations [25]. Hence, the effects of elevation cannot
be ignored while studying extreme precipitation over mountainous areas. Accordingly,
the applicability of various gridded products in HMR should consider the performance of
extreme precipitation at different elevations.

The most popular grid precipitation products include the Climate Hazards Group
Infrared Precipitation with Station data (CHIRPS) [26], Multi-Source Weighted-Ensemble
Precipitation (MSWEP) [27], Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) [28], and global precipitation measurement (GPM) [29].
Unfortunately, the uncertainties caused by systematic errors inherent in satellite datasets
limit the direct application of satellite-based precipitation products [30]. Satellite-based
data resources, inversion algorithms, gauge procedures, and sensor performance can all
affect the accuracy of precipitation product datasets [31]. To date, many studies have
investigated the characteristics and applicability of precipitation product datasets from
various aspects [32,33]. For example, MSWEP V2 is the first fully global precipitation dataset
with a 0.1◦ resolution, which exhibits realistic spatial patterns in mean, magnitude, and
frequency for global precipitation [27]. Therefore, among the available gridded precipitation
products, MSWEP is considered more reliable for drought forecasting and suitable for
studying long-term mesoscale precipitation [34–37]. Prior studies have directly compared
TRMM and Integrated Multi-satellite Retrievals for GPM (IMERG) products and quantified
their performance and bias. For example, the GPM sensors of IMERG can detect light
(<0.5 mm/h) and solid precipitation more accurately than those of TRMM; therefore, the
IMERG dataset is considered superior to the TRMM dataset [38], whereas TRMM exhibits
superior detection performance at large time and space scales to IMERG [39,40]. Luo et al.
(2021) proposed a new method for assessing precipitation products in ungauged basins or
areas with limited ground-based precipitation monitoring [41]. These results confirmed
the relatively good accuracy of these three widely used products and provided the basis
for selecting the appropriate one; however, there are few clues regarding the accuracy and
applicability of precipitation products to detect extreme precipitation at different elevations
in mountainous regions.

Some studies examined the ability of TRMM to identify extreme precipitation [42,43].
For example, TRMM 3B42-V7 can reproduce extreme indices better in Eastern China than
in Western China [43]. Liu et al. (2020) suggested that GPM-based estimates are useful for
simulating extreme precipitation events in the Yangtze River Basin [44]. The ability of these
popular precipitation products to detect extreme precipitation (especially high-intensity
precipitation that causes flooding) lacks an accurate comparison. Furthermore, although
changes in extreme precipitation events show spatial variability [45,46], previous studies
rarely mentioned the corresponding topographic features [47,48]. Overall, an in-depth
comparison of multiple gridded precipitation datasets is required to further explore the
reasons for the relative performances of different datasets in detecting extreme precipitation
in mountainous regions.

This study quantified the performance of various products in capturing the char-
acteristics of extreme precipitation and evaluated their applicability and accuracy in a
steep mountainous region. We compared the latest versions of the MSWEP, TRMM, and
IMERG gridded precipitation products with ground observations using data from 2001 to
2016. This study provides a guide for the potential use of precipitation products for future
disaster prevention and risk management in mountainous regions.
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2. Materials and Methods
2.1. Study Area

The HMR (24◦35′–33◦34′N, 96◦56′–104◦30′E) is located in Southwest China (Figure 1).
It lies at the junction of the Qinghai–Tibet Plateau, Yunnan–Guizhou Plateau, and Sichuan
Basin [49], covering an area of approximately 5 × 105 km2. It is also the transition zone
between the first and second terrains of China’s topography, which creates complex terrain
conditions, and the regional elevation ranges from 330 to 6400 m, decreasing from the
northwest to the southeast [13]. The maximum elevation difference in the area can exceed
6000 m, with the characteristics of high mountains, deep valleys, and large relative elevation
differences. The HMR is located in a typical monsoon climate region, controlled by the
South Asian and East Asian monsoons. In addition, it is influenced by the Tibetan Plateau
monsoon and westerlies [8]. The complex terrain and various monsoons cause significant
spatial and temporal differences in precipitation [50]. The average annual rainfall is as high
as 1137 mm, and approximately 75–90% of the annual rainfall is concentrated from June to
September [14,21], thus leading to frequent disasters in the mountains.
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2.2. Data
2.2.1. Ground Observations of Precipitation

Although rain gauge stations in the HMR are sparse, and access to ground-observed
precipitation data is quite limited, they are still the most direct way to obtain accurate
measurements. Daily ground-observed precipitation datasets for HMR from 2001 to 2016
were obtained from the China Meteorological Administration (CMA; http://data.cma.cn/
accessed on 11 March 2022). The data were subjected to rigorous quality assurance, whereby
missing data were supplemented by migrating the adjacent gauge data upon verification.
Several representative stations within ~0.5◦ of the HMR were included as buffers to reduce
the inaccuracy caused by sparse rain gauge stations. Sixty-two rain gauge stations with no
missing data from 2001 to 2016 were identified as the reference for the intercomparison of
the precipitation product datasets. Figure 1 shows the even spatial distribution of ground
observation stations, which were located between 97.1◦E and 105.0◦E and between 24.4◦N
and 34.5◦N. The elevation of the stations ranged from 340 to 4400 m. The wide range of
heights facilitates the comparison of vertical distinctions.

http://data.cma.cn/
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2.2.2. Gridded Precipitation Datasets

Three gridded precipitation products were used and compared to the reference dataset,
including IMERG, TRMM, and MSWEP. Table 1 summarizes the characteristics of the three
gridded precipitation products.

The MSWEP is a global precipitation dataset spanning 1979–2017 (http://www.gloh2
o.org/ accessed on 11 March 2022). The latest version of MSWEP has several advantages,
including (1) comprehensive global coverage, (2) high spatial and temporal resolution,
(3) optimal merging of global data based on various gauges, satellites, and reanalysis
estimates, and (4) distributional bias corrections to eliminate spurious light rain and restore
attenuated peaks [27]. The TRMM monitored tropical rainfall as a joint mission launched by
NASA and JAXA. The TRMM 3B42 product applies the TRMM TMPA algorithm, providing
one of the best precipitation estimates from a wide variety of modern satellite-borne
sensors [51]. The last version, TRMM-3B42 V7 (Source: https://disc.gsfc.nasa.gov/datasets
accessed on 11 March 2022), is a post-real-time product with 0.25◦ spatial resolution that
combines rainfall estimates from PMW and IR sensors, microwave imager, and infrared
scanner radiometers [28]. IMERG is a representative product of the GPM mission, which
has higher accuracy and spatiotemporal resolution than previous precipitation products
(source: https://gpm.nasa.gov/data/directory accessed on 11 March 2022). As a successor
of TRMM, the GPM satellite has an advanced radar/radiometer system, including the
GPM microwave imager and a dual-frequency precipitation radar [52]. In addition, various
passive microwave and infrared satellite sensors support rainfall estimation. According to
demand, there are three modes of IMERG: early, late, and final. The final-run dataset was
corrected based on the GPCC monthly gauge analysis, which showed better consistency
and event detection on both basin and grid scales, whereas the early and late runs showed
larger deviations in arid regions [53–55]. The latest version of the IMERG Final Run
(IMERG V6), launched in April 2014, was used. All relevant data were converted from the
coordinated universal time (UTC) to local standard time (LST).

Table 1. Summary of characteristics for the three gridded precipitation datasets.

Dataset Period Coverage Temporal
Resolution

Spatial
Resolution

GPM-IMERG V6 2001–2020 60◦S–60◦N 0.5 h 0.1◦

MSWEP V2.2 1979–2017 Global 3 h 0.1◦

TRMM-3B42 V7 1998–2020 50◦S–50◦N 3 h 0.25◦

2.3. Methodology
2.3.1. Statistical Analysis

Several commonly used continuous statistical metrics were used: correlation coeffi-
cient (CC), root mean square error (RMSE), mean absolute error (MAE), and relative bias
(RB). These metrics were calculated as follows:

CC =
∑N

i=1
(

Pi − P
)(

Oi −O
)√

∑N
i=1
(

Pi − P
)2

∑N
i=1
(
Oi −O

)2
(1)

RMSE =

√
∑N

i=1(Pi −Oi)
2

N
(2)

MAE =
∑N

i=1|Pi −Oi|
N

(3)

http://www.gloh2o.org/
http://www.gloh2o.org/
https://disc.gsfc.nasa.gov/datasets
https://gpm.nasa.gov/data/directory
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RB =
∑N

i=1(Pi −Oi)

∑N
i=1 Oi

(4)

where Pi and Oi represent gridded product and ground observation precipitations, with P
and O being their respective mean values, and N is the number of collocated observations.

The CC value describes the degree of correlation in the linear relationship between
two variables [56]. A larger CC value indicates a higher agreement between the gridded
products and observed precipitation. The ideal CC value is 1. The RMSE and MAE measure
the average error and average difference, respectively. MAE is a linear measurement of
error, whereas RMSE is a quadratic loss function that points to extremes [57]. The smaller
the RMSE and MAE, the smaller the error between the gridded products and observed
precipitation. The RB quantifies the degree to which the gridded products overestimate or
underestimate the observed precipitation. A positive (or negative) value indicates that the
datasets overestimate (or underestimate) relative to the observations. The ideal values for
the RMSE, MAE, and RB were 0. RRMSE and RMAE are defined as the RMSE and MAE
divided by the average of the gridded precipitation dataset, respectively, which indicates
the normalized values of RMSE and MAE for comparison purposes.

Several widely used categorical statistical indices, including the probability of de-
tection (POD), false alarm ratio (FAR), BIAS, and critical success index (CSI), which are
calculated as follows, were adopted to evaluate the precipitation detection capabilities of
the three gridded precipitation products:

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

BIAS =
H + F
H + M

(7)

CSI =
H

H + F + M
(8)

where H is the number of precipitation events detected within the gridded precipitation
datasets and gauge monitoring data, M is the number of precipitation events detected
within the gauge monitoring station data but not within the gridded precipitation datasets,
and F is the number of precipitation events detected within the gridded precipitation
datasets but not within the gauge monitoring station data. Since both gauges and gridded
precipitation products are prone to large uncertainties for light precipitation, a 1 mm/day
value is typically adopted as the threshold for determining rain/no-rain events [58]. The
POD represents a “hit rate”, which describes the proportion of the observed precipita-
tion events detected correctly by the evaluated product [59]. FAR is the proportion of
precipitation events identified by the gridded products that were not observed by the
gauge station [60]. BIAS indicates the degree of deviation between the identification of the
product and real rainfall events. CSI demonstrates the overall ability of products to detect
precipitation occurrence [30]. Values of 1 for POD, BIAS, and CSI and values of 0 for FAR
indicate a relatively ideal product performance.

2.3.2. Extreme Precipitation Analysis

To compare the applicability of precipitation products in characterizing extreme pre-
cipitation, 11 widely used extreme precipitation indicators (Table 2) were selected for this
study [13,24,61,62].
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Table 2. Extreme precipitation indices used in this study.

Index Descriptive Name Definition Units

R0.1mm Number of precipitation days Annual count of days when precipitation ≥ 0.1 mm day
R10mm Number of moderate precipitation days Annual count of days when precipitation ≥ 10 mm day
R12mm Number of erosion precipitation days Annual count of days when precipitation ≥ 12 mm day
R25mm Number of heavy precipitation days Annual count of days when precipitation ≥ 25 mm day

PRCPTOT Wet-day precipitation Sum of daily precipitation > 1.0 mm mm

SDII Simple daily intensity index Annual total precipitation divided by the number of
wet days mm/d

RX1day Maximum 1-day precipitation Maximum 1-day precipitation total mm
CWD Consecutive wet days Maximum number of consecutive wet days day
CDD Consecutive dry days Maximum number of consecutive dry days day
R95p Total annual precipitation from very wet day Annual sum of daily precipitation > 95th percentile mm

R99p Total annual precipitation from extremely
wet day Annual sum of daily precipitation > 99th percentile mm

Notes: A dry (or wet) day is defined as one in which the daily precipitation is lower (or no less) than 1 mm/day.

Extreme precipitation is typically determined by a threshold that can be absolute
or relative [63]. The absolute threshold is a fixed value that can seriously affect human
production, life, and the ecological environment, taking 50 mm/day as the threshold for a
rainstorm [64]. Relative thresholding most commonly uses the percentile value of a data
series as the threshold [65]. Because the spatial distribution of precipitation in the study
area varies widely, the maximum daily precipitation at some stations did not reach 50 mm.
Therefore, defining extreme precipitation events in terms of absolute thresholds would
have affected the results. To address this limitation, the daily scale data for each site from
2001–2016 were arranged in descending order, and the 99th percentile value was used
as the threshold value, defined as Max99, when the precipitation at the corresponding
site exceeded this threshold. Similarly, the 95th, 90th, and 80th percentiles were used as
thresholds to define Max95, Max90, and Max80, respectively. The deviations between
the product datasets and ground observations were compared using these four daily
heavy rainfall sequences. The study area was divided into four altitude gradients based
on the mountain terrain classification of geomorphology [66], including high altitude
(4000–5000 m), sub-high altitude (2500–4000 m), medium altitude (1000–2500 m), and low
altitude (<1000 m), to explore the applicability of the three products at different altitudes.

3. Results
3.1. Comparison of the Applicability of the Three Products in the Study Area

Figure 2 shows the scatter plots of the three gridded precipitation products versus
ground observed precipitation at the watershed scale. Because extreme precipitation events
usually occur within a short period, daily timescale was considered. The fits of the gridded
precipitation data to the ground observation data for all three products were relatively
close. The results of the categorical statistical indices for the three gridded precipitation
products are shown in Figure 3. The POD results suggested that all products had high
identification accuracy (all POD values exceeded 0.8), whereas MSWEP was slightly better
than IMERG and TRMM. MSWEP had the highest FAR value, which was notably lower
than that of IMERG. For the BIAS results, IMERG and MSWEP were lower and higher,
respectively, than the ideal values (value of 1). TRMM registered the best BIAS values.
The CSI values for all three gridded products were close to 0.8, indicating similar overall
detection abilities.

The various statistical indicators of the gridded and observed precipitation on a daily
scale are presented in Table 3. Most of the statistical indices were well captured by IMERG.
The TRMM results were slightly worse than those of IMERG, both with standard deviations
similar to the observed precipitation. In contrast, MSWEP results were the worst, with
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lower kurtosis, skewness, standard deviation, and coefficient of variation than that of
TRMM and IMERG.
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Figure 3. Categorical statistical indices ((a) POD, (b) FAR, (c) BIAS, and (d) CSI) of the three precipita-
tion products at a daily scale.

Table 3. Comparison of daily statistical results of the precipitation products.

Statistical Indices CMA IMERG MSWEP TRMM

Mean (mm) 2.19 2.18 2.31 2.28
Median (mm) 1.307 1.233 1.613 1.370

Upper 95th percentile (mm) 7.949 8.088 7.556 8.221
Upper quartile (mm) 3.507 3.576 3.879 3.681
Lower quartile (mm) 0.280 0.163 0.471 0.270

Lower 95th percentile (mm) 0.000 0.005 0.092 0.011
Range (mm) [0, 39.657] [0, 32.129] [0, 25.975] [0, 29.557]

Skewness 2.314 1.864 1.603 1.819
Kurtosis 9.637 4.858 3.821 4.612

Standard deviation (mm) 2.849 2.849 2.587 2.830
Coefficient of variation (%) 1.213 1.223 1.031 1.167
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3.2. Comparison of Extreme Precipitation Indices

Table 4 shows the average extreme precipitation indices for the ground observation
data and the three gridded products. Figure 4 shows boxplots for the six absolute threshold
extreme precipitation indices of the observed data and three products: R0.1, R10, R12, R25,
PRCPTOT, and SDII. From Table 4 and Figure 4, it can be seen that all the gridded products
overestimated the R0.1mm value. Among all the products datasets, the R0.1mm values for
the IMERG product were closest to the value of the observed data, whereas the R0.1mm
values for MSWEP were significantly larger, exceeding by 230 days. For the R10 mm
and R12mm results, there was no particular difference in the performance of the three
precipitation products, and the deviation from the observation was approximately one day.
MSWEP slightly underestimated the values for R12mm and severely for R25mm. For the
R10, R12, and R25mm results, we found that IMERG and TRMM had stronger detection
abilities for moderate precipitation (R10mm) and erosion precipitation (R12mm) events. In
the case of the PRCPTOT results, TRMM and MSWEP overestimated the total precipitation
on wet days; however, the degree of overestimation for IMERG was lower (the average
PRCPTOT value exceeded approximately 18 mm). For SDII, all three gridded products
were below the observed value (6.54 mm/day) to various degrees. It should be noted that
IMERG was the product closest to the observed data among the three products evaluated.

Figure 5 shows boxplots of the second category of extreme precipitation indices, the
maximum indices of precipitation, with respect to the daily precipitation values (RX1day),
the duration of wet/dry periods (consecutive wet days (CWD) and consecutive dry days
(CDD)), and the percentile indices (R95p and R99p). As seen in Table 4 and Figure 5, for the
RX1day indices, it can be seen that IMERG had the closest mean RX1day (60.81 mm) to the
observed value (57.10 mm), whereas MSWEP underestimated it. These results were also
in line with those for the R95p and R99p indices. For the CWD and CDD indices, IMERG
had the smallest deviation in these two indices, with CWD overestimated by ~4 days
and CDD underestimated by ~3 days. Upon closer inspection, IMERG and TRMM could
capture extreme precipitation events better. Most of the indices were close to the observed
data, and both performed consistently for indices reflecting larger intensity precipitation
(such as R12mm and R25mm). Compared to MSWEP, IMERG and TRMM performed
more accurately for indices reflecting extremely intense precipitation (R95p, R99p, and
RX1day). Although MSWEP reflected moderate precipitation days (R10mm = 24 days) well,
it severely overestimated the number of precipitation days (R0.1mm = 233 days), CWD
(48 days), and the lowest R95p (370.92 mm), R99p (125.60 mm), and R25mm (4 days), which
suggests that MSWEP showed a poor ability to identify high-intensity precipitation.

Table 4. Comparison of extreme precipitation indices for the observed data and the three products.

Metric CMA IMERG MSWEP TRMM

R0.1mm (days) 128 ± 3 147 ± 3 233 ± 4 172 ± 6
R10mm (days) 25 ± 1 25 ± 1 24 ± 1 26 ± 1
R12mm (days) 20 ± 1 21 ± 1 18 ± 1 21 ± 1
R25mm (days) 6 ± 1 7 ± 0 4 ± 0 7 ± 0

PRCPTOT 832.13 ± 32.55 849.93 ± 21.17 916.05 ± 28.85 885.44 ± 26.09
SDII (mm/day) 6.54 ± 0.21 5.91 ± 0.22 3.93 ± 0.10 5.55 ± 0.26
RX1day (mm) 57.10 ± 3.42 60.81 ± 2.52 40.75 ± 2.31 56.35 ± 2.49
CWD (days) 11 ± 0 15 ± 1 48 ± 3 21 ± 2
CDD (days) 39 ± 1 36 ± 1 18 ± 1 30 ± 1
R95p (mm) 457.08 ± 19.46 478.42 ± 17.20 370.92 ± 14.81 463.80 ± 15.86
R99p (mm) 168.55 ± 8.90 180.33 ± 7.09 125.60 ± 6.33 169.75 ± 6.55
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The point marks the average value. The black dashed line indicates the mean value of the indices of
the observed data.
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To examine the temporal agreement between the three gridded products and observed
data across the entire study area, annual time series were generated for each dataset.
Figure 6 shows the mean extreme precipitation indices for all 62 rain gauge stations in
the HMR. The MSWEP deviated the furthest from the observed data for each index,
overestimating R0.1mm, PRCPTOT, and CWD, and underestimating R12mm, R25mm, SDII,
RX1day, CDD, CWD, R95p, and R99p. Both IMERG and TRMM were close to the observed
data for R10mm, R12mm, and R25mm, but underestimated the SDII and overestimated
the CWD. The values of the four continuous statistical metrics (CC, RRMSE, RMAE, and
RB) for the series of extreme precipitation indices are shown in Figure 7. TRMM had the
lowest CC values for R0.1mm, SDII, CWD, and CDD, while MSWEP had the highest for
R0.1mm and CDD. For the other extreme precipitation indices, the CC values of the three
products were very similar. The RRMSE and RMAE results were similar, with MSWEP
showing the largest values for all extreme precipitation indices. The RB values of IMERG
were near zero for all indices except CWD, whereas those of MSWEP were the farthest
from zero in all three datasets, suggesting that MSWEP had the most considerable bias for
extreme precipitation in the HMR.
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Figure 7. Distribution of continuous statistical metrics ((a) CC, (b) RRMSE, (c) RMAE, and (d) RB)
of the comparisons between the three precipitation products and ground observations at different
extreme precipitation indices.

To more clearly compare the recognition ability of the three precipitation products
for high-intensity precipitation, the extreme precipitation indicators that reflect intense
precipitation were selected to calculate their relative errors at each station separately. Their
density distribution curves are presented in Figure 8. As can be seen, the distribution curves
for IMERG for R12mm and R25mm were more peaked and tighter, with mean values closer
to zero. Especially for CWD, the relative errors of IMERG were concentrated around 0,
whereas the curve of MSWEP was flatter. For RX1day, R95p, and R99p, the distribution
patterns of IMERG and TRMM were relatively similar, whereas the distribution curve of
MSWEP had a significant deviation to the left, indicating an underestimation of the amount
of high-intensity precipitation. Overall, MSWEP performed poorly compared with the
other products. For most indicators, the ability of IMERG to detect extreme precipitation
was less uncertain than that of TRMM.
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3.3. Comparison of Three Products for Heavy Rainfall Identification

The absolute errors between the ground observation data and gridded products
were calculated for the four defined precipitation time series, and the results are shown
in Figure 9. All three precipitation products underestimated the actual precipitation to
varying degrees at all elevations, with MSWEP underestimating the lowest altitude. The
error generated by the three products decreased with increasing rainfall intensity. At
Max99, there was a clear trend of decreasing accuracy for the three products as the altitude
decreased (Figure 10). The error characteristics of IMERG and TRMM were similar at
almost all elevations. For the most part, the deviation of the MSWEP was the maximum,
with absolute errors close to −15 at high altitudes and up to −25 at medium altitudes.
Figure 11 shows a comparison of the statistical metrics of the Max99. The MSWEP had
the largest CC value, exceeding 0.6, but also showed the largest deviation (RRMSE > 60%,
RMAE > 25%, RB < −0.4). IMERG had the best RMAE, RRMSE, and RB values, indicating a
smaller deviation from the observed values. As a result, IMERG had the strongest detection
ability for heavy precipitation.
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4. Discussion
4.1. Effect of Elevation

In this study, the performance of the precipitation products was greatly affected by
topographic elevation and showed a consistent trend across the elevation gradient. IMERG
exhibits better performance at medium altitudes, which is in line with the findings of
previous studies [67]. According to previously published studies [68], the accuracy of
precipitation products can be affected by topography and is more accurate in plain areas
than in mountainous areas. In mountainous areas with complex terrain, precipitation
products may underestimate actual precipitation, possibly because of the low gauge net-
work density in such areas. In addition, precipitation can be falsely detected because of
the contrast between the temperature and emissivity of rough surfaces of snow-covered
areas [69,70]. Extremely high altitudes and too few stations made the results less reliable at
the highest altitudes. Instead, sub-high (2500–4000 m) and medium (1000–2500 m) altitudes
are more common in mountainous areas, where the performance of the three precipitation
products is better than that at low (<1000 m) altitudes. One of the reasons is that the
primary production and living spaces are mainly located at lower elevations, such as in the
southeast of the study area, and the living space has gradually increased [49]. As a result of
urbanization and land-use changes, the natural surface conditions, hydrological balance,
and atmospheric characteristics of a locality are significantly altered [71]. However, most
low-altitude stations are distributed in the transitional zone between the Tibetan Plateau
and Sichuan Basin. Topographic uplift and latent heat release triggered the development of
complex convective systems [72], which decreased the accuracy and sensitivity of satellite-
based sensor recognition [32,73,74]. Additionally, because higher-altitude areas are closer to
the onboard radar equipment, the effect of radar signal attenuation can be reduced during
precipitation data acquisition. Therefore, satellite sensors can more accurately obtain true
ground-based observations at higher altitudes. Better proximity to satellites and interaction
of convective systems with regional topography may be the primary reasons for the better
performance at higher altitudes than that at lower altitudes.

This study and several others found that both IMERG and TRMM underestimate high-
intensity precipitation [75–79]. One possible reason is that satellites generally assume that
deep clouds cause heavy precipitation, but topographic rain from shallow clouds is ignored.
Precipitation products have large errors when estimating topographic precipitation [80].
The above discussion offers a possible explanation for the significant tendency of the
detection error to increase with decreasing elevation in Max99 (Figure 10). From a study
of the altitude dependency of extreme precipitation trends [81], extreme precipitation
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events increased mainly at lower altitudes (1000–1500 m). Accordingly, this study focused
on performance at medium altitudes. IMERG is the most adapted product for studying
extreme precipitation at this altitude range.

4.2. Benefits and Limitations

Heavy rainfall is a key concern owing to the unique climatic conditions and hazard
characteristics of the HMR, mainly reflected in the R25mm, RX1day, and R99 indicators. For
all three indicators, MSWEP underestimated precipitation to varying degrees. This finding
is consistent with that of Nair [82]. Meanwhile, MSWEP also overestimated the index
characterizing light precipitation. Especially for R0.1mm, the number of overestimated
days was as high as 100 days (see Table 4). The comparison of extreme precipitation indices
suggests that the MSWEP does not accurately identify either heavy precipitation or drought,
as can also be seen from the overestimated CWD and underestimated CDD. Based on the
above analysis, we suggest that using MSWEP to represent extreme precipitation at the
HMR may not be appropriate, despite its good correlation with the observed precipitation.

IMERG has a higher spatial and temporal resolution than TRMM and therefore dis-
plays more detailed spatiotemporal information [76,83]. Higher spatial resolution improves
the accuracy of capturing precipitation events at small spatial scales, making it more suit-
able for smaller watersheds [75]. The higher temporal resolution makes IMERG more
capable of identifying heavy precipitation events, as high-intensity precipitation usually
occurs over a short period [78]. In TRMM, precipitation events are often missed in some
cases, resulting in a lower CC value. Compared to TRMM, IMERG has more advanced sen-
sors [84,85], which add four channels ranging from 10 GHz to 183 GHz [86]. Augmentation
of additional Ka-band frequency radars has undoubtedly improved the performance of
IMERG for light/heavy precipitation detection [87]. Our findings are consistent with those
of the previous studies that agree that IMERG is more accurate than TRMM in identifying
extreme precipitation [67,77,88]. Given the complex topography and climatic conditions
of the mountainous regions of Western China, IMERG may help represent precipitation,
hazard prevention, and disaster risk reduction. To understand extreme precipitation,
IMERG products have the potential to overcome the limitations of insufficient precipitation
observations in mountainous areas, assess precipitation trends under continuously chang-
ing climatic conditions, evaluate the ecological impacts of extreme weather, and bolster
hydrologic modeling with high spatiotemporal resolutions.

However, TRMM and IMERG underestimated high-intensity precipitation and slightly
overestimated several extreme precipitation indices (such as R25mm and R99) for ground
stations. This suggests that both precipitation products might fail to identify moderate
rainfall events observed by gauges as extreme precipitation events but underestimate heavy
precipitation. The accuracy of these three gridded products in detecting heavy precipitation
varied over the four precipitation sequences (Figure 10). The difference in accuracy was
the most pronounced between Max99 and Max95. In fact, the detection skill of all current
satellite precipitation datasets decreases as the precipitation thresholds (i.e., 80th to 99th
percentiles) increase [89]. The common reasons are that gridded precipitation is homog-
enized data and high-intensity rainfall attenuates radar signals [78,90]. The differences
in the performance of the precipitation products at various precipitation intensities must
be investigated in greater detail. In this study, the comparison of the three products in
HMR suggests that MSWEP has the worst performance. At the same time, MSWEP has
great potential for drought monitoring at larger spatial scales (over mainland China) [35]
and exhibits highest accuracy on a larger timescale (annual and monthly scales) among
the three products [36,91]. Thus, further research should be undertaken to investigate
the reasons for the varied performances of gridded precipitation datasets under differ-
ent climates, regions, and spatiotemporal scales. Identifying the sources of systematic
and random errors enhances satellite sensor systems further [92]. Precipitation patterns
worldwide have changed throughout the 20th century [93,94]. It is more challenging to
predict and understand extreme precipitation. Despite these uncertainties, the findings
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of the present study are valuable. The results of this study can serve as a reference for
research on hazard assessment of hydrometeorological disasters and risk management of
extreme precipitation.

5. Conclusions

We adopted multiple indices to evaluate the performance of the gridded precipitation
product datasets by comparing them to the observations from 62 rain gauge stations
throughout the study region. The major conclusions can be drawn as follows: MSWEP has
the best agreement of daily precipitation time series, but there is a serious underestimation
of extreme precipitation. The MSWEP dataset is not sufficiently capable of studying
extreme precipitation. IMERG and TRMM have similar detection capabilities for extreme
precipitation, both being better than MSWEP, and IMERG provides higher precision and
less uncertainty owing to its higher spatiotemporal resolution. The accuracy of these three
products in detecting extreme precipitation tended to decrease with decreasing altitude.
All three products showed significant errors in identifying heavy rainfall in low-altitude
regions in the HMR. Furthermore, the performance of the MSWEP is the worst, except at
low altitudes. This study provides a basis for precipitation hazard assessments that require
the application of gridded precipitation products.

This study demonstrated that IMERG had the best application potential for risk
analyses of extreme precipitation events over the HMR. Given the spatiotemporal resolution
of TRMM and its poor performance, in future relevant studies involving different spatial
scales, a feasible option would be to use IMERG and TRMM in conjunction.
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